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Series Classification
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Abstract—Automatic analysis of biomedical time series such
as electroencephalogram (EEG) and electrocardiographic (ECG)
signals has attracted great interest in the community of biomed-
ical engineering due to its important applications in medicine.
In this work, a simple yet effective bag-of-words representation
that is able to capture both local and global structure similarity
information is proposed for biomedical time series representation.
In particular, similar to the bag-of-words model used in text
document domain, the proposed method treats a time series
as a text document and extracts local segments from the time
series as words. The biomedical time series is then represented
as a histogram of codewords, each entry of which is the
count of a codeword appeared in the time series. Although the
temporal order of the local segments is ignored, the bag-of-words
representation is able to capture high-level structural information
because both local and global structural information are well
utilized. The performance of the bag-of-words model is validated
on three datasets extracted from real EEG and ECG signals. The
experimental results demonstrate that the proposed method is not
only insensitive to parameters of the bag-of-words model such as
local segment length and codebook size, but also robust to noise.

Index Terms—bag of words, codebook construction, clustering,
time series classification.

I. INTRODUCTION

W ITH the development of modern technology and reduc-
tion of hardware cost, a large amount of biomedical

signals such as electroencephalogram (EEG) and electrocar-
diographic (ECG) are collected every day. These biomedi-
cal signals are very useful for monitoring human’s physical
condition. It is however a challenging task to efficiently and
effectively analyze these signals. Traditionally, these signals
are manually analyzed by professional experts. However, there
are several disadvantages of the manual analysis. Firstly,
comparing to the large amount of biomedical signals, the
number of professional experts, especially the ones with
extensive experience is very limited. Secondly, inspection and
monitoring of long-term biomedical signals such as EEG and
ECG signals are always very time consuming. It is difficult to
keep a high level of concentration during a lengthy inspection,
giving rise to an increase in the false hit rate by the operator.
Finally, it is frequently needed to find inter-reader variability in
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the manual inspection and monitoring by experts. Therefore,
an automated system that can assist professional experts to
analyze long-term biomedical signals is very valuable in real-
word applications.

Automatic analysis of biomedical time series such as EEG
and ECG signals based on machine learning techniques has
been applied to a variety of real-word applications. For in-
stance, EEG signals are automatically analyzed for epileptic
seizure detection [1] [2] [3], brain computer interaction [4] [5]
[6], human mental fatigue detection [7] and emotion recog-
nition [8]. ECG signals that provide useful information about
heart rhythm are used to study heart arrhythmias [9] [10]. It is
essential to extract meaningful features to represent individual
time series in the aforementioned applications. Some methods
[11] [12] directly describe time series in time domain while
some others extract features from transformed domain [2] [13]
[10]. For instance, Zadeh et al. [12] extracted morphological
and timing-interval features from ECG segments to classify
heartbeats. Guo et al. [2] extracted line length features based
on Discrete Wavelet Transform (DWT) to detect epileptic EEG
segments.

Most of the previous representations extract local temporal
or frequency information to characterize time series, which are
very effective for short time series or time series with periodic
waveforms. However, they may have limited ability to capture
structural similarity of long time series which have repetitive
but un-periodic waveforms, for instance, Electrocardiography
(ECG) and Electroencephalography (EEG) signals. In order
to capture the high-level structural information of time series,
Lin [14] proposed a bag-of-patterns (BoP) representation by
converting a time series to a words string using the Symbolic
Aggregate approXimation (SAX). The temporal order of local
segments, i.e., local patterns, in a time series is ignored and
all the local segments in the time series are histogrammed to
construct a bag-of-patterns representation. The bag-of-patterns
representation is effective to capture the structural similarity
of time series. However, one drawback of the bag-of-patterns
representation is that its dimension may be very high, which
limits its application for large datasets. For instance, when
the size of the alphabet τ and the number of symbols w are
4 and 8, respectively, the dimension of the bag-of-patterns
representation could reach τw = 65536.

