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a b s t r a c t

This paper proposes an individualized approach to closed-loop control of depth of hypnosis during propo-
fol anesthesia. The novelty of the paper lies in the individualization of the controller at the end of the
induction phase of anesthesia, based on a patient model identified from the dose–response relationship
during induction of anesthesia. The proposed approach is shown to be superior to administration of
propofol based on population-based infusion schemes tailored to individual patients. This approach has
the potential to outperform fully adaptive approaches in regards to controller robustness against mea-
surement variability due to surgical stimulation. To streamline controller synthesis, two output filters
were introduced (inverting the Hill dose–response model and the linear time-invariant sensor model),
which yield a close-to-linear representation of the system dynamics when used with a compartmen-
tal patient model. These filters are especially useful during the induction phase of anesthesia in which
a nonlinear dose–response relationship complicates the design of an appropriate controller. The pro-
posed approach was evaluated in simulation on pharmacokinetic and pharmacodynamic models of 44
patients identified from real clinical data. A model of the NeuroSense, a hypnotic depth monitor based
on wavelet analysis of EEG,was also included. This monitor is similar to the well-known BIS,but has lin-
ear time-invariant dynamics and does not introduce a delay. The proposed scheme was compared with
a population-based controller, i.e. a controller only utilizing models based on demographic covariates
for its tuning. On average, the proposed approach offered 25%improvement in disturbance attenuation,
measured as the integrated absolute error following a step disturbance. The corresponding standard
deviation from the reference was also decreased by 25%.Results are discussed and possible directions of
future work are proposed.

1. Introduction

The purpose of administering anesthetic drugs during surgi-
cal procedures is to prevent unintended intra-operative awareness
and to preserve stable suppression of noxious stimulation on the
circulatory and hormonal systems, and on occasion to provide mus-
cle relaxation [1]. Accordingly, anesthetic drugs are categorized
into hypnotics, analgesics and neuromuscular blocking drugs. The

fulfillment of the above-mentioned objectives is complicated by
highly patient-specific and uncertain dose–response dynamics [2],
unpredictable disturbances introduced by surgical stimulation [3]
and synergetic effects between drugs (e.g. hypnotic–opioid syn-
ergy) [4]. Additional constraints are imposed by the fact that some
anesthetic drugs have undesirable side effects (e.g. cardiovascular
depression, cognitive impairment, nausea, vomiting and respira-
tory depression). Thus, the drugs must be restrictively administered
during surgical procedures [5].

The hypnosis profile is divided into three temporal phases.
During the induction phase of anesthesia, the patient is trans-
ferred from a fully awake state to a stable level of hypnosis. The
surgical procedure takes place during the maintenance phase of
anesthesia. Once the procedure is completed, drug administration



Fig.1. Closed-loop DOH control system.

is discontinued to yield the emergence phase of anesthesia. During
this phase, the patient emerges from the anesthetized state to the
fully awake state.

Classically, an anesthesiologist manually controls adminis-
tration of anesthetic drugs in the operating room. Doses are
determined based on measured and/or predicted patient response.
The predictions are based on clinical experience complemented
by anticipated response to surgical stimulation and synergetic
effects between drugs. Expert knowledge and experience play an
important role, because the process exhibits a high degree of uncer-
tainty.

A computer application can be used for a priori computation of
an adequate hypnotic dose profile. This is exploited in the Target
Controlled Infusion (TCI) paradigm [6,7]. TCI uses pharmacokinetic
(PK) and pharmacodynamic (PD) models to regulate the predicted
plasma or effect site (brain) drug concentration to adesired level set
by the anesthesiologist. Considering that these concentrations are
calculated rather than measured, TCI is regarded as an open-loop
scheme. Thus, the performance of any TCI system relies heavily
on the accuracy of the patient model. Furthermore, it is highly
susceptible to disturbances caused by surgical stimulation and
hypnotic–opioid synergy. Consequently, the TCI profile needs to
be manually adjusted to counteract such disturbances.

An important step toward automated anesthesia drug deliv-
ery is to allow a computer application to make adjustments based
on appropriate sensor measurements. In this scenario the anes-
thesiologist provides reference profiles for the measured quantity
and the computer administers drugs to track the reference. This
paradigm, known as closed-loop control, has been enabled with
the introduction of clinical sensors for depth of hypnosis such as
the Bispectral Index (BIS) [8], Entropy monitor [9] and the wavelet-
based NeuroSense monitor [10]. In this paper a model of the
commercially available NeuroSense monitor (NeuroWave Systems,
Cleveland Heights, USA) is used. It provides the WAV CNS index, pre-
sented in Section 2.3, as ameasure of clinical effect. It is shown that
the WAV CNS correlates well with the BIS in steady state [10], and
in addition, it boasts improved time-invariant dynamic response.
Fig. 1 outlines the components of a closed-loop controlled anesthe-
sia system.

