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An  optimal  control  approach  based  on  an  enlarged  nonlinear  model  for  the  dynamics  of  HIV  infection  and
thymic  function  is  composed  to simulate  and  evaluate  antiretroviral  therapies.  In  addition  to  the  relevant
biological  agents,  an  extra  state  variable  is  included,  associated  with  the thymus  capacity  for  healthy  cells
production.  The  methodology  contemplates  eventual  deleterious  effects  of  drugs over  children’s  thymus
recovery.  The  intake  of  ‘Reverse  Transcriptase  Inhibitors’  and  ‘Protease  Inhibitors’  are  modeled  as  two
independent  control  variables,  each  affecting  a different  term  in  the  dynamics,  so  extending  the  prevailing
pure-HAART-therapy  analysis.  The  objective  function  designed  here  is  also  more  inclusive  than  usual,
accounting  for  the  costs  of  the  two drug  families  involved  and  for  the  thymus  deterioration,  in addition
ptimal control
onlinear dynamics
ynamic Programming

to  penalizing  eventual  virus  excess  and  healthy  cells  deficits.  The  search  for  the  best  combined  therapy
is  treated  as  an  optimal  control  problem.  A hybrid  version  of  Dynamic  Programming  for  continuous  and
discrete  variables  is  used  to  treat  the  problem  numerically.  Long  time-horizons  are  explored,  aiming
to avoid  typical  peaks  in  drug  prescriptions  found  at the  beginning  and  at the  end  of  the  optimization
periods.  Results  indicate  that  certain  combinations  of  drugs  are  more  convenient  than  pure  protocols

s  fun
when  the  value  of  thymu

. Introduction

The role of the thymus in the regeneration of healthy CD4+T cells
uring HIV infection has been widely studied in the last decade (see
11,13] and the references therein). It is likely that such a regener-
tive property is more relevant in children [9,10],  although in all
ases it is accepted that HIV presence deteriorates thymus func-
ioning, and therefore that the thymopoiesis at a nearly constant
ate cannot be assured after the appearance of virus, specially in its
XCR4 version [13]. The negative effect of HIV on thymus function-

ng is partially reversed by the HAART therapy [3,29],  and it is also
ound that the later the therapy is initiated the slower the recu-
eration of normal behavior will be achieved [27]. But HAART has
hown to produce severe side-effects (see [6] and its references)
o it is worth to search for milder medications that still reduce the
iral load to protocol target values.

Even in the absence of virus, the thymus is one of the first organs
o undergo significant age-related degeneration, termed thymic
nvolution. Thymic involution results in a dramatic drop in the
roduction of new T-cells, and is a significant contributing factor
n immune senescence. Despite the importance of this subject for
uman health, the molecular dynamics that operate in the post-
atal thymus and mediate thymic homeostasis and involution are

∗ Corresponding author.

746-8094/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.bspc.2012.06.002
ctioning  is  relevant,  specially  for children  patients.
© 2012 Elsevier Ltd. All rights reserved.

largely unknown [17]. Detailed mathematical models have been
developed at cellular level [15,29], aiming to reflect all relevant
interactions affecting the intervening agents, to the cost of includ-
ing numerous state variables, most of them difficult to measure (or
to observe) continuously. According to applicable findings of these
studies, the dynamical models used by the authors in previous pub-
lications [5,6] were modified to include variations on healthy cells’
regeneration rate and thymus function decay. For instance, it has
turned clear that the parameter associated with the thymopoiesis
in simple models should become a state variable in itself, reflecting
thymic function dynamics. The new variable declines in the pres-
ence of HIV infection [25], and this affects the immune response
negatively, most in the form of a self-feeding loop. It is known that
recovery of thymic function could occur in HIV-1-infected patients
on HAART. However, specific mechanisms that contribute to this
recovery are still under study [29,18].

Also it is now widely accepted that dynamic models should
account for differences between children and adults evolution of
the infection and thymic function, and also in their respective
responses to medication [9,22,25,29]. In this last respect, this paper
emphasizes the importance of evaluating alternative drug families
for medication, since their affecting different terms or parame-

ters of the model will provide alternatives to standard protocols.
The evaluation of these alternatives will contemplate viral load
suppression, thymic function recovery, and medication expenses,
giving rise to a combined cost functional with competing individual

dx.doi.org/10.1016/j.bspc.2012.06.002
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
dx.doi.org/10.1016/j.bspc.2012.06.002
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bjectives. The relative importance of these individual objectives
nto the total cost, and the addition or suppression of other objec-
ives, has been discussed in international forums [28].

