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Abstract
Physiological changes in dynamic PET images can be quantitatively estimated by kinetic
modeling technique. The process of PET quantification usually requires an input function in the
form of a plasma-time activity curve (PTAC), which is generally obtained by invasive arterial
blood sampling. However, invasive arterial blood sampling poses many challenges especially for
small animal studies, due to the subjects’ limited blood volume and small blood vessels. A simple
non-invasive quantification method based on Patlak graphical analysis (PGA) has been recently
proposed to use a reference region to derive the relative influx rate for a target region without
invasive blood sampling, and evaluated by using the simulation data of human brain FDG-PET
studies. In this study, the non-invasive Patlak (nPGA) method was extended to whole-body
dynamic small animal FDG-PET studies. The performance of nPGA was systematically
investigated by using experimental mouse studies and computer simulations. The mouse studies
showed high linearity of relative influx rates between the nPGA and PGA for most pairs of
reference and target regions, when an appropriate underlying kinetic model was used. The
simulation results demonstrated that the accuracy of the nPGA method was comparable to that of
the PGA method, with a higher reliability for most pairs of reference and target regions. The
results proved that the nPGA method could provide a non-invasive and indirect way for
quantifying the FDG kinetics of tumor in small animal studies.
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1. Introduction
Positron emission tomography (PET) is a popular functional imaging technology that
visualizes physiological changes through the administration of radiopharmaceutical
molecular tracers into living systems. 18F-fluorodeoxyglucose (FDG) is the most widely
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used tracer in PET studies, and it is mainly used for the in vivo measurement of glucose
metabolism. The visualization of subtle metabolic changes is especially attractive for the
early detection of malignant tumors, which usually have elevated glucose metabolism. Thus
PET imaging with FDG (FDG-PET) has become an important tool in clinical oncology for
cancer diagnosis, staging, treatment planning and response assessment [1]. One unique
benefit of functional imaging is that quantitative functional parameters can be derived by
using tracer kinetic modeling techniques. This delivers a simple way for the quantitative
description and objective comparison of complex physiological processes. The process of
parameter estimation for deriving physiological parameters is usually based on an
underlying kinetic model, which is specific to the used tracer. A plasma time–activity curve
(PTAC) is usually used as an input function for a given kinetic model while a tissue time–
activity curve (TTAC) derived from the dynamic PET images is used as an output function
[2,3].

There are a number of different approaches for estimating the parameters of a kinetic model.
The nonlinear least squares (NLS) method can provide statistically optimal estimates of the
kinetic parameters through iteratively adjusting estimated parameters nonlinearly to achieve
the minimum least squares difference between the measured and estimated TTACs [2].
Usually a weighted NLS method, referred to as WNLS, is used to address the comparable
low signal to noise ratio in the early frames with shorter imaging durations. However, the
NLS/WNLS methods with iterative processes have two drawbacks: the outcomes are highly
sensitive to the choice of appropriate initial parameters, and the computation cost is high due
to the slow converging speed [2]. The graphical analysis method was introduced to
transform the nonlinear iterative parameter estimation process to a computationally efficient
linear plot, whose slope or intercept reflects the parameters of interest [4,5]. For example,
the slope of the Patlak graphical analysis (PGA) is equal to the influx rate, which is directly
proportional to metabolic rate of glucose (MRGlc) in a FDG-PET study [4].

The process of obtaining a PTAC generally relies on frequent invasive arterial blood
sampling. This process is relatively inconvenient and may expose operators to extra
radiation. In particular, such invasive approaches are much more challenging for small
animal studies because of the subjects’ limited blood volume and small blood vessels. The
image-derived methods [6–9] and population-based methods [10,11] have been presented to
reduce or eliminate invasive blood sampling in kinetic modeling. Given multiple regions of
interest (ROIs) with distinct TTACs, complex biological systems can be modeled as a
single-input-multi-output (SIMO) system. The kinetic parameters and the input function can
be estimated simultaneously when multiple distinct TTACs are available for different ROIs
[12]. If a reference region is available to reflect the non-specific binding in a neuroreceptor
study, the non-invasive Logan method can be used to avoid the problems associated with the
traditional invasive Logan approach [13]. The slope of the linear regression of the non-
invasive Logan method represents the ratio of the distribution volume between the target and
the reference regions. Thus, it is potential for the Patlak method to be extended to derive the
non-invasive estimation of the influx rate in FDG-PET studies with an appropriate reference
region.