The minimum requirement for any controller is that the closed-
loop system is robust against measurement noise, disturbances (e.g.
surgical stimulation) and model uncertainties. Improving robust-
ness usually results in compromised controller performance and an
appropriate trade-off between robustness and control performance
is required. This compromise explains the existence of a multi-
tude of control schemes and corresponding tuning procedures that
have been evaluated for drug delivery in anesthesia. These schemes
have included internal model control (IMC) [11], modeling error
compensation (MEC) [12], model predictive control (MPC) [13],
neural-fuzzy control [14], proportional integral derivative control
(PID) [15] and robust control [15,16]. An intensive list of previous
work on closed-loop control of anesthesia can be found in a his-
toric review [17] and more recently in [18] as well as in [3]. It was

Fig.2. Temporal layout of proposed control schema.

concluded in [19,20] that closed-loop strategies might outperform
manual infusion dosing. In particular, closed-loop administration
of propofol is expected to lead to a mean decrease in drug dose,
while providing adequately deep anesthesia.

The output (WAV CNS index provided by the NeuroSense moni-
tor) and its corresponding input (dose) history can be used to adapt
the control scheme to improve titration of drugs to the need of an
individual patient. However, such adaptive approaches can fail if
the behavior of the clinical front end is not fully explained by the
dose, or if the output does not adequately excite the process to
be controlled. In control of anesthesia, unknown surgical stimu-
lations affect the clinical front end. With current technology, it is
not possible to separate this effect from that of the drug. Hence,
the clinical front end measurement is not fully explained by the
dose during intubation or after incision, thereby posing a chal-
lenge for any adaptive scheme. This challenge is exacerbated by
the fact that measurement noise is of comparable magnitude to
output variability during the maintenance phase of anesthesia [3].

This paper proposes an individualized approach to closed-loop
control of depth of hypnosis during propofol anesthesia. Its novelty
lies in the individualization of the controller at the end of the induc-
tion phase of anesthesia, based on a patient model identified from
dose–response relationship during induction of anesthesia. The
proposed approach is superior to population-based drug admin-
istration in titrating drug to the need of each individual patient.
This novel approach also has potential to outperform fully adaptive
approaches in regards to controller robustness against measure-
ment variability due to surgical stimulation. An overview of the
proposed approach is given in Fig. 2.

To streamline controller synthesis, two output filters are
introduced, which yield close-to-linear representation of the sys-
tem dynamics when used with a compartmental patient model
(the Hill dose–response model and the linear time-invariant sensor
model). This synthesis is useful during the induction phase of anes-
thesia in which nonlinear dose–response relationship complicates
the design of an appropriate controller.

This paper is organized as follows: Section 2 describes the model
of hypnosis used in this paper. Section 3 elaborates on the control
design procedure employed once a plant model is given, whereas
the system identification procedure to obtain the plant model is
discussed in Section 4. Sections 5 and 6 describe the simulation
setup and performance evaluation measures. Section 7 presents
and discusses the results and Section 8 outlines the limitations of
the study. Section 9 provides the conclusions.



Fig.3. Mammillary three-compartment model.

2. Adynamic model of hypnosis

The model structure used in this paper consists of a PK model
[21] (explaining the distribution and elimination of the drug), a
PD model [3] (explaining the clinical effect of the drug) and a
model describing the monitor dynamics [10]. Surgical stimulation
is modeled as an additive disturbance to the measurement signal.
Each model is described in detail in the following:

2.1. Pharmacokinetic (PK) model

The PKmodel relates infusion rate u to plasma drug concentra-
tion Cp. A variety of PKmodels have previously been described, e.g.
[21–24]. In this paper, the Schüttler PK model [21] was used. It is
a three-compartment mammillary model in which each compart-
ment represents a class of tissues (see Fig. 3). Propofol is delivered
into the primary compartment at the infusion rate u. Drug mass in
each compartment is denoted by m = [m 1 m2 m3 ]T. Rate constants
kij , i, j ∈ {1, 2, 3} describe the mass fraction of propofol transported
from compartment i to compartment j. Elimination takes place only
from the primary compartment with the rate constant k10 . The
compartment volumes are denoted by Vk , k ∈ {1, 2, 3} . These vol-
umes are theoretical measures and do not correspond to physical
volumes in the patient. The drug concentrations in each compart-
ment are given by

x = [x1 x2 x3 ]
T , xk =

mk
Vk

, k ∈ {1, 2, 3}. (1)

If the concentrations in two compartments are equal, there is
no net flow of drug between them. Hence,