The model for the dynamics together with the cost functional
esigned for therapies evaluation pose an optimal control prob-

em. This is a richer viewpoint in comparison with those of previous
apers: innovations are included in the model and in the evalua-
ion functional, both containing more variables and individual cost
bjectives. A special feature in this last respect is the consideration
f long optimization time-horizons, in the order of several years, in
n attempt to avoid big variations in the drug doses typically pre-
cribed at the beginning and at the end of shorter time-horizons
of around 180 days) [6].  Another improvement in the scope of the
ptimization problem is the possibility of including two families of
rugs into the medication, eventually in variable proportions. The
oses admitted here will contain typical members of the Reverse
ranscriptase Inhibitors (RTIs) and the Protease Inhibitors (PIs)
roups.

The results arising from the numerical treatment of this opti-
ization setup support two main conclusions: (i) a combination of

TI and PI drugs can work better than monodrug protocols when
ll individual cost objectives are given proper weight, and (ii) less
ggressive drugs can partially replace HAART during small infected
hildren medication, especially when avoiding thymus dysfunc-
ionality is assigned a significant value.

From the numerical simulations there arise other observations,
hose precise meaning deserve further investigation. For instance,

t seems that extending the time-horizon in optimization analy-
es may  conduct to reliable therapies consisting of a constant dose
or each intervening drug. This outcome is positive in avoiding
ig changes in therapy typically appearing at the beginning and
t the end of optimization periods of the order of 180 days. But
he optimal required doses become higher the longer the horizon
s posed, which is not neatly positive in several respects, not the
east the increasing money-cost of the medication. A first interpre-
ation would propose that higher doses are required to give more
ssurance against predictable rebounds of the viral load. However,
t is also true that side-effects of higher doses will increase, and that
hould also be included as a partial cost in the optimization analy-
is, as done in previous work [6].  Unwanted effects of medication
ere not considered in this paper due to lack of data concerning

oth combined therapies and long intervals of application.
The paper is organized as follows: after the Introduction there

s Section 2 that explains the model for the dynamics of the control
ystem under study, and in Section 3 the cost functional is designed
nd discussed. Section 4 gives the details of the calculation tech-
iques used to find optimal therapies, and the numerical results
btained are analyzed in Section 5. Section 6 concludes the paper.

. Dynamics of infection and thymus function

The behavior of infected patients will be modeled through a
ontinuous-time control system described by the following set of
oupled ordinary differential equations:

ẋ = � − ıx − ˇ(u1)xz

ẏ = ˇ(u1)xz − �y

ż = �(u2)y − �z

�̇ = �(u1, u2)(�m − �) − �z

(1)

here the states are: healthy CD4+T cells (x), infected CD4 T cells

y), free virus copies or virions (z), and thymopoiesis rate (�).

The control action over the states is exerted by the medication,
.e. by the intake of drugs. Basically, the antiretroviral drugs can be
rouped into the following three categories [14]:
essing and Control 8 (2013) 90– 97 91

(i) Inhibitors of the reverse transcriptase enzyme (RTIs):  if RT is
inhibited, HIV can enter a cell but will not successfully infect
it; a DNA copy of the viral genome will not be made and the
cell will not make viral proteins.

(ii) Protease Inhibitors (PIs): if HIV protease is inhibited, cleavage of
the viral polyprotein will not occur, and viral particles that lack
functional enzymes will be made. The net effect of blocking HIV
protease is that noninfectious viral particles are produced.

(iii) Fusion Inhibitors (FIs): these work by inhibiting the binding of
HIV to healthy CD4+T-cells (used in patients with multi-drug
HIV resistance, not studied in this paper).

The control variables will be restricted in this paper to u1: dose of
Zidovudine AZT (RTI), and u2: dose of Ritonavir (PI), both in [g/day].