In this work, motivated by the success of the bag-of-
words model in text document analysis [15] [16] and image
analysis [17] [18], we propose a simple yet effective bag-of-
words representation whose dimension is much lower than the
bag-of-patterns representation to characterize biomedical time
series. The bag-of-words representation is able to capture high-
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Fig. 1. The flowchart of the proposed bag-of-words approach for analysis of biomedical time series.

level structural information of time series due to the utilization
of both local and global information. Moreover, it can be
used to represent streaming data and time series with different
lengths because it is incrementally constructed.

The bag-of-words model was originally developed for doc-
ument representation. The basic idea is to define a codebook
that contains a set of codewords and then represent a document
as a histogram of the codewords, each entry of which is the
count of a codeword occurred in the document. Although the
order information of words is ignored, the bag-of-words model
is still very effective to capture document information because
the frequency information of codewords in documents are well
explored. Recently, the bag-of-words model is extended to
analyze images and videos in computer vision [17] [18]. Local
patches extracted from images or videos are treated as words
and the codebook is constructed by clustering all the local
patches in the training data. Similar to the extension of the bag-
of-words representation in computer vision, we here extend the
bag-of-words representation to characterize biomedical time
series by regarding local segments extracted from time series
as words and treat the time series as documents.

A. Overview of the Proposed Approach

In the bag-of-words representation, a time series is treated
as a text document and local segments extracted from the
time series as words. The general flowchart of the proposed
method is demonstrated in Fig. 1. Firstly, we continuously
slide a window with a pre-defined length along the time series
to extract a group of local segments. Then, we extract a
feature vector from each of the local segments using DWT.
Next, similar to the bag-of-visual-words model in images and
videos analysis [17] [18], all local segments from the training
time series are clustered by k-means clustering to create a
codebook, i.e, the cluster centers are treated as codewords.
Then, a local segment is assigned the codeword that has the
minimum distance to the local segment, and the time series
is represented as a histogram of the codewords. Finally, the
bag-of-words representation is used as input for classification.

B. Contribution and Organization

The main contribution of the paper is twofold: (i) a simple
yet effective bag-of-words representation is proposed for anal-
ysis of biomedical time series; (ii) a series of experiments was
conducted to investigate the effectiveness and robustness of the
bag-of-words representation for classification of biomedical
time series.

The structure of the paper is organized as follows. In
Section II, the proposed method including the bag-of-words
representation, distance measures and classification method
is described. Section III describes the biomedical time series
datasets used in the experiments. Experimental results are re-
ported and analyzed in Section IV. Discussion and conclusion
are given in Section V and Section VI, respectively.

II. PROPOSED METHOD

In this section, we describe the bag-of-words representation
for biomedical time series classification. The bag-of-words
representation ignores the temporal order of local segments
within a time series and represents the time series as a
histogram of codewords i.e., local segments. Several distance
measures are then introduced for the histograms comparison.

A. Bag-of-words Representation

The procedure of generating the bag-of-words representa-
tion is illustrated in Fig. 2. We continuously slide a window
with pre-defined length along a time series and extract a
group of local segments from the time series. A feature
vector is then extracted from each of the local segments using
the DWT to characterize the local segment. All the local
segments from the training data are clustered to construct a
codebook that contains a set of codewords, i.e., the cluster
centers. Then, a local segment is assigned the codeword that
has minimum distance with the local segment. The bag-of-
words representation ignores the order of local segments in
a time series and represent the time series as a histogram of
codewords.
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Fig. 2. The procedure of generating the bag-of-words representation. The codebook is constructed by clustering all local segments from training data. The
“circle”, “triangular” “square” and “hexagon” stand for the basis elements, i.e., codewords, in the codebook. Each local segment is assigned a codeword and
a histogram representation is extracted for each time series by histogram the codewords in the time series. The figure is best viewed in color.

1) Local Segments Extraction: A group of local segments
are extracted from each time series by continuously sliding
a window with pre-defined length along the time series. As
local segments from different time series may be at different
scales, all the local segments are normalized to zero mean and
standard deviation. We transform a local segments into wavelet
domain and use approximations wavelet coefficients of DWT
as a feature vector to represent the local segment.