V1
V2

k12 = k21 ,
V1
V32

k13 = k31 . (2)

Consequently, the Schüttler PK model can be expressed as the
following state space representation:

ẋ =

⎡
⎢⎣

− (k10k12k13 ) k12 k13

k21 − k21 0

k31 0 − k31

⎤
⎢⎦x +

1
V1

⎡

⎣
1
0
0

⎤

⎦u. (3)

The transfer function representation of (3) from u to x1 is

GCp ,u (s) =
1
V1

(s + k21 )(s + k31 )
(s + p1)(s + p2)(s + p3)

, (4)

where pk , k ∈ {1, 2, 3} relate to kij through
⎛
⎢⎝

p1 + p2 + p3 = k10 + k12 + k13 + k21 + k31 ,

p1p2 + p1p3 + p2p3 = k10 (k21k31 ) + k31 (k12k21 ) + k13k21 ,

p1p2p3 = k10k21k31 ,

(5)

which is obtained from the characteristic equation. Schüttler and
Ihmsen [21] suggested that age and lean body mass were reliable
demographic covariates for individualizing the volumes and rate
constants in (3).

2.2. Pharmacodynamic (PD) model – Hill function

2.2.1. Effect site dynamics
The output of the PKmodel is Cp, the concentration of propofol in

the primary compartment. However, the effect site of the drug is the
brain. To account for the distribution of drug from the plasma to the
effect site, the PKmodel is augmented by a first-order time-delayed
(FOTD) system [3] that relates Cp to the effect site concentration Ce:

GCe,Cp(s) =
kd

s+ kd
e− Ls. (6)

The standard PDmodel does not consider a time delay L,which
was introduced to model the negative phase shift observed in clin-
ical data [3].

2.2.2. Dose–responsecharacteristics
In steady state, the relation between Ce and E is well described

by the sigmoidal Emax function, also known as the Hill function:

E(Ce) =
Ce

EC50 + Ce
. (7)

The clinical effect Eranges from 0 to 1, where 0 and 1 correspond
to fully awake and fully anesthetized states, respectively. The Hill
function (7) is parameterized by EC50 , the Ce value corresponding
to E=0.5 and , representing the steepness of the sigmoidal curve.
It can be decomposed into a series of a linear gain parameterized
only in EC50 :

v(Ce) =
1

EC50
Ce, (8)

and a sigmoidal nonlinearity that is parameterized only in :

E = f (v; ) = v
1 + v

. (9)

For model identification purposes, kd in (6) and the gain in (8)
are lumped together to yield the following FOTDsystem:

v(s) =
1

EC50
kd

s+ kd
e− sLCp(s), (10)

whereas the nonlinearity (9) is treated separately.

2.3. Clinical front end: WAVCNSmonitor

Depth of hypnosis (DOH) can be inferred based on characteris-
tic frequency components of electroencephalogram (EEG), which
can be measured using non-invasive electrodes mounted on the
patient’s forehead. Themost popular option for the measurement of
DOH is the BIS [25], for which commercial instrumentation equip-
ment is available. However, BIS is not ideal for closed-loop control
purposes, because the underlying proprietary algorithm exhibits
highly time-varying and nonlinear behavior. The use of wavelet
techniques has been proposed to overcome these challenges, yield-
ing the WAV CNS index [10]. It correlates well with BIS. Moreover,
its implementation in the NeuroSense monitor [26] exhibits known
time-invariant linear dynamics:

Gy,E (s) =
1

(8s + 1)2
· (11)

The dynamics (11) are due to a known output trending filter
embedded in the NeuroSense, rather than an approximation of its
dynamic behavior. The lack of the time varying delay resulting from
the proprietary BISalgorithm makes the NeuroSense monitor more
suitable for closed-loop applications.

The WAV CNS index spans 0–100, where 100 corresponds to the
fully awake state, while 0 corresponds to an iso-electric EEG. In



Fig.4. PKPDpatient model, relating DOH y to propofol rate u. Surgical stimulation
is modeled by d.

essence, it is a scaling of y in (11) such that y =0 ⇔ 100 WAV CNSand
y =1 ⇔ 0 WAV CNS. Further details of the NeuroSense monitor can
be found in [3,26].