The first three equations (where �, ˇ(u1) and �(u2) are kept
time-constant, as if they were parameters) constitute a classical
simplified model [5,19,20], thus further comments on the mean-
ing of their terms seem unnecessary at this time. However, it is
appropriate to explain that the pharmacokinetics (PK) of each drug
enters implicitly in the determination of parameters  ̌ and �, since
they were experimentally estimated in terms of the doses and
not in terms of the efficiencies of the drugs. The efficacies of the
drugs are incorporated via dose-dependent parameters that are
time-constant. This efficacy is dependent on the PK of the agent
and its pharmacodynamics (PD; relation between efficacy and,
typically, plasma drug concentration). These are time-dependent
processes (as evidenced by the need to re-dose daily). Thus the
control parameters in the proposed model are piecewise constant
approximations. Since the relations PK/PD of the drugs are not
included explicitly, then, when interpreting the resulting optimal
strategies, it should be understood that the form of the administra-
tion of the drugs must remain the same along the whole time-span
under consideration.

The notations ˇ(u1), �(u2) denote that each one of these param-
eters is mostly affected by only one of the drug types [1,23,26]. The
last equation for � dynamics is new. It governs the natural thymus
homeostasis. No data have been reported describing the ability of
HAART agents to cross the blood–thymus barrier and penetrate into
the thymus. Therefore the explicit dependence of the thymus vari-
able � on any of the control variables ui adopted in the last of Eq.
(1) should be designed so as to give a reasonable approximation
to the observed qualitative behavior reported up to now. The form
adopted here includes

�(u1, u2) � [1 − �u1(1 − u2)], (2)

where � is a nonnegative parameter. Supposing there is no infec-
tion for the moment (z = 0, and consequently with no medication,
i.e. u1 = u2 = 0, �(u1, u2) = 1), and if the term (�m − �) is positive (the
thymus functioning is below its standard value �m), then a self-
induced recuperation will be intended by the human organism, i.e.
the rate �̇ = d�/dt will increase. But the HIV infection, reflected
in the present value of the state z(t) > 0, will oppose this recover-
ing through the term −�z, � a parameter identified from: (i) the
available data for thymus dynamics showing, for instance, that the
thymocytes decay to about one half of their original number [15,29]
during the first month after infection, together with (ii) the conven-
tionally accepted proportional relation between thymocytes and
CD4+T cells. The behavior of �(u1, u2) in the range of interest of the
control doses can be seen in Fig. 1. Setting

�adults = 0 (3)
implies �adults(u1, u2) ≡ 1 for any admissible combination of RTI and
PI drugs, coincident with the observation that for adults the thy-
mus  recovery seems to be independent of drug efficiency inside
the organ [15].
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eration term (�m − �) in the dynamic equation for the thymic function. Here

 = �children = 1.2.

Children have a better production of naive T-cells and thymo-
ytes, which suggests, in terms of parameters,

mchildren > �madults . (4)

ut also the efficiency of drugs inside a child’s thymus is differ-
nt than in adults. In previous work we have only considered the
ction of RTIs. But if only RTI drugs are being dispensed to chil-
ren patients, it is found that their efficiency inside the thymus is

ow [29], i.e. such a medication is not enough to produce the same
hymus recovery effect than in adults (this is the explanation for
children(u1, u2) < 1 for u1 > 0, Eq. (2) and Fig. 1). The same authors

ndicate that the combination with PI drugs enhances the perfor-
ance of RTI medication, and that is the reason for the term (1 − u2)
ultiplying u1 in Eq. (2).  The combination �u1(1 − u2) works as

 typical interactive term between the two drugs: (1 − u2) < 1
educes the detrimental action due to u1 alone. In order to keep

 < �children(u1, u2) ≤ 1 in the range of interest, the fitted value for
he relevant parameter was

children = 1.2. (5)

The asymptotic value for the thymus function in an infected non
edicated patient (u1 = u2 ≡ 0) will be

 � �m − �

z
, (6)

here the symbol z represents the ‘ill’ equilibrium value of the
iral load. The point (x, y, z) = ((��/ˇ�), (� − ıx/�), (�y/�)) ∈ R

3

escribes the values approached by the first three state variables
hen the patient is critically infected and non medicated. At such

alues the dynamics would become asymptotically stable, tend-
ng to a terminal situation with ẋ  = ẏ = ż = 0. By assuming that

 is approximately the same for children and for adults, the fact
hat the thymus function of infected children is more susceptible
f becoming dysfunctional [4,10] will be interpreted as the need for

children < �adults,

hich in view of Eqs. ((4)–(6))  would only be possible provided that
lso
children > �adults.

he remaining nominal values for the parameters in Eq. (1) are then
ecovered from previous versions of the model and fitted to meet
Fig. 2. Asymptotic behavior of thymus function for infected children and adults
without medication. Initial conditions as in Eq. (19).

the differences between children and adults discussed in the text
and the real-life data reported in the citations above:

�madults = 9 cells mm−3 day−1,

�mchildren = 9.5 cells mm−3 day−1

�adults = 2 × 10−5 cells copies−1 mm−3 day−2,

�children = 6 × 10−5cells copies−1 mm−3 day−2

ı = 0.009 day−1, � = 0.3 day−1, � = 0.6 day−1.