A non-invasive PGA (nPGA) method has been recently introduced for deriving a set of
relative influx rates for FDG-PET studies by using reference regions. The method was
evaluated using the simulated TTACs of different regions in the human brain [14]. However,
it is unclear whether the nPGA method could be extended to whole-body small animal
studies for multiple organs and regions. In this study, we aimed to systematically investigate
the performance of the nPGA method in the quantification of glucose metabolism for small
animal studies as compared with the traditional PGA method. The experimental FDG-PET
studies of fifteen mice and computer simulations were used in the evaluation.
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2. Theory
2.1. FDG Kinetic Modeling

The three-compartment four-parameter model shown in Fig. 1 is a general FDG kinetic
model [2]. A parameter (vascular volume) representing the vascular effect is usually
included to address spillover effect between tissues and the surrounding vascular system
[11]. In this study, this three-compartment four-parameter model with vascular volume
(3c4pVb) is referred as the general FDG model for differentiating from other kinds of the
kinetic models.

The dynamic behavior of the tracer in tissue can be described in (1).

(1)

where Cp(t) (Bq ml−1) and Ct(t) (Bq ml−1) denote the PTAC and TTAC, respectively; Ce(t)
(Bq ml−1) is the concentration of FDG in tissue; Cm(t) (Bq ml−1) is the concentration of
phosphorated FDG (FDG-6-PO4) in tissue; Vb (ml ml−1) denotes vascular volume; and L1,
L2, B1 and B2 are macro parameters that are the combination of rate constants as expressed
in (2).

(2)

The rate constants of K1 (ml min−1 ml−1), k2 (min−1), k3 (min−1), k4 (min−1) and Vb can be
derived by parameter estimation. The MRGlc of the tissue can then be calculated according
to (3):

(3)

where Cglc is the plasma glucose concentration; LC is the lumped constant accounting for
the differences in the transport and phosphorylation between FDG and glucose, and Ki is the
influx rate, as shown in (4).

(4)

2.2. Patlak graphical analysis
Patlak graphical analysis (PGA) is a graphical analysis technique that is based on the
assumption that k4 in the general FDG kinetic model (Fig. 1) can be ignored [4]. The simple
relationship between a PTAC and a TTAC can be given in (5):

(5)

where the slope is equal to the influx rate Ki; the intercept I is a constant; and t* is a
sufficiently long time by which point an equilibrium has been reached between the FDG
concentrations in plasma and in tissue. Thus, an estimate of Ki can be derived from the slope

of the linear plot of .
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2.3. Non-invasive PGA
The nPGA method was proposed for deriving a relative influx rate using a reference region
in the quantification of MRGlc for human brain FDG-PET studies [14]. It can be assumed
that different ROIs have the same input function. The PGA equations for two distinct ROIs
(one being the reference, the other being the target) are described in (6):

(6)

where Cref (t) is the TTAC of the reference ROI, and Ctg (t) is the TTAC of the target ROI.

Combining the Eqs. (6) into (7) eliminates the contribution of the PTAC and derives the
relative influx rate, i.e. the ratio of influx rates between the target and reference regions. The
relative influx rate can also be referred to as the target to reference relative influx rate. See
the Appendix for more details on the derivation of (7).

(7)

where t0 is the mid-scan time of the first imaging frame, which is later than t*, and Ktr is the
target to reference relative influx rate.

For the mid-scan time of the TTAC, where t0, t1, t2, …, tn > t*, (7) can be expressed in
matrix form as given in (8):

(8)

where

. ε denotes the equation error term.

The target to reference relative influx rate can be solved using the linear least squares
method as given in (9).

(9)

3. Methods
3.1. Small animal studies

Fifteen C57BL/6 mice (~27 g, non-fasting) were anesthetized with ~2% isoflurane and
administered with FDG (~13 MBq, tail vein bolus). Five of these mice had been implanted
with MCak tumors in both shoulders about one week prior to the FDG-PET studies. After
FDG was administered, a 60-min dynamic imaging study was performed for each mouse on
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a Focus 220 microPET scanner followed by a CT scan on a MicroCAT II scanner. Seven of
these FDG-PET studies were conducted with a 31-frame imaging protocol: 15 × 0.5 s, 1 × 2
s, 1 × 4 s, 1 × 6 s, 1 × 15 s, 3 × 30 s, 1 × 60 s, 1 × 120 s, 3 × 80 s, and 4 × 900 s frames. The
other eight FDG-PET studies were conducted with a 26-frame imaging protocol: 1 × 1.2 s,
10 × 0.4 s, 1 × 1.7 s, 2 × 5 s, 1 × 17.5 s, 1 × 45 s, 1 × 60 s, 1 × 90 s, 1 × 150 s, 1 × 180 s, 1 ×
220 s, 1 × 365 s, and 4 × 550 s frames. The microCT image was aligned to the microPET
images. 2D filtered back-projection with CT-based attenuation correction was applied to
reconstruct PET images. Each frame was reconstructed with an image resolution of 128 ×
128 × 95 voxels and a voxel size of 0.4 mm× 0.4 mm × 0.796 mm.