The wavelet transform that analyzes a signal at different
frequency bands provides both accurate frequency information
at low frequencies and time information at high frequencies,
which are very important for biomedical signal analysis. The
choice of wavelet function and the number of decomposition
levels is of importance for the multiresolution decomposition.
In this work, a single level DWT with order 3 Daubechies
wavelet function (db3) is employed to decompose a local
segment into approximations coefficients and detailed coeffi-
cients. Similar to the work in [13], we used the approximation
coefficients as a feature vector to represent the local segment.
We do not directly use the raw value of local segments
as feature vectors due to the fact that features using the
approximations coefficients not only are more robust to noise
than features using raw segments but also have nearly half
dimension of the local segments.

2) Codebook Formulation: In the text document analysis,
a codebook (vocabulary) is a set of pre-defined words, which
are also called codewords. The bag-of-words method counts
the number of each codeword that exists in a document and
provides a document-level representation using a histogram
of codewords. In image and video analysis, such codebook is

generally created by performing clustering on a group of local
patches from training data, i.e., the codewords are defined
as the clustering centers. The codeword that is nearest to a
local patch is then assigned to the local patch. The spatial and
temporal order information of local patches (codewords) is
ignored and an image or video is represented as a histogram
of codewords in the image or video. The classical k-means
clustering algorithm [17] [18] is commonly used to construct
the codebook, although some other unsupervised and super-
vised methods are also developed such as mean-sift [19] and
supervised Gaussian mixture models [20].

Similar to the codebook construction in image and video
analysis, we cluster all the local segments from training time
series using k-means clustering to construct the codebook.
The clustering centers estimated by the k-means clustering are
regarded as basis elements of the codebook, i.e., codewords.
Suppose a group of local segments X = [x1,x2, · · · ,xn],
where xi ∈ Rd, are extracted from taring time series, the
codebook construction by k-means clustering is formulized as
the optimization problem:

min
B∈Rd×K ,V∈RK×n

n∑
i=1

‖xi −Bvi‖2,

s.t. card(vi) = 1, |vi| = 1,∀i,vi ≥ 0,

(1)

where B ∈ Rd×K is the clustering centers and the vector vi is
the clustering index of the local segment xi, which is a unit-
basis vector that has only one component equal to one and
all the other components are zero. The codebook B ∈ Rd×K
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Fig. 3. The bag-of-words representation of an example time series. See the corresponding text for more details.

has K codewords, each of which is a d-length vector, the
same length as the local segments. It is worth noting that the
codebook only needs to be learned once from training data
and it is universal for both training and test data.

The codebook size K is of importance to the bag-of-words
representation. A compact codebook with too few entries has
a limited discriminative ability, while a large codebook is
likely to introduce noise due to the sparsity of the codewords
histogram. Therefore, the size of the codebook should well
balance the trade-off between discrimination and noise.

3) Codewords Assignment: Once the codebook is con-
structed, a local segment is assigned the codeword that has
minimum distance with the local segment. Specifically, sup-
pose that a codebook with K entries, B = {b1,b2, ...,bK}, is
learned from the training data. A local segment xi is assigned
the c th codeword that: c∗ = argminj d(bj ,xi), where d(·, ·)
is the Euclidean distance function.

After each local segment is assigned a codeword, the
temporal order of local segments is ignored and a time
series is represented as a histogram of codewords in the time
series, each entry of which specifies the count of a codeword
occurred in the time series. Fig. 3 illustrates the bag-of-words
representation of an example EEG time series. The figure
in the first row is the example EEG time series. The three
figures in the second to fourth rows (left) are three local
segments with length of 160 extracted from the time series,
and the three figures in the second to fourth rows (right) are
the corresponding codewords assigned to the local segments
from codebook, which consists of 1000 codewords. The three
local segments are assigned the 432th, 118th, and 628th
codewords, respectively. The figure in the last row is the bag-
of-words representation for the time series, each entry of which
gives the count of a codeword occurred in the time series.