(7)

The proposed expression for ˇ(u1)

ˇ(u1) ≈ ˇ0 − ˛1u1 − ˛2u2
1 (8)

was  substantiated from qualitative and quantitative data in
[1,23,26]. The parameters were estimated through standard least-
squares regression techniques, by assuming that for a short period
(of the order of one week, see [1,23])  after therapy has begun,
x remains approximately constant (say x(t) ≈ x̃  � x(0)). Then, the
equations for ẏ and ż in the model (1) become linear and their
solution imply:

z(t) ≈ (k1ea1t + k2ea2t)z(0), (9)

with coefficients depending on x(0), y(0), ˇ0, ˛1, ˛2. Data in the
quoted literature, actually corresponding to treatments of recently
discovered infections, produce the following estimates

ˇ0 = 4 × 10−6 ml  copies−1 day−1, ˛1 = 0.88 × 10−6,

˛2 = 0.3 × 10−6. (10)

Analogously, PI drugs are known to affect preferentially the
pseudo parameter � in a form which has also been adapted to
empirical data [2,21,24] to obtain:

�(u2) ≈ �0 − ˛3u2 − ˛4u2
2, (11)

�0 = 8 × 10−2 copies cells−1 day−1, ˛3 = 40.943,

˛4 = 1.589. (12)
Some aspects of the behavior of thymus function variable � for
children and adults, in concordance with the comments above,
can be visualized in Figs. 2–4.  Figs. 2 and 3 also show that from
a lower value �(0) (revealing some deterioration of the thymus



V. Costanza et al. / Biomedical Signal Proc

0 500 1000 1500 2000 2500 3000 3500
7

7.5

8

8.5

9

9.5

Time (days)

λ
)t (

Thymus in adults with u
1
 = 0. 6 g

Thymus in children with u
1
 = 0. 6 g

F
w
c

f
a
t
r
C
t
d
a
t
F
r
w
s
w

3

m
l

J

F
w
c

ig. 3. Asymptotic behavior of thymus function for infected children and adults
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onditions as in Eq. (19).

unction due to infection), its recuperation in children is obtained
fter stronger oscillations than in adults. This is most probably due
o the children’s greater thymus volume, which allows for a quick
esponse, giving rise to more abundant thymocytes than adults do.
hildren thymus generates comparatively more CD4+T cells, able
o be infected and to reproduce more virus copies, which in turn
eteriorate thymus more significantly, and so starting the recuper-
tion cycle again. Perhaps these strong oscillations explain early
hymus dysfunctionality in children when not properly medicated.
ig. 4 shows that combined RTI plus PI therapies in children could
estore thymus function to a higher value and more smoothly than
ith pure RTI drugs. The question is which the best proportion for

uch combinations is when taking a multi-objective viewpoint. This
ill be attempted in the rest of the paper.

. Total cost associated to a therapeutic strategy

A typical objective functional, representing the “total” cost to
inimize among all acceptable therapies, may  be designed as fol-

ows

(u) = Q (t0, T, x0, y0, z0, �0, u) + K(x, y, z, �)T
=
∫ T

t0

[a1z(t) + a2f (u1(t), u2(t)) + a3(�(t) − �m)2]dt + a4z2(T).

(13)
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This is a typical form for the objective function, consisting of a
“trajectory cost” Q(t0, T, x0, y0, z0, �0, u) (usually expressed as the
integral of the Lagrangian function L(x, y, z, �, u), which models the
cost differentials occurring during treatment), and a “final penalty”
K(x, y, z, �)T associated with the departure of the final states from the
desired (target) after therapy, which has been maintained quadratic
(as in previous work of the authors, for eventual comparison of
results), i.e.