Sixteen blood samples were manually taken from a femoral catheter during the dynamic
PET scan. Eq. (10) was used to derive the PTACs, as a means of obtaining the plasma
activity from the blood samples [15]:

(10)

where t is the blood sampling time in minutes after FDG injection, Cp(t) is the PTAC, Cb(t)
is the FDG concentration in whole-blood samples, and RFDG(t) is a ratio function of plasma
to whole blood.

Using the AMIDE software [16], ellipsoidal ROIs were manually delineated around the
major organs on the reconstructed microPET images, with the aligned CT images acting as a
guide. Due to the comparably small volumes of mice, the ROIs were delineated to cover
entire organs. The tumor ROIs were also defined for the five tumor-bearing mice. The
TTAC was derived by averaging the values of all the voxels within the ROI.

3.2. Computer simulations
The PTAC, Cp(t), was simulated based on a mathematical model with 4 exponential
components, as given by (11):

(11)

where A1 = 63.01 MBq ml−1, A2 = 4.95 MBq ml−1, A3 = 1.105 MBq ml−1, λ1 = 9.27 min−1,
λ2 = 0.178 min−1, λ3 = 0.0157 min−1, and λ4 = 41 min−1. These parameters were assigned
according to the mean values given by Ferl et al. [9]. An 18-point blood sampling protocol
was used with time points at 0.07, 0.11, 0.14, 0.17, 0.21, 0.24, 0.27, 0.31, 0.59, 0.9, 1.5, 4.5,
9.5, 15.5, 24.5, 34.5, 45.5 and 58.5 min post-injection.

A 26-frame 60-min imaging protocol was used in the simulation with 1 × 1.2 s, 10 × 0.4 s, 1
× 1.7 s, 2 × 5 s, 1 × 17.5 s, 1 × 45 s, 1 × 60 s, 1 × 90 s, 1 × 150 s, 1 × 180 s, 1 × 220 s, 1 ×
365 s, and 4 × 550 s frames. The TTAC was then simulated based on (1), with the Gaussian
noise ε(t) added, as shown in (12):

(12)

where C ̄t(t) is the measurement of the TTAC; and the macro parameters, B1, B2, L1 and L2,
are obtained from the combinations (shown in (2)) of the mean rate constants of certain
organs derived from the fifteen FDG-PET studies of mice as shown in Table 1. ε(t) is the
PET measurement noise, which is assumed to be an additive, independent Gaussian noise
with zero mean and variance as expressed in (13) [17,18]:
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(13)

where c is a proportional constant determining noise level; λ = ln(2)/T1/2, T1/2 is the half-
life time of Fluorine-18 (18F); and Δt is the duration of imaging frame.

In this investigation, the values of c were set to 0.1, 0.5, 1, 2 and 4, corresponding to noise
levels ranging from 0.7% to 3% at the last measurement of the TTAC. One hundred TTACs
were simulated at each noise level. One noise free TTAC was also simulated for the
comparison.

3.3. Performance evaluation
The target to reference relative influx rate is defined as the ratio of the influx rate between
the target and reference ROIs, as shown in (14):

(14)

where t is the index number of the target ROI, and r is the index number of reference ROI.
In this paper, the target index number t was chosen to be 1, 2, 3, 4 or 5 for the brain, lungs,
liver, muscle or tumor, respectively. The maximum index number for the reference ROI was
4. The tumor ROI was not used as a reference ROI.

In the small animal studies, the WNLS method has been applied to derive estimates of rate
constants of the general FDG model by using the kinetic imaging system (KIS) [19]. The
weights in the WNLS method were chosen to be proportional to the ratio between the
imaging duration and the measurement in each frame [2,9]. The influx rates for each ROI
were calculated according to (4), and then used to derive the relative influx rate between the
target and reference ROIs according to (14). These relative influx rates were referred to as
Ktr,WNLS. The mean rate constants obtained for each ROI in small animal studies were also
used to derive the true value of the relative influx rate, referred to as Ktr,true, for the
computer simulations.

The aforementioned PGA and nPGA methods were both used to derive the relative influx
rates for the comparison. In particular, TTACs in the range of 3–22 min were used in PGA
to estimate the influx rate for each ROI in order to minimize the influence of k4 [15],
allowing the derivation of the relative influx rate, Ktr,PGA. For the nPGA method, the
relative influx rates were directly obtained by using the TTACs of the reference and target
ROIs (excluded first 3-min data) according to (9). The relative influx rate as calculated by
nPGA was referred to as Ktr,nPGA.