2.4. Control design model and surgical stimulation

The patient model used for control design is obtained by com-
bining the PKmodel (3), the PDmodel (9) and (10) and the WAV CNS
model (11); see Fig. 4. The surgical stimulation (denoted by d in
Fig. 4) is modeled as an additive output disturbance. A previously
published profile [15] shown in Fig. 5 is used in this simulation
study. As noted in [15], this profile, though simplified, emulates
three representative surgical stimulations during surgical proce-
dures. The initial step simulates the arousal reflex due to incision.
The stimulation tapers off and settles at 10 WAV CNSunits to imitate
surgical interventions and finally returns to zero once the surgical
stimulation is withdrawn. The profile is regarded as adequate for
investigating the preliminary feasibility of the proposed individu-
alized controller. However, the adaptation regimen for controller
parameters based on the identified patient model may need to
be revised before it can be used in surgical procedures involving
significantly different stimulation profiles.

3. Robust PIDcontrol

This section outlines the controller structure and elaborates
on the parameter tuning procedure. Directly synthesizing a con-
troller for the combined dynamics in Fig. 4 is complicated by the
model structure, which consists of two linear blocks separated by
a static nonlinearity. In order to cope with this challenge, we pro-
pose two filters that cancel the Hill nonlinearity (9) and the monitor
dynamics (11). Utilizing these filters linearizes the plant, thereby
facilitating the control design process.

The control strategy of choice in this paper is robustly tuned PID
control. PID control is a well-accepted scheme with a simple struc-
ture involving only few parameters. Its behavior is well understood
and intuitive. In addition, there are tuning schemes to secure con-
troller robustness, e.g. [27,28]. Moreover, PID control has shown to
be a viable approach to applications [29] in which the controlled
system exhibits monotonous step response dynamics, which is the
case in this application. It is noted that achieving improved control
performance with more advanced and model-based control meth-
ods may by extremely challenging for the DOH control problem at
hand due to the large amount of patient-to-patient uncertainty. In
this regard, PID control can be regarded as a reasonable choice.

The standard form of the PID controller is given in continu-
ous time, and discretization is required for implementation in a

Fig.5. Output disturbance profile from [19].

Fig.6. Closed-loop system and PID controller.

digital computer. In addition, the following enhancements were
made upon the standard PID control scheme to deal with challenges
specific to the DOH control problem in this paper: (1) reference
weighting, (2) reference pre-filtering, (3) integrator anti-windup,
(4) derivative filter and (5) bumpless parameter changes. Each of
these enhancements is discussed in Section 3.4.2 (Fig. 6(a) for the
overall control scheme).

3.1. Monitor canceling filter

The plant model shown in Fig. 4 cannot be readily decomposed
into its LTI and static nonlinearity components due to the existence
of the Hill function between the effect-site PD and the monitor
dynamics, which acts as a significant limiting factor in both patient
model identification and controller synthesis. We propose to aug-
ment the plant model with the inverse of the monitor dynamics to
reduce these limitations. The monitor dynamics is the result of a
trending filter, operating at 1 Hz (which is 5 times faster than the
control algorithm executing with a sampling interval of 5 s). It is
the zero order hold (ZOH) sampling of (11), where the unit delay
from sampling has been removed:

G(z) =
0.719z 2 + 0.662z

z2 − 1.765z + 0.778
. (12)

Since (12) is stable and minimum phase, its inverse

F1(z) =
z2 − 1.765z + 0.778
0.719z 2 + 0.662z

. (13)

is also stable and allows acausal implementation. Consequently,
the output of the WAV CNSmonitor is filtered with (13) to cancel (12)
(see Fig. 4).

3.2. Hill canceling filter

The model in Fig. 4 is nonlinear due to the Hill function. This
is not an issue when synthesizing a maintenance phase controller,
since the plant model can be linearized around the operating point
where Ce =EC50 , which is known to correspond to adequate DOH.
However, linear approximation is not feasible during the induction
phase of anesthesia, during which no well-defined operating point
exists. If aPID controller (or any controller involving integral action)
is used, the integral state will build up rapidly during the begin-
ning of the induction phase due to the large discrepancy between
target and actual drug concentrations: Cp EC50 , which in turn
can potentially cause a large overshoot in the WAV CNS response.
Integral action may be reduced to alleviate this problem, but this
would increase the duration of the induction phase. To resolve this
challenge, we propose to use a linearizing filter in series with (13).



The inverse of the nonlinear part of the Hill function (9) is given by

v = F2(E; ) = f − 1(E; ) = E
1 − E)

1/
. (14)

Letting and ˆ be true and population-based slope parameters,
respectively, yields

v̂ = f − 1(f (v; ); ˆ) = v/ ˆ , (15)

which is close to v when ˆ ≈ . The controller can be synthe-
sized based on the assumption that ˆ = , i.e. the nonlinearity is
completely canceled.

3.3. Plant dynamics

Combining (4), (6), (8), (12), (13) and (15) and assuming ˆ =
yields the fully linear plant model

P(s) =
kd

EC50V1
(s + k21 )(s + k31 )

(s + kd)(s + p1)(s + p2)(s + p3)
e− sL, (16)

which is used for controller synthesis.