K(x, y, z, �)T = K(x(T), y(T), z(T), �(T)) = a4z2(T). (14)

The term a2f(u1, u2) associated with the cost of the drugs used
for therapy should be zero if medication is absent (u1 = u1 = 0).
If there were no other (positive) terms in the trajectory cost Q
(see for instance [16] and some of the references therein), it may
happen that the optimal policy results ‘no medication’. Adding
state-trajectory costs (a1 and a3 not simultaneously null) will pre-
vent from total drug interruption at any intermediate time within
optimal therapies. Such interruptions are recognized to be inap-
propriate [7].  The choice made here takes the form

L(x(t), y(t), z(t), �(t), u(t)) = a1z(t) + a2f (u1(t), u2(t))

+ a3(�(t) − �m)2 (15)

The Lagrangian in this case includes the term a1z(t) penalizing
the existing of a nontrivial virus load. The values of a1 and a4,
although adjustable as all evaluation parameters, have been kept
high enough as to guarantee that the viral load descend below
the 50 copies/ml in the first 180 days for every admissible optimal
medication strategy.

The term f(u1, u2) represents the effective financial cost of the
doses prescribed by the chosen therapy. The simplest form for the
function f is just the sum of the individual costs of each drug, i.e.

f (u1, u2) = m1u1 + m2u2, (16)

with mi denoting the current price of drug ui in dollars per gram (in
Argentina, March 2011). It should be made clear that the value of
f(u1, u2) represents just the expense in money for buying the drugs.
Other indirect costs associated with the medication, like those com-
monly considered as ‘side-effects’ (see [6]), or the propensity to
encourage drug resistance, should reasonably be taken into account
in a more complete formulation of the dynamics and cost objective
J(u). The setup here is just an approximation to the problem.

The coefficient a3 weights the importance given to thymus dete-
rioration in the whole. The square in (� − �m)2 reflects the current
presumption [25] that a too active thymus is also detrimental in
curing the infection, above all in children.

The initial time t0 is taken as zero since both the dynamics and
the cost functional are autonomous. Then the final time T becomes
the time-horizon for the problem. A value of T � 180 days was used
in all calculations, in an attempt to find stable therapies and to avoid
typical high doses at the beginning and end of short successive
optimization periods (in the order of 180 days).

The values of the coefficients adopted after previous considera-
tions were:

a1 = 0.01, a2 = 1, a3children
= 100, a3adults

= 50,
a4 = 0.001,

m1 = 15.4 dollars g−1, m2 = 21.6 dollars g−1,
T = 420 → 1200 days.

(17)

4. Numerical treatment
4.1. Discretizing the state and control spaces

The structure of a continuous-time optimal control problem is
not completely functional to the handling of HIV medication in
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eal life. Notwithstanding the patient’s health undergoes a con-
inuous deterioration, possibly following a model like Eq. (1),  the
ssessment of the situation can only be made through periodic (dis-
ontinuous) blood analyses and doctor inspections, and the present
dministration of drugs can only be made through discrete amounts
nd changed every some time-period according to prescriptions.
his means that, even when the system evolves in continuous time
nd the cost objective can theoretically be posed in the same con-
ext, the discrete nature of:

(i) measurements’ availability or observability of the state vari-
ables (x, y, z, �),

(ii) the discrete nature of admissible control values,
iii) the existence of restrictions in the admissible control values,

which hinders the smoothness of control trajectories, and
iv) the usual delay between physician interventions and control

decisions, it is reasonable to consider a mixed continu-
ous/discrete approach to the numerical treatment.

In what follows, the values of the states and control variables
ill be then discretized according to the following scheme

X  � {xL, xL + 	x,  xL + 2	x,  · · ·,  xU }
Y  � {yL, yL + 	y,  yL + 2	y,  · · ·,  yU }
Z � {zL, zL + 	z,  zL + 2	z,  · · ·,  zU }
L�

{
�L, �L + 	�,  �L + 2	�,  · · ·,  �U

}
U1 � {u1L

, u1L
+ 	u1, u1L

+ 2	u1, · · ·,  u1U
}

U2 � {u2L
, u2L

+ 	u2, u2L
+ 2	u2, · · ·,  u2U

}
U � U1 × U2

(18)

here the values of the lower (L) and upper (U) bounds and the
rid size (
)  for each variable should depend on real constrains on
he appreciation of measurement devices, the possibilities of dose
ubdivision, calculation capabilities, and expectations. However it
s important to note that the adopted values for yL, zL and pL should
e strictly greater than zero to avoid an unrealistic stagnation of the
ariables y, z (see Eq. (1)). This will be discussed further, together
ith the numerical trials and results.

