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Abstract
BACKGROUND—Examination of spontaneously occurring phasic muscle activity from the
human polysomnogram may have considerable clinical importance for patient care, yet most
attempts to quantify the detection of such activity have relied upon laborious and intensive visual
analyses. We describe in this study innovative signal processing approaches to this issue.

METHODS—We examined multiple features of surface electromyographic signals based on
16,200 individual 1-second intervals of low impedance sleep recordings. We validated which of
those features most closely mirrored the careful judgments of trained human observers in making
discriminations of the presence of short-lived (100-500 msec) phasic activity, and also examined
which features provided maximal differences across 1-second intervals and which features were
least susceptible to residual levels of amplifier noise.

RESULTS—Our data suggested particularly promising and novel features (e.g., Non-linear
energy, 95th percentile of Spectral Edge Frequency) for developing automated systems for
quantifying muscle activity during human sleep.

CONCLUSIONS—The EMG signals recorded from surface electrodes during sleep can be
processed with techniques that reflect the visually based analyses of the human scorer but also
offer potential for discerning far more subtle effects, Future studies will explore both the clinical
utility of these techniques and their relative susceptibility to and/or independence from signal
artifacts.
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1.1 INTRODUCTION
Polysomnography (PSG), the recording of multiple physiologic signals during sleep,
generates huge amounts (typically 500 megabytes or more for an overnight sleep period) of
electrophysiologic data that are typically acquired digitally but remain analyzed visually by
human expert scorers [1]. Of PSG parameters typically recorded, the electroencephalogram
(EEG), by far, has been the most extensively examined using advanced signal processing
techniques for data reduction, including approaches such as spectral analysis using the Fast
Fourier Transform (FFT) [2], period amplitude analysis [3], and non-linear dynamics
employing estimates of dimensional complexity [4]. Although such approaches have
stimulated many exciting studies of the functional significance of the sleep EEG [5, 6], other
components of the human PSG has received far less attention from the signal processing
perspective. Some work, for example, has attempted to automate identification of the eye
movements of rapid eye movement sleep (REM) [7], whereas other studies have attempted
to quantify muscle activity from surface electromyography (EMG) during sleep [8-11]. In
recent years, greater attention has focused on the analysis of EMG signals derived from
sleep, because of known aberrations of such activity during REM as a component of some
neurodegenerative conditions [12-16]. We describe here the initial derivation of an
unsupervised, computer-based approach for quantifying surface EMG during sleep that is
both compatible with discriminations provided by the trained human scorer, as well as
potentially extending such quantification to incorporate unique signal processing features.

2.0 METHODS
2.1. Overall Approach

To establish a viable digital approach of the human PSG for the quantification of EMG
activity, we initially relied upon judgments of trained visual scorers. Five different
individuals (A,B,C,D,E), each representing different levels of experience, independently
evaluated surface EMG signals from a human PSG recording, as recorded with a low
impedance (< 10,000 ohms), bipolar derivation placed directly over a limb muscle group
frequently associated with discharge in sleep (anterior tibialis). Our general strategy was to
use a consensus of human scorers’ determinations of the presence or absence of phasic
activity for each 1-second interval. Although EMG signals during sleep are frequently
recorded from surface sensors located above other muscle groups as well (e.g., mentalis),
such locations can be problematic for introducing certain kinds of artifacts (e.g., snoring)
and would represent a more complex issue for human scorer discrimination, at least at this
early stage of developing computer-based learning approaches. Scorers varied in experience
level from an individual with over 30 years of experience in examining PSG to a lab
assistant with very modest (< 6 months) experience. Our rationale for inclusion of such a
wide array of scorer expertise was to enhance generalizeability of any algorithm that could
result from our analyses.