3.4. Controller

The PID controller is parameterized in its proportional (Kp), inte-
gral (KI) and derivative (KD) gains. Two robust PID design methods
based on minimizing the norm of the tracking error caused by astep
load disturbance are evaluated to determine the values of these
gains.

3.4.1. Robust load integrated error minimization
The objective of this method is to find PID gains {KP, KI , KD} , that

minimize the integral error (IE). Robustness is enforced by restric-
ting the open-loop Nyquist curve outside a circular disk of radius
Ms centered at − 1. This is equivalent to restricting the ∞ -norm of
the sensitivity function S(ω):

{KP, KI , KD} = arg min
∞

0
eL()d,

subject to max
ω

|S(ω)| ≤ Ms,
(17)

where eL is the error due to a step disturbance load. See [28] for
a thorough description of the method or [29] for a summary. A
regimen for determining a suitable Ms is described in [15].

3.4.2. Robust load integrated absolute error minimization
An oscillatory zero mean error is not desirable, but it can yield

small IE values. The following optimization constraint can be used
as a remedy:

{KP, KI , KD} = arg min
∞

0
eL()d,

subject to max
ω

|S(ω)| ≤ Ms,
(18)

The minimized quantity is referred to as the integral absolute
error (IAE), where eL is the error due to a step disturbance load. A
useful algorithm to perform (18) is available in [27].

A preliminary simulation study based on closed-loop DOH con-
trol indicates that the behavior of controllers designed using (17)
and (18) are essentially similar. Therefore, the IEminimization was
adopted in favor of its IAEcounterpart by virtue of its computational
efficiency.

3.5. Implementation aspects

The standard, generic PID controller was customized as follows
to accommodate specific requirements associated with the real

world implementation of a DOH controller. Changes were made
to accommodate integrator anti-windup and bumpless parameter
changes. The reference was low-pass filtered to generate a more
feasible trajectory and the derivative term was low-pass filtered to
handle measurement noise.

3.5.1. Referenceweighting
In this work, rejection of disturbances and suppression of oscil-

lations in response is prioritized over tight reference tracking.
Therefore, zero reference weight is chosen for the proportional and
derivative terms of the PID control law, which forces the reference
to enter the control signal only through the integral term of the
PID control law; see the block diagram of the controller shown in
Fig. 6(b).

3.5.2. Referencepre-filtering
The reference is normally changed in steps. To avoid oscilla-

tions and over-dosing during the induction phase of anesthesia,
the reference was processed using the following low-pass filter:

Fr (s) =
1

sTr + 1
. (19)

This delivers a smoother and hence more feasible reference
trajectory than its step-wise counterpart. The time constant Tr is
chosen to make the closed-loop set point response behave like a
second order system with the damping ratio of = 0.7 and the time
constant of ≈ 5 min, as described in [30].

3.5.3. Saturation and integrator anti-windup
The control signal has a natural lower bound umin =0 (since drug

cannot be extracted once infused). An upper bound umax =3.33 mg/s
is imposed, which is based on the pump flow capacity of 1200 ml/h
and the use of 10 mg/ml propofol. To prevent windup of the inte-
grator in the PID controller, a tracking anti-windup scheme is
implemented, as shown in Fig. 6(b). The tracking time constant
Tt is chosen as the geometric mean of the integral (TI =KP/K I) and
derivative (TD =KD/KP) time constants of the PID controller as rec-
ommended in [29]:

Tt = TITD = KD
KI

. (20)

3.5.4. Derivative filter
To suppress high-frequency noise, the differentiator KD is low-

pass filtered through

1
1 + (KD/K PN)s

, (21)

which yields the filtered derivative

sKPKDN
sKP + KDN

, (22)

where N =5 was chosen heuristically to yield an adequate trade-
off between noise suppression and phase lead. The reference was
not included in order to facilitate a smooth response to rapid and
abrupt reference changes.

3.5.5. Bumpless parameter changes
Changing the gains of the PID controller at the end of the induc-

tion phase may result in discontinuity in the control signal due
to the derivative in calculating the control law. To illustrate this
problem, let xI and xD be the states associated with integrator and
derivative filter in the PID controller shown in Fig. 6(b). The control
signal is given by

u = satumax
umin

− v̂KP + xI − v̂KPN − xD
KPN
KD

. (23)



It is clear that an undesired discontinuous changes in u can occur
when parameters are changed from {KP, KI , KD} to {KP, KI , KD}. This
is prevented by simultaneously updating the states as follows:

xD = v̂(KP − KP)
KD
KP

− xD
KP
KD

KD
KP

, (24)

xI = xI + v̂(KP − KP). (25)

3.5.6. Discretization
The controller is discretized using the forward Euler approxi-

mation s≈ z− 1, which is acceptable considering that the sample
period (1 s) is small compared to the dominant time scale of the
system, considering that the mean PD time constant of the mod-
els presented is approximately 28 s. Using ZOH discretization or
conducting tuning optimization in the discrete time domain would
be possible alternatives. However, these options were not pursued
in this paper since they lack the intuitive insights provided by the
continuous time PID control architecture that are preserved in the
proposed discretization.