.2. Hybrid Dynamic Programming

From now on the optimal treatment of a patient with a recently
iscovered infection, for instance with initial conditions near

x0 = 850 cells mm−3, y0 = 41 cells mm−3,

z0 = 3760 copies ml−1, �0 = 5 cells mm−3 day−1,
(19)

s illustrated. Dynamic Programming was implemented for a range
f states around these initial conditions, covering expected behav-
ors of the patient under different medication strategies. The
dopted discretization or spacing (
)  of the variables and their
orresponding lower (L) and upper (U) bounds are listed bellow:

x = 50,  	y  = 10,  	z  = 500, 	�  = 0.1,

	u1 = 	u2 = 0.2, (20)

L = 500, yL = 1, zL = 10,  �L = 4, u1L
= u2L

= 0, (21)
U = 1000, yU = 51,  zU = 5010, �U = 10,

u1U
= u2U

= 0.8 (22)
essing and Control 8 (2013) 90– 97

It must be remarked that the lower thresholds yL and zL are
given strictly positive values. This is to avoid that, after an even-
tual rounding of their values, the discretized trajectories reach any
point with y = z = 0, since in that case the optimal strategy would
continue with u ≡ 0 until the end, which is certainly erroneous (and
dangerous). Indeed, the real system never reaches y = z = � = 0 from
an initial condition different from the unstable equilibrium, which
means that any remaining infection (y > 0, z > 0) will grow if u = (0, 0)
and this growth should eventually be controlled with some ui > 0.
The 
 spacings used here to make each variable discrete might
result too demanding given the non-uniformity of the data acqui-
sition met  in real-life scenarios. In applications, the physician will
surely resort to interpolations, and to the help of some professional
in informatics to make compatible the accuracy of results with the
samples analyses and computational capabilities. The upper limits
on the doses of each drug were adopted on safety grounds. Their
sum, namely 1.6 g, was  the maximum value for each individual drug
admitted by any of the essays quoted before, whose data were used
to estimate the parameters of the dynamics.

The cost takes now a slightly different form

J(u) �
T/h∑
k=0

∫ tk+1

tk

[a1z(t) + m1u1(t) + m2u2(t)

+a3(�(t) − �m)2]dt + a4

(
z
(

T

h

)
− ẑ

)2
,

tk � t0 + hk,

(23)

where x(t), y(t), z(t), �(t) must be understood, in each interval
[tktk+1), as the rounded result of the state-transition function �(t,
t0, x, y, z, �, u(·)) associated with the continuous-time model (1),
namely

(x(t), y(t), z(t), �(t))′ = �(t, tk, xk, yk, zk, �k, ũk), (24)

(xk+1, yk+1, zk+1, �k+1)′ = round(�(tk+1, tk, xk, yk, zk, �k, ũk)), (25)

the symbol ũk being interpreted as the piecewise-constant control
trajectory

u(t) = (u1(t), u1(t)) � ũk(t) ≡ uk = (u1k
, u2k

) ∈ U ∀t ∈ [tk, tk+1),

(26)

and where ‘round’ acts over the values (x(tk+1), y(tk+1),
z(tk+1), �(tk+1))′ = �(tk+1, tk, xk, yk, zk, �k, ũk) in a ‘safe’ way,
precisely

xk+1 � closest smaller value next to x(tk+1) in X
yk+1 � closest bigger value next to y(tk+1) in Y
zk+1 � closest bigger value next to z(tk+1) in Z
�k+1 � closest value next to �(tk+1) in L

(27)

This means that, even when the time, state, and control spaces
are discretized, the values of the states at a time tk+1 are calculated
by integrating the continuous-time dynamics of the control system
(i.e. through the state-transition function � of the system) by using
the known states at time tk as initial conditions, and then rounding
the states resulting from integration. That explains the adjective
‘Hybrid’ assigned to the Dynamic Programming technique used as
numerical approach to the problem in this paper. The adopted value
of h = 30 days takes into consideration the observed ‘peak time’ (of
approximately 20 days) occurring in the state variables and sensi-
tivities (see [5]). The possibility of a hidden acute infection period

is discarded this way, since at least the results of a blood analysis
reflecting the situation will come at some intermediate point.