B. Classifier

Some discriminative classifiers such as Artificial Neural
Networks (ANN) [2], Support Vector Machine (SVM) [21],
and Probabilistic Neural Networks (PNN) [13] are widely
used for biomedical signal classification. Since our goal in
this paper is to investigate the effectiveness of the bag-of-
words representation, here we use the simplest classifier, i.e.,
the 1-Nearest Neighbor (1-NN) classifier. Let t be a test
time series and Ri represents the time series from the ith
category. The test data is determined as the class C of the
training sample that has minimal distance with the test data,
i.e., C∗ = argminiD(t,Ri), where D(·, ·) is the similarity
measure that is defined in the following.

C. Similarity Measure

Many similarity measures have been proposed for his-
tograms comparison. In the following, we describe four com-
monly used similarity measures for distance measurement of
two bag-of-words representations.

1) Euclidean Distance: The Euclidean distance between
histogram h and histogram k is defined as:

DL2
(h,k) =

(∑
i

|h(i)− k(i)|2
)1/2

, (2)

where DL2(h,k) is the Euclidean distance, which is com-
monly used in pattern recognition.

2) Chi-Squared Distance: The Euclidean distance subtracts
the two histograms bin-by-bin and contributes each bin pairs
equally to the distance. The problem is that some words such
as “the”, “but” and “however” occur more frequently in doc-
uments; therefore, they contribute more to the distance in the
Euclidean Distance measure. But they may actually have less
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discriminative information than rarely happened codewords.
This leads to the Chi-Squared distance (χ2 distance):

Dχ2(h,k) =
∑
i

|h(i)− k(i)|2

h(i) + k(i) + ε
, (3)

where ε is a small value to avoid dividing by zero. The χ2

distance introduces a normalization to emphasis the rarely hap-
pened codewords because common words are always shared
between documents from different categories.

3) Jensen-Shannon Distance: Each entry of the bag-of-
words represents can be interpreted as the frequency of a
codeword occurred in a time series. Therefore, the histogram
stands for a probabilistic distribution over discrete random
variables. A simple measure to compare two distribution is
the Kullback-Leibler divergence:

DKL(h||k) =
∑
i

h(i) (log2h(i)− log2k(i)) . (4)

If and only if h and k are the same, the KL divergence
becomes zero. In order to keep the distance symmetric, the
Jensen-Shannon distance [22] is introduced as a symmetric
extension:

DJS =
1

2
(DKL(h||k) +DKL(k||h)) . (5)

4) Histogram Intersection based Distance: The histogram
intersection which counts the total overlap between two his-
tograms is able to address the problem of partial matches when
the two histograms have different sum over all the bins. The
distance based on the histogram intersection is defined as [23]:

DHI(h||k) = 1−
∑
i

max (h(i), k(i)) , (6)

where h and k are normalized histogram vectors. Two his-
tograms that have larger overlap will obtain a smaller distance.

D. Practical Implementation
A large number of local segments may be extracted from

training data, especially for large datasets. Clustering a large
number of local segments to construct the codebook is compu-
tationally expensive. In practice, instead of using all the local
segments extracted from the training data, we performing the
k-means clustering on a subset of local segments randomly
selected from the training data to construct the codebook.
This strategy is also employed in image and video analysis to
reduce the computation of codebook construction [17], [18].

We continuously slide a window along a time series to
extract local segments. However, when the time series contains
too many data points, a large number of local segments will
be extracted from the time series, which requires expensive
computation. For instance, for a time series consisting of
2000 data points, about 1900 local segments will be extracted
using a window with 100 length. In practice, we can slide
the window with a step of n data points (n = 2, 4, 6 or 8)
along the time series to reduce the number of local segments
extracted from the time series.

The MATLAB code of the bag-of-words representation
in this work was made publicly available at
http://www.mathworks.com/matlabcentral/fileexchange/38050.