In the small animal studies, for each pair of target and reference ROIs, the mean and
standard deviation (SD) of Ktr,WNLS, Ktr,PGA and Ktr,nPGA were calculated across the fifteen
mouse studies. Moreover, linear regression analysis between Ktr,WNLS and Ktr,nPGA was
applied to evaluate the performance of the nPGA method. The linear relationship between
Ktr,PGA and Ktr,nPGA was also calculated.

In the computer simulations, the mean and SD values of Ktr,PGA and Ktr,nPGA were derived
across the simulation data at same noise level. The coefficients of variation (CV) were
derived according to the equation: (SD/mean) × 100%. Percentage bias of Ktr,PGA and
Ktr,nPGA were derived by comparing the estimates with Ktr,true, according to (|Ktr − Ktr,true|/
Ktr,true) × 100%.
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3.4. Kinetic model investigation
Beside the general FDG model (3c4pVb), the three-compartment four-parameter model
without vascular volume (3c4p), the three-compartment three-parameter model (k4 = 0) with
vascular volume (3c3pVb), and the three-compartment three-parameter model (k4 = 0)
without vascular volume (3c3p) could be used to analyze the FDG kinetics in brain and
lung. It has been reported that the FDG kinetics in the skeletal muscles can be described by a
four-compartment five-parameter model (5K model) [20].

Thus, the Akaike Information Criteria (AIC) and Schwarz Criteria (SC) [21] were used to
evaluate the best kinetic model in characterizing FDG kinetics for the multiple regions in
mouse studies. Theses kinetic models were then further used in investigating the effect of
different kinetic models on the estimated biases of nPGA in computer simulations. The rate
constants were directly estimated by WNLS with the four kinetic models: 3c3p, 3c3pVb,
3c4p, and 3c4pVb model. The percentage biases of Ktr estimated by PGA and nPGA were
calculated according to the reference relative influx rate obtained by WNLS respectively for
each studied kinetic model.

4. Results
4.1. Rate constants of small animal studies

The rate constants of the general FDG model were estimated by using WNLS across fifteen
FDG-PET studies of mice. Table 1 lists the mean and SD values of the estimated rate
constants respectively for the brain, lung, liver, muscle and tumor. The obtained mean rate
constants were then directly applied in computer simulations to generate simulated TTACs
with various levels of noise added.

4.2. Relative influx rates in small animal studies
Table 2 lists the relative influx rate derived by the three methods: WNLS method
(Ktr,WNLS), PGA method (Ktr,PGA) and nPGA method (Ktr,nPGA). Comparably similar
relative influx rates were obtained by Ktr,WNLS, Ktr,nPGA and Ktr,PGA for the targets of lung,
muscle and tumor, when the brain was chosen as the reference ROI. Similar results were
observed when the lung ROI was used as the reference. When the muscle was chosen as the
reference ROI, similar result was also observed between Ktr,nPGA and Ktr,PGA for the brain,
lung and tumor as the target ROI. However, both Ktr,nPGA and Ktr,PGA were underestimated
compared to Ktr,WNLS. The results were quite different when the liver was chosen as the
reference ROI. Compared to Ktr,WNLS, Ktr,PGA was overestimated while Ktr,nPGA was
underestimated. Fig. 2 shows the Bland–Altman plots for evaluating the agreement between
Ktr,nPGA and Ktr,WNLS (Fig. 2A) and between Ktr,nPGA and Ktr,PGA (Fig. 2B) with the liver-
related Ktr excluded. The percentage difference between Ktr,nPGA and Ktr,WNLS in Fig. 2A
was observed to be varied from −67% to 69%, while the mean difference was about 1.1%.
Most (>90%) of all percent differences are within in a 69% range above/below the mean. In
Fig. 2B, the mean of the percent difference between Ktr,nPGA and Ktr,PGA against their
average was about −1.7%, and the limit of agreement was −55% to 51%. Most (>95%) of all
percent differences are within in a 54% range above/below the mean.