Sleep (PSG) data were collected on an Embla (MedCare, Bloomfield, CO) Model N7000
data acquisition unit using the sleep data collection software program Somnologica ® 2.0.
PSG data were converted from Somnologica .edf format, for EMG feature processing, via
the computer software program MATLAB (version 7.8 R2009a) using the biosig toolbox
version 2.54 (Schloegl A-Graz University of Technology, Graz, Austria) and were digitized
at a sampling rate of 200 Hz.

Visual analyses occurred on 17″ monitors. Each of the 5 scorers was asked to evaluate a
total of 16,200 seconds (4.5 hours) of bilateral EMG signals distributed approximately
equally from REM and non-REM sleep, marking each second (via drag-and-click function)
for the presence or absence of a phasic muscle discharge of 4 times the surrounding
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background activity and lasting between 100 and 500 msec. This definition resembles what
we have used previously for visual analyses of the phasic EMG during sleep [17]. Screen
display was held constant at 10 seconds per viewing window. Because we relied on a 1-
second epoch to define presence or absence of phasic activity, scorers were instructed to
score an event as present or absent for the 1-second interval, rather than attempt to quantify
the number of phasic events within the given interval (see Figure 1), thus allowing for
repetitive returns to baseline during that interval. Each scorer was provided an unmarked
recording and had no access to the judgments made by any of the other visual scorers during
the entire process.

2.2. Computer-based Feature Extraction from EMG Recordings
Feature extraction was used to translate EMG signal information into a compact quantitative
format and characterize signal information for the identification of seconds with and without
phasic muscle events. Exhaustive review of prior EMG sleep signal analysis, bio-signal
feature extraction techniques, and statistical analysis methods were used to compile a library
of 15 features, listed below. Formulae associated with the calculations are numbered and
shown in bolded parentheses. The final data matrix was obtained by evaluating feature
values for each data channel in one second epochs using eight equal non-overlapping
moving windows.

1. Relative EMG Frequency Power (Prel): a frequency domain feature that provides a
sub-band analysis of the high frequency EMG signal components (frequency band [12.5;32
Hz ]) [18] (sampled at 200Hz) with the power spectra (P(f)) extracted using the Fast Fourier
Transform (FFT) [19, 20]

(1)

2. Spectral Edge Frequency 95th percentile (SEF 95): the frequency up to which 95
percent of the total signal power is accumulated [21].

(2)

where fs is the sampling frequency

3. Skewness (Skew): a time domain feature that measures the asymmetry of the probability
distribution of the EMG signal amplitude [22].

(3)

with M representing the number of data samples of the EMG signal in an 1-second epoch

interval and  symbolizing the sample mean  within that interval,

4. Variance (S2): the distance, spread, between a data sample with respect to the mean [22].
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(4)

5. Kurtosis (Kurt): a measure of the peakedness or flatness of the probability distribution of
the signal amplitude [23].

(5)

6. Entropy (Ent): an information domain feature that calculates the amount of uncertainty
or unpredictability of the EMG signal amplitude.

(6)

with M symbolizing the length of the data signal, n representing the number of bins, the
optimal bins being obtained from the Freedman-Diaconis rule [24], to estimate the
histogram of the data signal with binj indicating the number of data samples from x(i) in the
jth histogram bin [25].

7. Mobility (Mobi): a time domain feature that measures the relative average slope of the
EMG signal. It is expressed as the standard deviation (std) of the slope (signal’s first
derivative dx/dt) with reference to the standard deviation of the signal amplitude [25].

(7)

where for the discrete EMG signal x(i),  and

, using a first
order approximation of the derivative.

8. 75th Amplitude Percentile (75_Amp): the amplitude value below which 75% of the total
EMG signal amplitude resides [25]. So, the value separates lowest 75% and highest 25% of
the data. It is also called upper quartile or third quartile.

(8)

where M is the number of samples x(i) of the EMG signal in one epoch and card represents
the number of elements within the sample set (set’s cardinality).
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9. Complexity (Comp): the ratio of the mobility (Mobi) of the first derivate of the signal to
the mobility of the signal amplitude. Complexity expresses the average EMG wave-shape in
relation to a pure sine wave [25].