TABLE I
THE THREE DATASETS USED IN THE EXPERIMENTS.

Datasets Classes Num of Sequences Length of sequences

EEG 5 500 4096
ECG-40 40 2000 2048
ECG-15 15 1500 2048∼4096

III. EXPERIMENTAL DATASETS

In this study, three datasets constructed from EEG and ECG
signals are used to evaluate the performance of the bag-of-
words representation. The first dataset is collected from EEG
signals and it is widely used for automatic epileptic seizure
detection. The other two datasets are extracted from long
ECG signals (more than 1000000 points) that collected from
different subjects with random start points. Each of the long
ECG signals corresponds to a class, i.e., subjects’ identity. In
order to demonstrate that the bag-of-words representation can
be for time series with different lengths, the third dataset is
extracted with different lengths between 2048∼4096, while
the first two datasets have the same length of 4096 and 2048,
respectively.

It is worth noting that although the extracted ECG time
series in the same class are obtained from the same long
ECG signal, there exist substantial inter-class variations. The
aim of the ECG signal classification in our experiment is
to attribute each instance, i.e., extracted ECG time series,
to their subjects’ identity, which can be used for human
identification from ECG signals in real application [24], [25].
This task may be not difficult by comparing features extracted
based on heartbeat waveforms or fiducial points, for instance,
cross-correlation among QRS complexes. However, the bag-
of-words representation does not need to detect or localize
any heartbeat waveforms or fiducial points, which is always
required in previous works [24], [25].

A. EEG Dataset

The EEG dataset described in [26] was used in our ex-
periments. The complete EEG dataset consists of five classes
(i.e., A, B, C, D, and E), each of which contains 100 single-
channel EEG sequences of the same length 4096. All the
signals were recorded with the same 128-channel amplifier
system and visual inspected for artifacts. Set A and set B are
collected from surface EEG recordings of five healthy subjects
with eye open and eye closed, respectively. The other three sets
(C, D and E) are taken from intracranial EEG recording of five
patients suffered from epileptic. Set C and set D are taken
from the epileptogenic zone and the hippocampal formation
of the opposite hemisphere of the brain, respectively. Set C
and set D were recorded in seizure-free intervals, whereas set
E only contains seizure activity. Fig. 4 shows example time
series from each of the five classes.

B. ECG-40 Dataset

The ECG-40 dataset was obtained from the Fantasia ECG
database [27]. The database consists of twenty youth and

http://www.mathworks.com/matlabcentral/fileexchange/38050
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Fig. 4. Example EEG sequences from each of the five classes.

twenty old healthy subjects. Forty long ECG signals are
collected from each of the forty subjects monitored for about
two hours with a sampling rate of 250 Hz. All the signals
contain more than 1000000 data points, which are very long.
We extracted fifty time series of length 2048 from each of the
forty long signals with random start points. Totally, the ECG-
40 dataset contains 2000 time series of length 2048, which are
evenly distributed in the forty classes.

C. ECG-15 Dataset

The ECG-15 dataset consists of 1500 time series extracted
from fifteen long ECG signals in the BIDMC Congestive Heart
Failure Database [27]. The fifteen long ECG signals were
recorded from fifteen patients suffered from severe congestive
heart failure. One hundred time series of length between 2048
and 4096 are extracted from each of the fifteen long ECG
signals with random start points. Totally, the ECG-15 dataset
consists of fifteen classes, each of which has 100 time series
of length between 2048 and 4096.

Table I summaries the three datasets used in the experi-
ments. It should be noted that the lengths of the 1500 time
series in the ECG-15 dataset are not the same, which vary
between 2048 and 4096.