Table 3 lists the linear regression analysis respectively for Ktr,nPGA vs. Ktr,WNLS and
Ktr,nPGA vs. Ktr,PGA for the same reference groups. High linear correlations (R2 > 0.9) were
achieved for both Ktr,nPGA vs. Ktr,WNLS and Ktr,nPGA vs. Ktr,PGA except for the case where
the liver was used as the reference; in this case a considerably lower linear correlation was
achieved.
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Table 4 lists the results of linear regression analysis of the estimates of Ktr,nPGA vs.
Ktr,WNLS and of Ktr,nPGA vs. Ktr,PGA for the same target groups. High correlation was also
observed for Ktr,nPGA vs. Ktr,WNLS and Ktr,nPGA vs. Ktr,PGA when the brain, lung and tumor
ROIs were chosen as targets. The lowest correlation was observed when the muscle ROI
was used as the target. Interestingly, the results for the target of tumor ROI indicated that the
estimated Ktr,nPGA were quite similar to Ktr,PGA and Ktr,WNLS.

4.3. Effects of noise level in computer simulations
Table 5 lists the mean and SD for the estimated relative influx rates in the computer
simulations at different noise levels. A certain pair of target and reference ROIs is specified
by the subscripts in Table 5. For example, K12 represents the relative influx rate when the
brain (t = 1) and lung (r = 2) ROIs were adopted as the target and reference regions,
respectively. It was observed that the mean Ktr,PGA and mean Ktr,nPGA both changed slightly
with increasing noise levels.

The percentage biases of mean Ktr,PGA and Ktr,nPGA compared to Ktr,true were also
calculated. The highest bias exceeded 50% when the liver and brain ROIs were chosen as
the target and reference regions, respectively. Fig. 3 plots the percentage bias of K23 and
K51 as a function of the noise levels. It was demonstrated that the relative influx rate was
insensitive to varied noise levels even when high biases were observed for the cases of liver
ROI vs. brain or lung ROIs (K13, K23, K31 and K32).

Fig. 4 plots CV of the relative influx rate (K54) as a function of the noise level, where the
tumor ROI was used as the target and the muscle ROI was the reference. The reliability of
K54 for both Ktr,PGA and Ktr,nPGA was degraded when noise level was increasing. At the
noise level of 4, the CV of Ktr,nPGA reached about 3.5% and CV of Ktr,PGA was about 9.4%.
Similar trends of CVs were also observed for other relative influx rates by using different
target and reference pairs. The CVs of most Ktr,PGA were about as twice as those of
Ktr,nPGA.

4.4. Effects of kinetic model in parameter estimation
For kinetic modeling, AIC and SC are usually applied in choosing the best kinetic model
according to their minimum value. In the small animal studies, the four kinetic models
(3c4pVb, 3c4p, 3c3pVb, and 3c3p) were used to model the FDG kinetics in brain and lung.
The averages and standard deviations of AIC and SC were calculated for these four FDG
kinetic models, as shown in Table 6.

For all the 15 mouse studies, the 3c4pVb model was found to have the lowest AIC and SC
values for the brain in contrast to the 3c3pVb, 3c4p, and 3c3p models. Similar results were
observed for the lungs: the 3c4pVb model has the lowest AIC and SC values compared with
the other models. This indicated that the general FDG model is suitable to characterize the
FDG kinetic in brain and lungs. The use of the general FDG model was also consistent with
the previous studies in the analysis of FDG kinetics in the brain [9,15,22], and in the lungs
[23].

For the muscle, the values of AIC and SC were compared between the 3c4pVb model and
5K model. Fig. 5 plots the AIC and SC values respectively for the 3c4pVb model and the 5K
model across the 15 mouse studies. It was observed that similar AIC and SC values were
achieved between the two models. However, much lower AIC and SC values were achieved
using the 5K model for four cases while there was one case with much lower AIC and SC
values using the 3c4pVb model. The performances of the 3c4pVb model and 5K model were
comparable in this study. Thus, FDG kinetics in the muscle can be described by the 3c4pVb
model.
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In computer simulations, the four kinetic models (3c4pVb, 3c4p, 3c3pVb, and 3c3p) were
used to investigate the effect of different kinetic models in estimating bias. WNLS was used
to derive parameter estimates which were used as a standard for deriving the biases of the
results derived by the PGA and nPGA methods. Table 7 lists the percentage bias of K12 and
K52 estimated by PGA and nPGA method compared with the reference values for various
kinetic models.

The lowest bias with the 3c3p model (≤2.0%) was achieved with both the PGA and nPGA
methods. The introduction of k4 in the 3c4p model led to the bias with the increase of about
10% for PGA and 6% for nPGA. Comparing the 3c3p and 3c3pVb models shows that the
introduction of vascular volume also resulted in at least 7% increase in the bias for PGA and
nPGA method. No significant increase of bias was observed for nPGA between the 3c3pVb
and 3c4pVb models.