(9)

10. Mean Absolute Amplitude (MAA): a time domain feature that measures the absolute
value of the mean EMG amplitude [26].

(10)

11. Curve Length (L): the sum of the value of the first order differences of the EMG signal
amplitude values [27].

(11)

12. Mean Energy (MnE): a time domain feature that measures the squared EMG signal
amplitude [27].

(12)

13. Zero Crossings (ZC): defined as the number of crossings of the EMG signal over the
ordinate, where the axis equals zero [27].

(13)

14. Average Nonlinear Energy (NE): a non-linear feature that is sensitive to signal
fluctuations in the time and frequency domain, with respect to the following non-linear
operator (NLO):

the NLO is weighted with a Hanning window and then the mean/Average Nonlinear Energy
(NE) is calculated as follows:

(14)
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where, NLOw is the Hamming windowed version of the non-liner operator, NLO, with N
being the data epoch [27].

15. Spectral Entropy (SE): defined as the amount of uncertainty or unpredictability of the
EMG signal in the frequency domain [27].

(15)

2.3 Performance Models Comparing Features
We evaluated the relative performance of each feature using three analytic approaches. First,
we examined the relative accuracy afforded by each feature by examining percentage
agreement for each feature by use of an unsupervised, probabilistic model of likelihood of
class assignment in relation to human scorer consensus. Accuracy was defined as the sum of
the percentage of correctly (i.e., consensually) identified seconds with phasic activity (true
positive) plus the percentage of correctly (i.e., consensually) identified seconds without
phasic activity (true negative). Consensus was defined as unanimous agreement among all 5
human scorers. These calculations were made separately for left and right leg channels to
provide internal replication of the performance of various features.

Unsupervised classification of 1-second epochs with phasic versus non-phasic activity were
conducted using Gaussian Mixture Modeling (GMM) [28]. GMMs are a member of the
probabilistic model based clustering framework. GMMs assume that the data come from a
multivariate finite mixture model of the form

where K is the number of components , πk are the mixing proportions (weights) and Nk
(x;μk, ∑k) are multivariate normal distributions of the form

where n is the dimension of the feature vector x , μk is the mean vector and ∑k is the
covariance matrix.

Estimates for the model parameters were obtained using the expectation maximization (EM)
algorithm, a common approach in GMM parameter selection, which is an iterative algorithm
used to determine the maximum likelihood (other criteria can be used but the maximum
likelihood is the most common) of the data given the parametric model [29]. Once the
parameters are determined each object is assigned to one the K clusters (components
representing phasic or non-phasic activity) on the basis of estimated posterior probabilities
of cluster membership. In other words the object x , feature value of each 1-second epoch,
was assigned to cluster i if
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A second approach to evaluating the relative utility among features was to compare
parametric values across consensually agreed upon seconds containing phasic EMG activity.
Because visual analyses were limited to a simple binary classification, we reasoned that the
additional information incorporated by some features would result in higher coefficients of

variation (COVs)  for those features relative to other features. Higher values
would be suggestive of potentially greater sensitivity to fluctuations in occurrence (either as
density within the time domain and/or amplitude within the voltage domain) of muscle
activity that would be difficult to detect visually. For example, Figure 1 demonstrates three
distinct seconds as identified as demonstrating phasic activity, but the visual appearance of
these recording segments varied widely. Ideally, any computer-derived feature would be
sensitive to such variation across discrete 1-second intervals and demonstrate relatively
larger, rather than smaller, COVs.