IV. RESULTS

In this section, we report experimental results on the three
datasets. Firstly, we investigated the impact of parameters by
varying the length of local segments and the size of codebook
K based on different distance measures. Then, we compared
the proposed method with the Discrete Wavelet Transform
(DWT) [13] representation, the Discrete Fourier Transform
(DFT) [28] representation, the NN classifier based on Dynamic
Time Warping (DTW) [29] distance and the bag-of-patterns
representation (BoP) [14]. In addition, we compared the clas-
sification accuracies achieved by the proposed method with
those achieved by other state-of-the-art methods on the EEG
dataset. Finally, we investigated the robustness of the bag-of-
words representation to noise. In order to ensure an un-biased
evaluation, a dataset is randomly partitioned into 10 subsets.
Nine subsets are used for training while the remaining one

is retained for test. The classification process is then repeated
10 times with each of the 10 subsets used exactly once as test
data.

A. Length of Local Segments

We varied the length of local segments between 8 and 256 in
the experiments. The determination of such parameter ranges
relies on the fact that the biomedical time series such as
ECG and EEG signals are relatively flat. The classification
accuracies on the EEG, ECG-40 and ECG-15 datasets with a
codebook size of 1000 using the Chi-Squared distance is illus-
trated in Fig. 5(a), Fig. 5(b) and Fig. 5(c), respectively. From
the experimental results, it can be seen that the performance
is relatively stable with respect to the length of local segments
when it is between 64 and 192. The classification accuracies
decrease considerably with the length less than 16. This is
mainly due to the fact that a local segment with too short or too
long length can not capture local structure information within
time series. In the following experiments, we empirically set
the length of local segments as 128.

B. Codebook Size

To show the performance of the bag-of-words representation
with respect to the size of the codebook, we report the classi-
fication accuracies on the three datasets in Fig. 6, increasing
the size of the codebook from 10 to 3500. We can see that the
results become very stable when the size of the codebook is
larger than 500. The classification accuracies reduce quickly
if the size of the codebook is less than 100, which confirms
that a compact codebook with too few entries has a limited
discriminative ability. The optimal size of the codebook can
be roughly identified as 1000∼3500.

C. Distance Measurement

We compared the classification performance on the three
datasets using the four similarity measures described in Sec-
tion II-C. Fig. 7 demonstrates the classification accuracies
based on the four distance measures with the codebook size of
10, 100, 1000 and 2000. We can see that the results are slightly
different using various distance measures, indicating that the
distance measures have limited impact on the performance of
the bag-of-words representation. Overall, the Chi-Squared dis-
tance measure performs slightly better than the other measures
for all the four sizes of the codebook.

D. Comparison with Other Methods

We compared the performance of the proposed bag-of-
words representation with that of the DWT representation [13],
the DFT representation [28], and the NN classifier based on
the DTW distance [29]. In addition, we also compared the
proposed bag-of-words representation with the bag-of-patterns
representation [14], which is very similar to the proposed
approach.
• DWT that represents a signal in multiresolution is able to

capture both frequency and location information of time
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(a) (b) (c)

Fig. 5. Classification accuracies with respect to the length of segments on the EEG (a), ECG-40 (b) and ECG-15 (c) datasets, respectively.

(a) (b) (c)

Fig. 6. Classification accuracies with respect to the codebook size on the EEG (a), ECG-40 (b) and ECG-15 (c) datasets, respectively.

(a) (b) (c)

Fig. 7. Classification accuracies using different distance measures on the EEG (a), ECG-40 (b) and ECG-15 (c) datasets, respectively. The figure is best
viewed in color.

TABLE II
COMPARISON OF RESULTS ON THE THREE DATASETS USING DIFFERENT

METHODS.

methods EEG ECG-40 ECG-15

DWT 76.0 25.1 20.1
DFT 91.6 85.6 60.6
DTW 71.6 74.5 85.5
BoP [14] 87.8 99.4 99.8
Proposed method 93.8 99.5 100

series. Similar to the DWT based feature used in [13], we
used the Daubechies wavelet (db2) and decomposed the
time series into 4 levels. The detail wavelet coefficients of
the four levels and the approximation wavelet coefficients
of the fourth level are concatenated to form the final
representation.

• DFT is a widely used transformation technique to extract
frequency information from time series. We transformed
the original time series into the frequency domain and
extracted the DFT coefficients as features.