5. Discussion
The FDG dynamic behaviour in liver is complex and specific. It has been proposed to use a
dual blood input in describing tracer kinetics of liver [24,25]. However, it is impractical to
delineate ROIs of the dual blood vessels of the liver in small animal studies due to the small
blood vessels of the subjects and the limited spatial resolution of the scanner. Thus, the
assumption of one blood input function was inherited from the previous small-animal
studies [9,22], and the general FDG kinetic model was used for the liver in this paper.
Overall, it was reasonable to apply the general FDG model in the simulation and WNLS
fitting because the focus of this paper was to evaluate the performance of nPGA through the
comparisons with traditional PGA in whole-body mouse studies, in order to address the
challenging issue of invasive blood sampling in small animal studies. The use of the general
FDG model provides a simple and practical approach, consistent with previous mouse
studies in the literature [8,9,22].

From the results of the small animal studies and computer simulations, it can be determined
that the nPGA method was not efficient when the liver was used as either the reference ROI
or the target ROI. The PGA method was originally proposed for the simplified FDG model
with one irreversible compartment for FDG-6-PO4 in tissue (k4 = 0). Since the nPGA
method is based upon the PGA method, nPGA should be efficient for tissues with a low
value of k4. If k4 is sufficiently lower than the other rate constants, the tracer can be
assumed to be irreversibly trapped and k4 can be neglected. However, this assumption of
tracer kinetics is violated in the liver. The results of the estimated rate constants in Table 1
show that for the liver the average k4 was comparable with k3, whereas in the brain, where
nPGA and PGA methods performed better, the average k4 was approximately 10% of k3.
Since the PGA and nPGA methods both rely on the simplified FDG model, which is
different from the general FDG model, the effects of the k4 and vascular effects on estimated
biases were investigated in this paper. The results demonstrated that more estimated biases
were observed in the PGA method than the nPGA method when k4 or the vascular effects
were included in the kinetic model. This may imply that the procedure for the estimation of
the relative influx rate in the nPGA method somehow compensates for the bias during the
calculation of the influx rates of the individual ROIs using the PGA method. The results of
the Bland–Altman plots in Fig. 2 demonstrated that most of all percent differences are
within the range of limits of agreement both for Ktr,nPGA vs. Ktr,WNLS and Ktr,nPGA vs.
Ktr,PGA. This indicates that nPGA, PGA and WNLS methods can be used interchangeably to
derive the estimates of the relative influx rates, while the agreement of Ktr,nPGA vs. Ktr,PGA
is better than that of Ktr,nPGA vs. Ktr,WNLS. The result coincides with the assumption of
nPGA method.
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The computer simulations were performed with varied noise levels added for evaluating the
effects of noise on the PGA and nPGA methods. The fact that the average Ktr,PGA and
Ktr,WNLS changed very slightly with increasing noise level demonstrated that the relative
influx rate was insensitive to noise levels. Moreover, the results of the CVs indicated that the
reliability of Ktr,PGA became worse than that of Ktr,nPGA with increasing noise levels. This
may imply that the use of a reference ROI somehow reduces the effect of noise in the
generation of the relative influx rate of the target ROI.

When the target ROI was placed on the tumor in computer simulations, the accuracy of the
relative influx rate achieved by the nPGA method was considerably higher than that
obtained by the PGA method. A high linear correlation was also achieved between Ktr,nPGA
vs. Ktr,WNLS and Ktr,nPGA vs. Ktr,PGA for the tumor target in small animal studies. The
relative influx rates derived by the nPGA method were reasonably close to the values of
Ktr,WNLS compared to those obtained via the PGA method in small animal studies. This
implies that the nPGA method may be superior in the non-invasive quantification of tumors
when a suitable reference is available. Because the nPGA method is based upon the PGA
method, a suitable reference could be a tissue with low k4 in the general FDG kinetic model,
where the tracer can be assumed to be irreversibly trapped. The results of the small animal
studies show that the values of k4 for the brain and lungs were relatively lower. Moreover,
the results showed that the brain and lungs could be used as suitable references for the
derivation of acceptable relative influx rates by the nPGA method. If the tracer kinetics of
the target and reference regions are very distinct, the nPGA method would have a better
performance. This may be the reason that the good results are obtained for the tumor target,
where the FDG kinetics is very different from other regions.

The range of data used in the PGA method may affect the estimates of the slope in the linear
plot. This causes a slight instability in the PGA method. In previous studies, the range of the
data has been recommended as 3–22 min in order to minimize the effect of k4 [15,22]. The
range of data used in the PGA method was adopted in order to obtain the target influx rates
for ROIs of the selected major organs. The optimal range of the data used in nPGA cannot
be derived from the processes which deduce the nPGA method. Thus, a range of t > 3 min
was used in the nPGA method presented in this paper. The PGA method is often compared
with the use of the standard uptake value (SUV), a popular semi-quantitative index for the
analysis of PET images in cancer diagnosis [26,27]. A comparison between the SUV and
nPGA methods will be investigated in the future studies as well as the investigation in non-
invasive tumor quantification of human by using nPGA method.