A final approach for comparison was to determine the relative success of each feature to
deal with the low amplitude, high frequency, residual noise present within the N7000
recording system. Even within the context of low impedance recordings and the high
performance amplification with a substantial common mode rejection ratio (CMRR) > 90dB
at 60 Hz for the Embla N7000 system, some non-physiologic, low voltage (< 1 uV) signals
are always detectable. The CMRR measures the tendency of the amplifier to reject input
signals that are common to both EMG electrodes and a high CMRR (>90dB) is assumed to
suppress signals common to both electrodes sites, such as from power sources,
electromagnetic devices and muscles distant from the electrode radius [30]. Assuming the
latter, we reasoned that, for seconds with consensus agreement on absence of phasic activity,
the ratio of such so-called “residual noise” across left and right leg EMG channels would
approach unity. Features that showed ratios considerably higher or lower than 1.0 would be
considered to have greater susceptibility to spurious signals, regardless of their origin.

3.0 RESULTS
3.1 Visual Analyses

Approximately 10% of all seconds evaluated contained phasic muscle activity. The
percentages of 1-second intervals detected for each of the 5 scorers were: 7.67, 7.90, 8.80,
9.44 and 12.70. The overall consensus (i.e., the proportion of 1-second intervals in which all
5 scorers agreed on the presence or absence of phasic muscle activity was very high
(93.52%; Kappa = .818, p < .0001). Because we were able to establish high reliability
among scorers with regards to the presence and absence of phasic activity, we limited
further our machine-learning analysis to only those 1-second intervals with consensus
agreement on presence (N = 1,090) or absence (N = 14,060) of EMG phasic activity.

3.2 Relative Classification Performance of Computer-derived Features from Unsupervised
Learning Models

Tables 1 and 2 present results evaluating the performance of each of the 15 features for the
unsupervised models derived from the EMG signals using the GMM algorithm. With few
exceptions, most showed substantial differentiation between seconds with and without
consensually agreed phasic muscle activity. Nine of the features demonstrated accuracy
above 90% and of these, only Comp (complexity) showed substantial discrepancy between
seconds identified accurately with phasic activity (true positives) versus seconds identified
accurately as not containing phasic activity (true negatives).

Visualization of the agreement/overlap between consensus scoring and GMM classifications
were displayed using histogram plotting for three selected features (Figures 2-7; right leg
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data shown; results were similar using left leg). This information follows directly from
Table 2 and illustrates the accuracy of the unsupervised GMM algorithm in classifying
absence of phasic and phasic EMG activity with respect to consensus scoring. Histograms
for a poorly performing feature, Relative High Frequency Power (formula 1), are displayed
in Figures 2 and 3, with overlap values of 68.9% and 17.0% for absence of phasic and
presence of phasic EMG activity, respectively. Results for a mid-level performing feature,
Zero-Crossing (formula 13) are displayed in Figures 4 and 5 with overlap values of 73.0%
and 54.1% for absence of phasic and presence of phasic EMG activity, respectively. Lastly,
histograms for an optimally performing feature, Variance (formula 4), are displayed in
Figures 6 and 7 with overlap values of 87.9% and 98.2% for absence of phasic and presence
of phasic EMG activity, respectively.

3.3 Coefficients of Variation (COVs) across Features
Table 3 presents COVs established for left and right leg separately for various EMG features
for consensually agreed upon seconds with phasic activity. Although some differences
occurred for particular features in left and right leg recordings, features (2) (SEF, Spectral
Edge), (4) (S2, Variance), (12) (MnE, Energy), (14) (NE, non-linear energy) and (15) (SE,
Spectral Entropy) showed consistently higher COVs.

3.4 “Residual Noise” across Features
Table 4 presents the ratio between left and right consensually agreed upon seconds without
phasic activity. Ratios approximating 1.0 suggested features that were relatively robust to
residual noise within the recording system. Selected features (1, 3, 5, 6, 7, 13) all
approximated unity. Several features with promising discrimination in the unsupervised
models (Tables 1 and 2) and/or in the COV analysis (Table 3), e.g., SEF, Spectral Edge (2);
S2, Variance (4); SE, Spectral Entropy (15), showed substantial divergence, suggesting a
higher susceptibility to artifact.