The numerical scheme proceeds ‘backwards in time’. Calcula-
tions start by assuming that the cost of an instantaneous process at
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and adults, although for a3 = 100 such a sum is higher (1 g instead of
0.8 g for a3 = 30), indicating that more concern for thymus function
will require more drug, all other objectives being equally weighted.
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ig. 5. Optimal strategy (therapy) for adults, among all admissible combinations of
TI and PI drugs. Optimization horizon T = 420 days.

ime T coincides with the final penalization KT of Eq. (13), for each
dmissible final state (x, y, z, �)T. Then, the procedure determines
he optimal strategies for a process of duration 	t  starting at T − 	t
i.e. for the last stage); and this is done for each ‘initial’ state (x, y,
, �)T−	t. The resulting optimal controls are stored, identified with
ach (x, y, z, �)T−	t. The procedure is repeated for each ‘previous’
tage until arriving to the initial time, and the optimal controls are
tored for every state at every stage. In this way, at any time and
or each admissible state of the patient, the optimal control strat-
gy from there to the end can be recovered from the stored data,
hich makes the methodology robust with respect to inaccuracies

etween model and patient. At each stage the control can be ‘cor-
ected’ in terms of the real state of the patient. This is the usual
eaning of ‘feedback control’. For further details see for instance

12].

. Numerical results

The first calculations made were for adult patients, from initial
onditions as in Eq. (19), resulted in an optimal control strategy as
hown in Fig. 5. The optimal doses of RTI stabilized at 0.6 g after
he critical period of 180 days, while PI did the same at 0.4 g. This
as a good result in some aspects: first, both drugs were present in

 nontrivial combination at all stages; and second, both of them
tayed at a constant level from more than the last half of the
eriod under consideration, which suggests that the medication
∗
adults(t) ≡ (0.6, 0.4) could become safe for approximately t > 180
ays, without need to repeat calculations for successive optimiza-
ion periods. But the preference for RTIs over PIs was  somewhat
xpected since u1 acts by diminishing directly both the viral load
nd the thymus function dysfunctionality (and consequently low-
ring the costs weighted by a1, a3, and a4), while increasing the
rug cost weighted by a2 at a lower rate than u2 does (PIs are more
xpensive). This result is reinforced when the cost of thymus illness
s not given preponderance in the composition of the cost, as was
ecided to be the case for adults.

Things change for children, as can be seen in Fig. 9, due to the
ifferent set of parameters used in calculations, as indicated in Eqs.
(7) and (17)). The optimal medication for children stabilizes at
∗
children(t) ≡ (0.4, 0.6) for t > 180 days, reversing the roles of RTI and

I in the optimal therapy for adults. This shows that an alternative
ombination of drugs, less aggressive to the thymus functioning in
hildren, can result optimal when the weights of the partial costs
re tuned as to reflect a comprehensive evaluation of the situation.
Fig. 6. x-Trajectories for children and adults resulting from their corresponding
optimal medications. x-Values used in Dynamic Programming calculations are also
shown for adults.

The state trajectories for x(t), z(t) and �(t), corresponding to
the optimal control strategies, both for adults and children, are
depicted in Figs. 6–8.  They show a very acceptable performance,
judging from common-sense expectations for a good medication,
i.e. it should quickly abate viral load while at the same time recuper-
ates healthy cells and thymus function. For illustration purposes,
and only in the adults case, curves for the values of the states x, z, �
that are generated in the intermediate calculations of the optimal
control strategy by the Dynamic Programming scheme are added
in Figs. 6–8.  These values, obtained after applying the rounding
conventions announced in Eq. (27), are shown to be conservative,
since the continuous-line curves (real behavior of the patient due
to optimal medication) tend to the desired values more quickly
and accurately than the remaining ones (Dynamic Programming
rounded approximations).

Partial costs due to optimal medications in children and adult
patients are shown in Table 1, for a3 = 30 and a3 = 100. In both cases
the sum of the asymptotic optimal doses is the same for children
Time (days)

Fig. 7. z-Trajectory for children and adults resulting from their corresponding opti-
mal  medications. z-Values used in Dynamic Programming calculations are also
shown for adults.
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Table 1
Cost values for children and adult treatments for a3 = 30, 100; T = 420 days. The asymptotic optimal value of the drug ui appears as a superscript of the partial cost associated
with  such ui .