• DTW that uses dynamic programming technique to de-
termine the best alignment of two sequences is able to
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TABLE III
COMPARISON OF THE CLASSIFICATION ACCURACY (%) ON THE EPILEPTIC EEG DATASET.

Researchers Datasets Num of Class Methods Accuracy (%)

Kannathal et al. [1] A, E 2 Entropy+adaptive neuro-fuzzy inference system 95

Polat and Günes [30] A, E 2 FFT+decision tree 98.72

Yuan et al. [3] D, E 2 Nonlinear features+extreme learning machine 96.00

Ocak [31] (A, C, D), E 2 DWT+approximate entropy 96.65

Guo et al. [2] A, E 2 Line length feature based on DWT+artificial neural networks 99.6
(A, C, D), E 2 Line length feature based on DWT+artificial neural networks 97.75
(A, B, C, D), E 2 Line length feature based on DWT+artificial neural networks 97.77

Güler and Übeyli [21] A, B, C, D, E 5 Raw Data+support vector machine 75.6
Raw Data+probabilistic neural network 72.00
Raw Data+MLPNN 68.80
DWT and lyapunov exponents+support vector machine 99.28
DWT and lyapunov exponents+probabilistic neural network 98.05
DWT and lyapunov exponents+MLPNN 93.63

This work A, E 2 Bag-of-words+ 1-NN 99.5
(A, C, D), E 2 Bag-of-words+ 1-NN 99.0
(A, B, C, D), E 2 Bag-of-words+ 1-NN 99.2
A, B, C, D, E 5 Bag-of-words+ 1-NN 93.8

deal with temporal drift between time series. The distance
matrix of each pair of the test time series and the training
time series is calculated based on the unconstrained DTW.
This distance matrix is used as input of the NN classifier.

• The BoP representation that represents a time series as a
histogram of local patterns is very similar to the proposed
bag-of-words representation. The size of alphabet τ and
the number of symbols w are empirically set to 4 and 6,
respectively. We varied the length of local segments in
the bag-of-patterns representation from 16 to 320 with a
step of 16. The best accuracy is reported for comparison.

Since the time series in the ECG-15 datasets have different
lengths (2048∼4096), we resized all the time series to the
same length of 4096 using bilinear interpolation so that the
DWT and DFT based features have the same dimension. When
calculating the DTW distance, we reduced all the time series
in the three datasets to the length of 820 with a downsampling
rate of about 5 because DTW is computationally expensive.

Table II summarizes the best results achieved by the pro-
posed approach and the other methods. It can be seen that
the proposed approach achieves the highest accuracies (93.8%
on the EEG dataset, 99.5% on the ECG-40 dataset, and
100% on the ECG-15 dataset, respectively), which illustrate
the effectiveness of the bag-of-words representation. The BoP
representation obtains comparable accuracies on the ECG-40
and the ECG-15 datasets with that by the bag-of-words repre-
sentation. However, the proposed bag-of-words representation
performs significantly better than the BoP representation on
the EEG dataset. The DFT feature and DTW distance methods
outperform the DWT based method. This is probably because
that the DFT and DTW can better deal with temporal sift
between sequences than the DWT.

The EEG dataset used in our experiment is a popular dataset
for automatic epileptic seizure classification and localization.
Table III provides a comparison of the classification accuracies
between the proposed bag-of-words method and previous
state-of-the-art approaches in the literature. It should be no-
ticed that the comparison is not direct, since the aim of our
method is to classify the time series at sequence level, while
the other methods are to classify segments extracted from the
time series. Some works used only several subsets of the whole
EEG dataset to construct a 2-class dataset, while others used
the whole EEG dataset with 5 classes. For the 2-class clas-
sification, the bag-of-words method outperforms most of the
other methods. For the 5-class classification where the whole
EEG dataset is used, the classification accuracies of support
vector machine (SVM), probabilistic neural network (PNN)
and multilayer perception neural network (MLPNN) with
raw data are 75.60% 72.00% and 68.80% [21], respectively.
When features extracted from DWT and lyapunov exponents
are used, the corresponding accuracies increase to 99.28%,
98.05% and 93.63% [21], respectively. The result obtained
by the proposed BoW representation with the simplest NN
classifier is slightly lower than those achieved by SVM and
PNN with features based on DWT and lyapunov exponents.
However, it is slightly higher than the result obtained by
MLPNN (93.63%) with features based on DWT and lyapunov
exponents.