4. Parameter identification

4.1. Preliminaries

Our proposed individualized control scheme uses the propofol
infusion and WAV CNS profiles during the induction phase of anes-
thesia to individualize the patient model (PD model in particular;
see Fig. 4). A preliminary simulation-based analysis revealed that
the system is not sufficiently excited to identify all parameters in
(3), (9) and (10) simultaneously – the input is essentially a band-
pass filtered step signal. In order to make system identification
tractable, the FOTDsystem (10) can be parameterized using

K = 1
EC50

, T = 1
Kd

. (26)

The objective of the system identification is then to identify {K,
T, L, } from (6), (9) and (26). The signals Cp and E are needed to
identify the PD model (9) and (10). Because E is not directly avail-
able, its estimate Em is used. It is obtained by applying F1 in (13)
to y (Fig. 6(a)). Likewise, an estimate Cpm of Cp , obtained by driving
the PKmodel (4) with u, is used.

Since v in (9) ranges from 0 to ≈ 0.5 during the induction phase of
anesthesia, linearizing (9) in the neighborhood of a nominal oper-
ating point is not an attractive approach to PDmodel identification.
Moreover, it is hard to discriminate the effects of the nonlinearity
parameter and the time delay L in the induction phase data. To
illustrate this point, a closed-loop induction of anesthesia was con-
ducted on an average patient assuming perfect knowledge of the
patient model. 2 Subsequently, patient models with ranging from
0.2 to 4 and delay L ranging from 0 s to 70 s were driven by u ind ,
producing a drug infusion profile during induction of anesthesia.
The bounds on and L were chosen based on the parameter val-
ues reported in [15]. For each case, the resulting response y ind was
obtained and the error ||y ind − y∗ind ||

2 , where y∗ind is the true model
response to u ind , was computed. Fig. 7 shows the existence of a
flat valley in − L space that minimizes the error, which implies
that the set of parameters { , L} can drift along this valley. There-
fore, this paper proposes a two-stage approach to identify the PD
model based on the dose–response relationship during the induc-
tion phase of anesthesia. Such an approach allows for a conscious

2 The patient model was assembled from population averages for all parame-
ters, including * =2.1 and L*=14.8 s, from which the input (u ind ) and output (y ind )
sequences were collected.

Fig.7. Normalized L2 -norm of induction phase output error as function of Td and .

choice of point in the cost valley, as opposed to a simultaneous
1-stage identification procedure.

4.2. Stage1: identification of

Inspecting the simulated pairs of u and E reveals that the
first-order dynamics is fast compared with the time scale of the
induction of anesthesia. Thus, it is reasonable to approximate (10)
by a delayed gain K·e− Ls. Based on this approximation, an initial
estimate L̂ of L can be obtained by identifying the time instant
after which Em and u remain above the thresholds Em − and u ,
respectively. The last part of the induction phase of anesthesia is
close to stationary. Consequently, an initial estimate K̂of K can be
obtained by averaging the ratio of Em and u over the last 3 min
within the induction phase of anesthesia. Subsequently, the initial
estimate ˆ of can be obtained by a bisection search to minimize
(the discretized equivalent of)

J(Â̂) =
t

0
(f − 1(Em ; ˆ)(t) − KCpm (t − L))

2
dt. (27)

Fixing ˆ yields the estimate vm of v:

vm = f (Em ; ˆ). (28)

Finally, a bisection search is used to find the estimate T̂ of T,
which minimizes (the discretized equivalent of)

t ind

0
vm (t) − L− 1

K̂
sT̂ + 1

e− sL̂Cpm

2

dt. (29)

4.3. Stage2: identification of LTI parameters

A gradient-based parameter identification method [31] can be
used to obtain refined estimates of the PDmodel parameters based
on the patient’s response during the induction phase of anesthesia.
The parameter estimates are identified to minimize:

t ind

0
(vm − v̂)2dt, (30)

where vm is parameterized in Â̂ = {K, T, L}, while ˆ is fixed to
the value obtained by the initial parameter identification scheme.
Computing the gradient ∇ J(Â̂) and an approximation of the Hes-
sian ∇ 2J(Â̂) can be done by simulating an augmented system,
where the augmented states are partial derivatives of the objective



function (30) with respect to the PDmodel parameters to be iden-
tified. Details of the method are discussed in [31].