a3

∫
a1z(t)dt

∫
a3(� − �m)2dt

∫
m1u1dt

∫
m2u2dt Cost of medication

Children
30

476.30 16622 2495(0.4) 3889(0.4) 6383

Adult 416.81 8253 3142(0.6) 1814(0.2) 4956

T
c
1
f
m
d
i
b
w
T

F
o
s

F
o

Children
100

393.72 53546 

Adult 309.90 25493 

he cost of medication for children when a3 = 30 is 1.28 times the
ost for adults, but this is not too expensive to pay for as much as
6, 622/8253 = 2.0141 times the all along deviation of the thymus
unction. For a3 = 100 this argument is even stronger but the cost of

edication rises both for children and adults to reach around 7680
ollars in 420 days. As a3children

increases the recommended PI doses

ncreases and surpasses the one for RTIs. This could be rephrased
y saying that emphasizing thymus concern in children patients
ould amount in increasing proportion of PI drugs replacing RTIs.

his policy would be reinforced if the hypothesis of PI retarding
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2495(0.4) 5184(0.6) 7679

3788(0.6) 3888(0.4) 7676

the switching time from R5 to X4 virus [8] is confirmed by further
empirical data.

For longer optimization horizons things become more com-
plex. Figs. 10 and 11 depict respectively the z- and �-trajectories
corresponding to the optimal medications calculated for children
and a very long T (=1200 days), using different values for a3. The
asymptotic recommended drug doses are higher than for shorter
optimization periods, explained by the need to avoid significant
rebounds in the viral load. This is an issue that deserves further
study, above all considering that model parameters are no longer

trusted to remain constant after such long periods of treatment,
and the same can be expected of the partial cost weights. Perhaps
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Fig. 10. z-Trajectory for children resulting from optimal combined RTI plus PI med-
ications corresponding to different weights a3 assigned to thymus’ deficiency cost.
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ong optimization horizons would require then nonautonomous
ormulations for both the dynamics and the cost function.

. Conclusions

An optimal control methodology, suitable for assessing drug
ombinations in HIV treatment of children and adult patients, has
een presented. The problem was posed in the context of determin-

stic nonlinear systems, although there are at present uncertainties
oncerning the dynamics of human thymus under viral infection
nd highly active medication, that would probably require an
tochastic setup in the future. It has been found that, providing
he model be accurate enough, different drug combinations could
esult better than monotherapies, and that the best combinations
re not completely obvious but discovered through mathematical
nalysis and numerical calculation. The choice for the doses of two
ifferent drugs was to be determined every 30 days, and were to be
aken constantly during the next period. The criteria for deciding
hat was best were expressed as a number of conflicting objec-

ives, and modeled as partial terms of a cost functional, which
ntails evaluations during the whole optimization time-horizon
nd at the end of it. Classical Dynamic Programming proved to be
seful in finding optimal medication strategies in the presence of
any degrees of freedom, after proper adjustment to the mixed

ontinuous-discrete characteristics of this situation. A valuable
eature of this methodology is its implicit ‘closed-loop’, or ‘feed-
ack control’, character. This means that whenever the state of the
atient, reflected by an upcoming blood analysis, is not what was
xpected, nonetheless the optimal medication corresponding to the

corrected’ state is stored as a part of the numerical results already
btained. No further calculations are needed, since Dynamic Pro-
ramming provides the optimal control strategies for any initial or
ntermediate state (discretization allowed).

The problem had essentially two different setups: one for adult
atients and another one for just-born children. Parameters for
he dynamics and for the evaluation functional of each setup were
uned to reflect existing knowledge, which is still little more than
ncipient. Results, though, are promising: an inverse tendency in
he proportion between the RTI and PI families of drugs seem to
e recommendable for children in comparison with that for adults.
he appropriate decision, when the concern for thymus function
rows in appreciation, would then be to prescribe more PIs than
TIs for children, and the opposite ratio for adults. Another posi-
ive outcome is the stabilization of the composition of the optimal
oses after some 180 days towards a mix  with significant PI share.
his is regarded as ‘milder’ acceptable therapies, especially well
eceived by children patients.

The variations of optimal medication strategies were also
ssessed when evaluating long periods, the increasing of the total
mount of drugs being the expected consequence of minimizing
ebound risks for viral load. Still, it has to be realized that: (i) the
onger the horizon under study, the greater the uncertainties are
n the number and values of parameters and weight coefficients
eeded for a definitive formulation, and (ii) long-term side-effects
ave not explicitly been contemplated in the present methodology.
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