4.0 DISCUSSION
When based solely on accuracy in relation to visually analyzed EMG recordings, a number
of different computer-derived features (SEF, S2, Kurt, 75_Amp, MAA, L, MnE, NLE, SE)
appeared promising approaches to quantifying the human sleep EMG signal. However,
when examined from standpoint of maximizing differences among consensually agreed
upon seconds with phasic activity (Table 3), only 5 of these features (SEF, S2, MnE, NLE,
SE) retained highest variability, although these also appeared to be more susceptible to
residual noise artifact (Table 4). Features promising lower influence of residual noise (Prel,
Skew, Kurt, Ent, Mobi, ZC) showed reduced variability across consensually agreed upon
seconds with phasic activity and/or lower accuracy in relation to consensually agreed upon
seconds with and without phasic activity. These data suggest that further studies applying
computer-derived metrics derived from digitally processed muscle activity during sleep
should examine multiple features simultaneously to determine whether susceptibility to
residual noise bears upon feature discrimination.

Recent interest in quantification of the EMG during sleep has been prompted, at least in part,
by the recognition that a particular class of neurodegenerative disease (i.e., the
synucleinopathies, including Parkinson’s disease, Dementia with Lewy Bodies, Multi-
system Atrophy, idiopathic Rapid Eye Movement Sleep Behavior Disorder) are
characterized by elevated muscle activity in sleep, particularly in REM, but often in Non-
REM sleep as well [17, 31, 32]. Numerous investigators, including ourselves, have
quantified muscle activity visually during sleep, typically following a variant of the manual
(c.f., computer detected) approach outlined in the original study of Lapierre and Montplaisir
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[33]. Studies such as these have shown robust differentiation from controls [34, 35],
progression of severity [36] or development of Parkinson’s disease [37, 38] over time, short-
term stability across consecutive nights [39, 40], validation with video monitoring of motor
behavior [41, 42] and spouse or caregiver questionnaires [43], and high synchronization of
firing across muscle groups during REM [44]. Taken together, these diverse findings
indicate that careful evaluation of muscle activity during sleep may hold important
diagnostic and prognostic significance for this class of neurodegenerative diseases.
However, given the tedious, time-consuming, and labor-intensive nature of such visual
analysis, the foregoing findings also suggest the necessity of an automated approach to this
process.

Our approach to quantification differs from those used by other investigators of the surface
EMG in sleep in several important respects. First, although there is a long history of
attempts to quantify muscle activity during sleep, our study is the initial attempt to extend
automated approaches to include a complete library of techniques that incorporate several
novel measures for EMG quantification, more typically applied for the sleep EEG but not
for sleep-related muscle activity (e.g., non-linear dynamics, entropy). Early studies
quantifying muscle activity of sleep employed cumbersome analog-to-digital hardware,
which did little more than summate voltage repetitively to a pre-established criterion level
[8]. Later work using 100-128 Hz digitization of EMG signals, focused largely on reducing
muscle activity to a binary measure predicting desynchronization in the EEG [45] or
examining activation levels over intervals of 20 seconds to examine associations between
muscle tone and REM versus –Non-REM sleep [9]. The latter study’s reliance on variance
measures anticipated to some extent the later variance-based approach of Burns et al. [10]
who, using 3-second windows and a 200Hz sampling rate, defined high levels of mentalis
activity as transient occurrence in the 5th percentile of the variance distribution across all
such intervals during the entire night of sleep. In another recent study, Ferri et al. [11]
provided a detailed analysis of amplitudes of surface mentalis EMG signals within 1-second
intervals and demonstrated differences in the voltage and time domain as a function of REM
versus Non-REM sleep in healthy young controls, differences between younger controls and
aged controls in REM sleep, and (in REM) differences between aged controls and patients
with varied synucleinopathies. The approaches used by Burns et al. [10] and Ferri et al. [11]
resembled several features examined here in our study in quantifying variance (formula 4)
and amplitude (formulae 1, 8 and 10). By contrast, Mayer et al. [46] also employed an
amplitude-derived smoothing function to determine a moving baseline, examined both
voltage and time domains, but reported that slightly longer duration (0.5-10.0 sec; most less
than 2.0 sec) elevations in muscle activity provided the clearest, clinically relevant
differences.