E. Robustness to Noise

This experiment is designed to investigate the robustness
of the bag-of-words representation to noise. All signals in
the EEG, ECG-40 and ECG-15 datasets were corrupted by
zero mean white Gaussian noise. The standard deviation of
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TABLE IV
CLASSIFICATION ACCURACIES (%) ON THE THREE DATASETS CORRUPTED

BY ZERO-MEAN WHITE GAUSSIAN NOISE.

SNR EEG ECG-40 ECG-15

10db 92.6 98.9 99.8
8db 91.8 98.4 99.7
6db 91.2 97.6 99.6
4db 90.4 95.5 99.2
2db 88.8 92.6 98.9
0db 85.2 89.9 98.6

the white Gaussian noise is varied so that the SNRs are
between 10dB and 0dB. The training data and the test data
are separated exactly the same as those in the previous
experiments. Table IV summaries the classification accuracies
on the three datasets contaminated by the white Gaussian
noise with different SNRs. It can be seen that the bag-of-
words approach is relatively robust to noise. The accuracies
decreased by less than 2 percents when the SNR is 10dB.
Even for considerable noise contamination with the SNR 0dB,
the accuracies reduced less than 10 percents for the EEG and
ECG-40 datasets, and only less than 2 percents for the ECG-15
dataset.

V. DISCUSSION

Although the bag-of-words representation ignores the tem-
poral order of local segments, it is able to effectively capture
high-level structural information due to the fact that the
frequency of the codewords (local segments) occurred in a
time series is well utilized. However, since the local segments
are extracted by sliding a window along time series, a time
series that is not reasonably long cannot provide enough
local segments to capture local structures in the time series.
Therefore, the bag-of-words representation may be ineffective
to represent short time series, which is mainly due to the
limitation that the bag-of-words representation cannot extract
enough meaningful and discriminative local segments from
short sequences.

The size of the codebook N is pre-defined and empirically
determined in the method. A compact codebook with small
size has a limited discriminative ability, while a codebook
with large size is likely to introduce noise. How to adaptively
set the optimal size of the codebook to make the codebook
compact and yet discriminative is still an open question. Some
criteria can be defined to merge entries of a codebook to
construct an adaptive codebook. For instance, the method
in [32] utilized Maximization of Mutual Information (MMI)
principal to estimate the optimal N . Two entries of a codebook
are merged by maximizing the mutual information in an
unsupervised way. Creating a codebook with adaptive size will
be investigated in our future work.

VI. CONCLUSION

In this paper, we proposed a bag-of-words representation for
biomedical time series analysis. The proposed method treats
a time series as a document and local segments extracted

from the time series as words. The time series is represented
as a histogram of codewords. Although the temporal order
information of the local segments is ignored, both local
structure and global structure information of the time series
are captured. Experimental results on three publicly available
datasets demonstrate that the bag-of-words representation is
effective for characterizing biomedical time series such as
EEG and ECG signals. Furthermore, the bag-of-words repre-
sentation is not only insensitive to the length of local segments
and the size of codebook, but also robust to noise. The distance
measures for comparison of histograms are also investigated
in the experiments, showing that the Chi-Squared distance
measure is more suitable for comparing histograms than the
other distance measures. We compared the performance of
the bag-of-words representation with several state-of-the-art
approaches in the literature. Experimental results show that
the bag-of-words representation with the simplest 1-Nearest
Neighbor (1-NN) classifier achieves comparable or higher
classification accuracies than those by the others.
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