5. Simulation experiments

In order to validate the proposed approach to DOH control, a
hypothetical surgical procedure was simulated for each patient in
the test population, as described below.

5.1. Test population

The test population consisted of 44 PKPDmodels. Model param-
eters were obtained by applying a system identification procedure
to the clinical data collected from real patients [15]. In the course
of system identification, it was assumed that individual PKmodels
could be accurately characterized using the covariate formulae of
Schüttler [21]. This essentially lumps all the parametric uncertainty
into the PDmodel.

5.2. Experimental layout

5.2.1. Induction phase
Prior to the simulated surgical procedure, a population-based

induction phase controller was synthesized according to the proce-
dure described in Section 3 based on the control design model (16).
The PK model parameters were computed from patient age and
weight using the covariate formulae by Schüttler, while population
averages were used for Kd, EC50 and Td .

5.2.2. PD identification and controller re-design
The PD parameters were estimated as described in Section 4.

They were then used to synthesize an individualized controller at
the end of the induction phase. The controller for maintenance and
emergence phases was synthesized as described in Section 3.

5.3. PKuncertainty

In order to introduce realistic amount of PK uncertainty in the
simulated procedure, perturbations were introduced to the param-
eters in the patient model. This was systematically done using
normally distributed random numbers with standard deviations
chosen as those of the prediction residuals reported in Schüttler
and Ihmsen [21]. By drawing from these distributions, a group of 20
patient models was created for each of the 44 nominal PKPDmod-
els. The average and standard deviation of the performance
measures in Section 6 below were computed within each group,
using a controller based on perfect model knowledge (PM), the
induction phase controller (DC) and the individualized controller
(IC).

6. Performance evaluation

This section elaborates performance measures used for the eval-
uation of proposed approach to DOH control. Varvel et al. [32]
proposed measures useful for evaluating the performance of TCI
systems, which were later adopted by other closed-loop studies
[33,34]. These measures are based on the median value of the error
(which is robust against outliers) and thus are particularly well
suited for problems in which a lot of outliers are expected. In closed-
loop control, the signal fed to the controller is normally filtered a
priori to remove artifacts and noise. Therefore, this paper proposes
to compute the error measures directly from the control error r − y
rather than imposing the robustness to the measures themselves
via taking median values. In fact, the measures used in this paper
are well established within the control engineering community.

Prior to applying these measures to the responses obtained from
simulation experiments, the profiles of propofol infusion and DOH
response were partitioned into induction, maintenance and emer-
gence phases of anesthesia, which were then evaluated separately
as described below.

6.1. Induction phase

6.1.1. 90%rise time (RT) [min]
The rise time is defined as the time from the start of the pro-

cedure until the DOH first reaches within 10%of the reference (i.e.
0.6).

6.1.2. Overshoot (OS) [%]
Shortening the rise time by increasing the infusion rate may

lead to an over-dose, resulting in an overshoot in DOH response.
The overshoot is the percent difference between the lowest DOH
and the DOH reference.

6.2. Maintenance phase

6.2.1. Integral absolute error (IAE) [WAV]
The IAE is defined as:

IAE = 1
T

T

0
|e(t)|dt, (31)

which can be interpreted as the average absolute error.

6.2.2. Integral error (IE) [WAV]
The IE is similar to the IAE, but lacking the modulus:

IE = 1
T

T

0
e(t)dt, (32)

which can be regarded as a measure of average bias.

6.2.3. Standard error (SE) [WAV]
The SEis the standard deviation of the error profile. It captures

variability not seen in the IAE or IE. It may be desirable to have a
somewhat larger IAE but smaller SE,e.g. imperfect tracking with
small oscillations (which is consistent with the control objective
states in Section 3).

7. Results and discussion

The novelty of the proposed approach to DOH control lies in
adapting the controller gains to each individual patient at the end
of the induction phase of anesthesia, based on a model identified
from the patient’s dose–response relationship during induction of
anesthesia. It provides individualization of the controller gains to
better titrate propofol to the need of an individual patient, while
avoiding identifiability challenges caused by immeasurable surgi-
cal stimulation that could compromise a continuous adaptation
approach.