A second way that our approach differs from at least some of the recent studies examining
the sleep EMG is that investigators often have attempted to distinguish between short-
duration (< 100 msec) activity representing motor unit activity and relatively longer duration
(up to 5 or, in some cases, 30 seconds) tonic activity, presumably representing the
recruitment of additional motor units within a muscle group [47]. Although the latter
situation occurs, albeit variably, within the sleep EMG, the ability of human scorers to make
this distinction visually (c.f., Figure 1B, pg 447 in [48] vs Figure 3, pg 2048 in [34]) can be
difficult. Some automated digitization approaches [10, 11] simply allow the time domain to
vary without arbitrary restrictions on duration of activity, whereas others make a binary
differentiation of short versus long durations (e.g., [46]). Because phasic activity in a surface
muscle recording most closely represents the fundamental activity of a firing motor unit, our
validation has focused on phasic events (< 500 msec duration) occurring in the context of
low impedance, high quality surface EMG recording free from artifacts and gross
movement. Longer durations of motor activation [46], some resulting in behaviorally
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observable movement in which engagement of multiple motor units and involvement of
multiple muscle groups are likely [47], might be expected to present a more complex
challenge for analysis. Recordings with spurious signals, such as balistocardiographic
artifact, also will represent an analytic challenge. Recordings from other muscle groups,
such as the mentalis, which might be subject to different kinds of artifacts (e.g., inspiratory
and/or expiratory vibratory noise), would represent yet another technical consideration. Our
future work using the features analyses described in this study will pursue such issues.

Finally, our approach to automated signal processing of the human EMG signal subscribes
to the concept that before any utilization of any system can be implemented at the level of
the individual patient (i.e., by characterizing an entire overnight PSG), the most fundamental
validation should mirror accurately the operation of a human visual scorer on a second-to-
second, rather than a whole-night, basis. Ultimately, such an elemental step is essential
before any attempt is made to apply complex signal processing to the vagaries clinical
diagnosis of disease, an exceedingly complex issue in its own right. In the case of
synucleinopathies, definitive disease definition of requires neuropathologic verification [49],
although clinical criteria have been agreed upon consensually and are widely used [50].
Perhaps more relevant to the current effort is that for relatively new application of a
potentially diagnostic tool like phasic sleep EMG, epidemiologic considerations involving
sensitivity, specificity, positive predictive value and negative predictive value must all be
examined on a population-wide basis. Clinical studies of the sleep EMG like those cited
above vastly overselect for likelihood of synucleinopathic conditions and might be expected
to be biased in favor of more accurate discrimination on a case-by-case (c.f., a second-by-
second) basis. By way of example, although the prevalence of conditions like rapid eye
movement sleep behavior disorder have been estimated at 1.6 cases per 100 normals in the
general population [51] gross oversampling of such cases in clinical studies of the sleep
EMG (e.g., 48 patients vs 25 controls [46]; 17 patients to 6 controls [43]; 80 patients to 80
controls [34]; 54 patients to 35 controls [35]) have the potential to create highly biased
upwards estimates of diagnostic accuracy. It remains uncertain how well phasic EMG
activity could discriminate incipient synucleinopathies in samples mirroring true prevalence
of patterns of muscle activity during sleep observed in the general population. Initial
validation of signal-processing methodology for phasic EMG should take place
independently from such issues of case identification.