6. Conclusion
The performance of the nPGA method was systematically investigated by 15 whole-body
FDG-PET studies of mice and computer simulations. The mouse studies showed high
linearity of relative influx rates between the nPGA and PGA for most reference and target
pairs, when an appropriate underlying kinetic model was used. The results of computer
simulations demonstrated that the accuracy of the nPGA method was similar to that of the
PGA method, with a higher reliability for most reference and target pairs. In particular,
nPGA method could be recommended as a non-invasive and indirect method for the
quantification of MRGlc in tumor in small animal studies.
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Appendix
The nPGA method is based upon the PGA method, with the assumption that the whole-body
is a SIMO system. For the PGA method, the FDG concentration can be expressed as a
relationship with the PTAC as given in (A1).

(A1)

The TTACs of two distinct ROIs (one being the reference ROI, the other being the target
ROI) can be described by (A2).

(A2)

According to (A2), the PTAC can be presented by (A3).

(A3)

(A4) is obtained by integrating both sides of the second equation in (A3).

(A4)

Because

, (A5)
can be obtained from (A3) and (A4).

(A5)

To eliminate D in (A5), a new equation expressing the relationship between two TTACs, is
given by (A6).

(A6)

Finally, the nPGA method can be presented by the equation in (A7). The relative influx rate
can then be derived by liner least squares method.
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(A7)

References
1. Gambhir SS, et al. A tabulated summary of the FDG PET literature. J. Nucl. Med. 2001 May

1.42:1S–93S. [PubMed: 11483694]

2. Feng, DD., et al. Techniques for parametric imaging. In: Feng, DD., editor. Biomedical Information
Technology. Elsevier; 2008. p. 137-159.

3. Gambhir, SS. Quantitative assay development for PET. In: Phelps, ME., editor. PET: Molecular
Imaging and Its Biological Applications. Springer-Verlag; 2004. p. 125-216.

4. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-
time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 1985 Dec.5:584–590. [PubMed:
4055928]

5. Logan J, et al. Graphical analysis of reversible radioligand binding from time–activity
measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J. Cereb.
Blood Flow Metab. 1990 Sep.10:740–747. [PubMed: 2384545]

6. Lin KP, et al. Correction of spillover radioactivities for estimation of the blood time–activity curve
from the imaged LV chamber in cardiac dynamic FDG PET studies. Phys. Med. Biol. 1995 Apr.
40:629–642. [PubMed: 7610118]

7. Feng D, et al. A new double modeling approach for dynamic cardiac PET studies using noise and
spillover contaminated LV measurements. IEEE Trans. Biomed. Eng. 1996; 43:319–327. [PubMed:
8682545]

8. Fang Y-HD, Muzic RF Jr. Spillover and partial-volume correction for image-derived input functions
for small-animal 18F-FDG PET studies. J. Nucl. Med. 2008 Apr 1.49:606–614. [PubMed:
18344438]

9. Ferl GZ, et al. Estimation of the 18F-FDG input function in mice by use of dynamic small-animal
PET and minimal blood sample data. J. Nucl. Med. 2007 Dec 1.48:2037–2045. [PubMed:
18006615]

10. Eidelberg D, et al. Positron emission tomographic findings in Filipino X-linked dystonia-
parkinsonism. Ann. Neurol. 1993 Aug.34:185–191. [PubMed: 8338342]

11. Eberl S, et al. Evaluation of two population-based input functions for quantitative neurological
FDG PET studies. Eur. J. Nucl. Med. 1997 Mar.24:299–304. [PubMed: 9143468]

12. Feng D, et al. A technique for extracting physiological parameters and the required input function
simultaneously from PET image measurements: theory and simulation study. IEEE Trans. Inf.
Technol. Biomed. 1997 Dec.1:243–254. [PubMed: 11020827]

Zheng et al. Page 12

Biomed Signal Process Control. Author manuscript; available in PMC 2012 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



13. Logan J, et al. Distribution volume ratios without blood sampling from graphical analysis of PET
data. J. Cereb. Blood Flow Metab. 1996; 16:834–840. [PubMed: 8784228]

14. Wu Y-G. Noninvasive quantification of local cerebral metabolic rate of glucose for clinical
application using positron emission tomography and F-fluoro-2-deoxy-d-glucose. J. Cereb. Blood
Flow Metab. 2007; 28:242–250. [PubMed: 17684521]