Table 1 summarizes the performance measures computed for
the surgical procedures simulated with the disturbance profile
shown in Fig. 5. The corresponding DOH and propofol infusion pro-
files for the individualized control are presented in Fig. 8, where
each line corresponds to the response of individual patient, with
the PK parameter disturbances drawn as described in Section 5.3.
Overall, the results were consistent with what was expected – PM
showed the best performance, followed by IC and then DC. What
is more promising is that the difference in performance between
PM and IC was marginal. In terms of mean values, RT and OSwere
smaller for PM than DC (with significance p <0.05, using the Stu-
dent’s unpaired t-test), which suggests that incorporating accurate



Table 1

Rise tome (RT), overshoot (OS), Integral absolute error (IAE), integral error (IE) and
standard error (SE) means () and standard deviations () for the perfect model
knowledge (PM), demographics-based (DC) and individualized (IC) control.

RT US IAE IE SE

PM 7.02 1.42 1.08 0.15 2.63
0.36 0.88 0.42 0.14 0.56

DC 7.11 1.62 1.57 0.16 3.44
0.36 0.96 0.51 0.15 0.61

IC 7.11 1.62 1.17 0.18 2.76
0.36 0.96 0.45 0.15 0.59

knowledge of the PKPDmodel into the control scheme can indeed
improve the quality of closed-loop drug delivery. For IAE, IE and SE,
it was found that PM < IC<DC (p <0.05), with the following excep-
tion: IEwas larger for ICthan DC(with significance; p < 0.05). Noting
that (1) disturbance rejection and elimination of oscillations were
given higher priority than fast reference tracking, and (2) a large
reduction in IAE was achieved at the cost of a slight deterioration
in IE, this result is deemed acceptable. The mean IAE decrease from
DC to IC of 25%provides a representative measure of performance
improvement that can be achieved by individualized control.

It is noted that the proposed individualization approach with the
controller gain adaptation may need to be modified and optimized
for the given surgical procedure so that the challenges associated
with particular surgical procedure can be readily accommodated.
For instance, larger DOH overshoots can be tolerated in surgeries
where mechanical ventilation is employed, asopposed to ones dur-
ing which the patient breathes spontaneously. However, this does
not hold for fragile or elderly patients. The problem of procedure-
or patient category specific gain tuning design was not explored
in this paper because its main purpose was to demonstrate the
superiority of the individualized control as it is compared with
population-based control.

8. Limitationsand futurework

Despite promising preliminary findings, this study has anumber
of limitations as listed below.

Firstly, it was assumed that a patient’s PK can be perfectly
described by the Schüttler’s PK model, which in reality is not
achieved. The inaccuracy of the PKmodel can lead to limited fidelity
of the associated PD model [35]. For example, a PKmodel that has
faster dynamics than the response of a real patient may be compen-
sated by identifying aPDmodel that has slow dynamics. However, a
PKmodel with slower dynamics than the response of a real patient
may not be compensated with PD model identification due to the
causality requirement. In this regard, the physiologic implications
of the PD model parameters obtained from the proposed system

Fig.8. Measured DOH and infusion profiles of the test population.

identification procedure may have reduced accuracy since they are
partially responsible for minimizing the discrepancy between the
PK of a simulated patient and the corresponding Schüttler’s PK
model. In any case, the results from this paper suggest that the PD
model thus identified is adequate for the design of an individualized
controller.

Secondly, the impact of measurement noise and/or artifact due
to surgical stimulation and patient movement was not fully investi-
gated. In the real clinical environment, the controller must operate
in the presence of poor signal quality. It is, therefore, necessary to
thoroughly understand how these confounders can affect the pro-
posed approach. In particular, the effect of measurement noise and
possible signal loss during the induction phase of anesthesia needs
to be rigorously quantified. Although surgery takes place during
the maintenance phase, stimulation artifacts during induction of
anesthesia are not uncommon. Such artifacts could strongly bias
identification and thus need to be detected.

Thirdly, the findings presented in this paper must be further
validated by experimental investigations. This paper is intended
to be a preliminary feasibility study. As such, focus was given to
investigating the potential of the proposed approach to enhance
the performance of DOH control based on realistic simulation
scenarios. Our results clearly suggest promise, but the extent of
performance improvement and its characteristics may vary with
factors such as (1) mismatch between population-based patient
models (e.g. Schüttler’s PKmodel) and the response characteristics
of real patients and (2) the nature of surgical stimulation during the
procedure. Therefore, further validation of the proposed approach
must be based on real patient responses under a range of surgical
procedures. Particularly, the feasibility of patient model parame-
ter identification from clinical induction phase data needs to be
validated.

9. Conclusion

A robust individualized approach was proposed for closed-loop
depth of hypnosis control with propofol. This novel approach can
adapt the controller to individual patients to achieve desired con-
trol performance even in the presence of large inter-individual
variability in hypnotic response to propofol. A comprehensive
simulation-based study was conducted to assess the performance
of the proposed approach with respect to the existing population-
based control. The individualized approach outperformed its
population-based counterpart with improvement in a variety of
performance measures with statistical significance.
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