5.0 CONCLUSIONS
In summary, we have described in this study an approach for computerized detection of
phasic EMG activity from surface electrodes during prolonged intervals of human PSGs.
Several of the novel signal processing features tested here appeared to be promising for
second-to-second validation with the trained human visual scorer, yet were not unduly
influenced by system noise and retained the ability to detect a broad range of activity not
otherwise detectable by the human scorer. Future studies will examine the relative resilience
of such features to recording segments that will incorporate more diverse patterns of motor
activation during human sleep.
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Abbreviations

PSG Polysomnography

EMG Electromyography

EEG Electroencephalography

REM Rapid Eye Movement

COV Coefficient of Variation

GMM Gaussian Mixture Modeling

EM Expectation Maximization

Prel Relative High Frequency Power

SEF Spectral Edge Frequency

S2 Variance

Kurt Kurtosis

Ent Entropy

Mobi Mobility

75_Amp 75th Amplitude Percentile

Comp Complexity

MAA Mean Absolute Amplitude

L Curve Length

MnE Mean Energy

ZC Zero Crossings

NE Nonlinear Energy

SE Spectral Entropy
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HIGHLIGHTS

• Surface recordings of phasic EMG in sleep may be prognostic for
neurodegeneration

• Most attempts to quantify such activity have relied upon visual judgments

• We describe computer-derived, digitally based features for quantifying EMG in
sleep

• Features reflect human scorers but discriminate beyond visually based
approaches

• Several unique signal processing features are promising for future studies
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Figure 1.
Somnologica ® 2.0 RemLogic plot of a 5-Second segment of Right Leg EMG data with
phasic activity labeling from Scorer B. Phasic activity is demarcated with shaded dotted
boxes and “P_RIGHT” labels.
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Figure 2.
Histogram plots of the absence of phasic activity for consensus visual scoring and the GMM
algorithm for a poorly performing feature: Relative High Frequency Power (1) (Right Leg).
Purple color indicates overlapping sections of the consensus scoring and GMM
classification histograms.
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Figure 3.
Histogram plots of the presence of phasic activity agreement labeling from consensus visual
scoring and the GMM algorithm for a poorly performing feature: Relative High Frequency
Power (1) (Right Leg). Purple color indicates overlapping sections of the consensus scoring
and GMM classification histograms.
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Figure 4.
Histogram plots of the absence of phasic activity for consensus visual scoring and the GMM
algorithm for a mid-level performing feature: Zero Crossing (13) (Right Leg). Purple color
indicates overlapping sections of the consensus scoring and GMM classification histograms.
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Figure 5.
Histogram plots of the presence of phasic activity agreement labeling of the consensus
visual scoring and GMM algorithm for a mid-level performing feature: Zero Crossing (13)
(Right Leg). Purple color indicates overlapping sections of the consensus scoring and GMM
classification histograms.
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Figure 6.
Histogram plots of the absence of phasic activity for consensus visual scoring and the GMM
algorithm for an optimally performing feature: Variance (4) (Right Leg). Purple color
indicates overlapping sections of the consensus scoring and GMM classification histograms.
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Figure 7.
Histogram plots of the presence of phasic activity from consensus visual scoring and GMM
for an optimally performing feature: Variance (4) (Right Leg). Purple color indicates
overlapping sections of the consensus scoring and GMM classification histograms.
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Table 1

Accuracy (% agreement) for Consensus Visual Scoring (left leg)

Feature Name (Number)a Accuracyb TPc TNd

Relative High Frequency Power (1) 63.530 13.849 66.917

Spectral Edge Frequency 95th Percentile (2) 91.838 95.723 91.573

Skewness (3) 89.862 68.839 91.295

Variance (4) 90.265 97.352 89.782

Kurtosis (5) 88.316 83.707 88.629

Entropy (6) 45.646 50.917 45.287

Mobility (7) 89.537 45.214 92.559

Amplitude 75th Percentile (8) 96.829 91.853 97.168

Complexity (9) 91.786 20.774 96.626

Mean Absolute Amplitude (10) 92.228 96.945 91.906

Curve Length (11) 92.488 97.759 92.128

Energy (12) 90.265 97.352 89.782

Zero Crossing (13) 73.447 56.823 74.580

Non-Linear Energy (14) 92.995 97.556 92.684

Spectral Entropy (15) 94.957 86.354 95.544

a
Relevant formulae are shown in parentheses (see text)