15. Wu H-M, et al. In vivo quantitation of glucose metabolism in mice using small-animal PET and a
microfluidic device. J. Nucl. Med. 2007 May.48:837–845. [PubMed: 17475972]

16. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis.
Mol. Imaging. 2003 Jul.2:131–137. [PubMed: 14649056]

17. Chen KW, et al. The effects of measurement errors in the plasma radioactivity curve on parameter
estimation in positron emission tomography. Phys. Med. Biol. 1991 Sep.36:1183–1200. [PubMed:
1946602]

18. Logan J, et al. A strategy for removing the bias in the graphical analysis method. J. Cereb. Blood
Flow Metab. 2001 Mar.21:307–320. [PubMed: 11295885]

19. Huang SC, et al. An internet-based “kinetic imaging system” (KIS) for MicroPET. Mol. Imaging
Biol. 2005 Sep-Oct;7:330–341. [PubMed: 16132473]

20. Bertoldo A, et al. Kinetic modeling of [18F]FDG in skeletal muscle by PET: a four-compartment
five-rate-constant model. Am. J. Physiol. Endocrinol. Metab. 2001 Sep 1.281:E524–E536.
[PubMed: 11500308]

21. Stone M. Comments on model selection criteria of akaike and schwarz. J. Roy. Stat. Soc. Ser. B
(Methodol.). 1979; 41:276–278.

22. Yu AS, et al. Quantification of cerebral glucose metabolic rate in mice using 18F-FDG and small-
animal PET. J. Nucl. Med. 2009 Jun 1.50:966–973. [PubMed: 19443595]

23. Chen DL, et al. Comparison of methods to quantitate 18F-FDG uptake with PET during
experimental acute lung injury. J. Nucl. Med. 2004 Sep 1.45:1583–1590. [PubMed: 15347728]

24. Chen S, Feng D. Noninvasive quantification of the differential portal and arterial contribution to
the liver blood supply from PET measurements using the 11C-acetate kinetic model. IEEE Trans.
Biomed. Eng. 2004; 51:1579–1585. [PubMed: 15376506]

25. Munk OL, et al. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-
input blood sampling. J. Nucl. Med. 2001 May.42:795–801. [PubMed: 11337579]

26. Wu H, et al. Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in
comparison to Patlak analysis. Eur. J. Nucl. Med. 2001 Jun.28:704–710. [PubMed: 11440030]

27. Freedman NM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using
serial PET scans. Eur. J. Nucl. Med. 2003 Jun.30:46–53.

Zheng et al. Page 13

Biomed Signal Process Control. Author manuscript; available in PMC 2012 September 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
The three-compartment and four-parameter model of FDG. K1, k2, k3, and k4 are the rate
constants between the compartments; compartment 1 and 2 are for FDG in plasma and
tissue, respectively, while compartment 3 is for the phosphorated FDG (FDG-6-PO4) in
tissue; k4 can be neglected in some cases (depicted with a dotted line).
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Fig. 2.
The agreements of relative influx rates estimated by different methods using the Bland–
Altman plot. (A) Ktr,nPGA and Ktr,WNLS; (B) Ktr,nPGA and Ktr,PGA. Each subfigure displays
a scatter diagram of the differences plotted against the averages of the two estimates.
Horizontal lines are drawn at the mean difference (bold solid line), and at the limits of
agreement, which are defined as the mean difference plus and minus 1.96 times the standard
deviation of the differences (dash lines).
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Fig. 3.
Plots of the percentage bias at different noise levels, for the relative influx rates: (A) K23 and
(B) K51, as estimated by both PGA and nPGA.
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Fig. 4.
Coefficient variations (CV) of the relative influx rate (K54) estimated by the PGA and nPGA
methods at different noise levels.
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Fig. 5.
Comparisons between the general FDG kinetic model and 5K model in fitting TTACs of
muscle: (A) AIC values; (B) SC values.
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Table 6

AIC and SC (mean ± SD) of different kinetic models for brain and lung.

Kinetic
model

brain lung

AIC SC AIC SC

3c4pVb −307.8 ± 44.1 −300.3 ± 44.1 −304.8 ± 45.7 −297.3 ± 45.7

3c4p −275.6 ± 50 −269.6 ± 50 −246.9 ± 39.5 −240.9 ± 39.5

3c3pVb −270.5 ± 41.4 −264.5 ± 41.4 −259.2 ± 30.4 −253.2 ± 30.4

3c3p −245.3 ± 36.2 −240.8 ± 36.2 −235.8 ± 31.2 −231.3 ± 31.3
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