b
Accuracy = % of correct phasic and non-phasic GMM predictions compared to consensus visual scoring

c
TP = true positives (% of seconds with phasic activity assessed visually that were correctly classified by the GMM for that feature)

d
TN = true negatives (% of seconds without phasic activity assessed visually that were correctly classified by the GMM for that feature).
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Table 2

Accuracy (% agreement) for Consensus Visual Scoring (right leg)

Feature Name (Number)a Accuracyb TPc TNd

Relative High Frequency Power (1) 64.713 17.028 68.879

Spectral Edge Frequency 95th Percentile (2) 90.410 97.496 89.791

Skewness (3) 89.820 66.611 91.848

Variance (4) 88.747 98.164 87.925

Kurtosis (5) 86.347 84.641 86.496

Entropy (6) 59.134 96.350 13.419

Mobility (7) 89.311 33.222 94.210

Amplitude 75th Percentile (8) 95.789 94.825 95.873

Complexity (9) 90.585 20.868 96.675

Mean Absolute Amplitude (10) 90.370 97.997 89.704

Curve Length (11) 90.813 98.498 90.141

Energy (12) 88.774 98.164 87.954

Zero Crossing (13) 71.473 54.090 72.991

Non-Linear Energy (14) 92.073 97.997 91.556

Spectral Entropy (15) 97.425 84.641 98.542

a
Relevant formulae are shown in parentheses (see text)

b
Accuracy = % of correct phasic and non-phasic GMM predictions compared to consensus visual scoring

c
TP = true positives (% of seconds with phasic activity assessed visually that were correctly classified by the GMM for that feature)

d
TN = true negatives (% of seconds without phasic activity assessed visually that were correctly classified by the GMM for that feature).
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Table 3

Coefficients of Variation (COV) across 1-second Intervals for Consensually Agreed Seconds with Phasic
Activity

Feature Name (Number)a
COV
(Left)

COV
(Right)

Relative High Frequency Power (1) 77.3 80.5

Spectral Edge Frequency 95th Percentile (2) 711.5 916.0

Skewness (3) 75.5 74.1

Variance (4) 880.2 807.9

Kurtosis (5) 129.1 118.6

Entropy (6) 58.8 45.0

Mobility (7) 60.8 63.7

Amplitude 75th Percentile (8) 292.7 329.3

Complexity (9) 204.1 222.1

Mean Absolute Amplitude (10) 188.9 183.8

Curve Length (11) 200.1 200.1

Energy (12) 912.1 809.3

Zero Crossing (13) 51.1 49.1

Non-Linear Energy (14) 613.5 1308.4

Spectral Entropy (15) 1602.3 1343.5

a
Relevant formulae are shown in parentheses (see text)
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Table 4

Ratio of Left-to-Right Feature Activity for Consensually Agreed Seconds without Phasic Activity

Feature Name (Number)a
Ratio
(L/R)

Relative High Frequency Power (1) 0.82

Spectral Edge Frequency 95th Percentile (2) 0.13

Skewness (3) 0.98

Variance (4) 0.12

Kurtosis (5) 1.04

Entropy (6) 0.95

Mobility (7) 0.97

Amplitude 75th Percentile (8) 0.68

Complexity (9) 0.81

Mean Absolute Amplitude (10) 0.62

Curve Length (11) 0.70

Energy (12) 0.12

Zero Crossing (13) 0.98

Non-Linear Energy (14) 0.46

Spectral Entropy (15) 0.20

a
Relevant formulae are shown in parentheses (see text)
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