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Relating the spectrum of cardiac signals to the
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Abstract

An increasing number of studies use the spectrum of cardiac signals for an-
alyzing the spatiotemporal dynamics of complex cardiac arrhythmias. How-
ever, the relationship between the spectrum of cardiac signals and the spa-
tiotemporal dynamics of the underlying cardiac sources remains to date un-
clear. In this paper, we derive a mathematical expression relating the spec-
trum of cardiac signals to the spatiotemporal dynamics of cardiac sources
and the measurement characteristics of the lead systems. Then, by using
analytical methods and computer simulations we analyze the spectrum of
cardiac signals measured by idealized lead systems during correlated and
uncorrelated spatiotemporal dynamics. Our results show that lead systems
can have distorting effects on the spectral envelope of cardiac signals, which
depend on the spatial resolution of the lead systems and on the degree of
spatiotemporal correlation of the underlying cardiac sources. In addition to
this, our results indicate that the spectral features that do not depend on the
spectral envelope, such as the dominant frequency, behave robustly against
different choices of lead systems.
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1. Introduction

Fibrillation is a complex cardiac arrhythmia whose spatiotemporal char-
acteristics remain poorly understood. Traditionally fibrillation has been de-
scribed as random and disorganized, since it induces highly irregular traces in
the electrocardiogram (ECG) signal. However, with the application of non-
linear dynamics theory to the investigation of cardiac arrhythmias, and the
development of optical and electrical mapping techniques, it has been sug-
gested that fibrillation can possess some degree of spatiotemporal regularity
[1, 2]. This view has led in a natural way to study fibrillation based on the
spectrum of cardiac signals such as the ECG and intracardiac electrograms
(EGM). Spectral features of cardiac signals have been proposed as experi-
mental indices for detecting ventricular fibrillation (VF) [3], for quantifying
the degree of spatiotemporal organization of atrial fibrillation (AF) [4] and
for predicting the success of defibrillation shocks [5, 6, 7]. Also, intracardiac
mapping techniques have been combined with dominant frequency (DF) anal-
ysis to study the spatiotemporal characteristics of fibrillation. This method,
known as DF mapping, has revealed spatiotemporal regularities during AF
in both animal models [8, 9, 10] and in patients [11, 12] and it is currently
regarded as a potential technique to guide AF ablation therapies [13].

Despite the increasing number of studies that use spectral techniques to
analyze fibrillation, the meaning of the spectrum of cardiac signals remains
to date elusive. Even though individual spectral features of cardiac signals
have been linked to spatiotemporal characteristics of cardiac rhythms [14,
15, 16], the relationship between the spectrum of cardiac signals and the
spatiotemporal characteristics of cardiac rhythms has not been thoroughly
investigated. In addition to this, the effects of lead systems on the spectrum
of cardiac signals are not well understood, and consequently it is not clear
how the spectra of cardiac signals measured by different lead systems relate
to one another. The elucidation of the relationship between the spectra
of cardiac signals measured by different lead systems is of technical and
clinical interest in the context of fibrillation, since it would contribute to the
development of novel, improved methods of DF cardiac mapping, such as
non-contact intracardiac electrical mapping [17, 18] and non-invasive surface
ECG mapping [19].

In this paper, we develop a mathematical formalism for investigating, in
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a systematic way, the spectral manifestation of different cardiac rhythms and
the spectral effects of the lead systems. By following a multivariate signal
analysis approach, we identify the mathematical relationship between the
spectrum of cardiac signals and the spatiotemporal dynamics of the under-
lying cardiac rhythms. Our formalism allows us to derive theoretical results
which are relevant for the analysis and interpretation of the spectrum of
cardiac signals, and for devising spectral methods for investigating the spa-
tiotemporal dynamics of cardiac rhythms.

The organization of this paper is as follows. In Section 2 we develop our
mathematical formalism and connect the spectrum of cardiac signals to the
spatiotemporal dynamics of the underlying cardiac rhythms. Physiologically
meaningful cases are studied analytically in Section 3, and in a computer sim-
ulation environment in Section 4. Finally, Section 5 conveys the conclusions
of our investigation and the discussion.

2. Mathematical formalism

In this section we present the mathematical formalism for investigating
the spectrum of cardiac signals. Firstly, we introduce the lead-field bioelec-
tric model of cardiac sources and signals. Then, based on multivariate signal
analysis, we define the autocorrelation and the spectrum of cardiac sources.
Finally, we identify the relationship between: the spectrum of cardiac sig-
nals, the spatiotemporal dynamics of cardiac sources and the measurement
characteristics of lead systems.

Throughout this paper the following notation is used: 〈·〉t denotes time-
average, F [·] is the Fourier Transform operator, (∗) denotes convolution and
δ(·) is the Dirac’s delta. We use the following vector definitions: 1 = [1, 1, 1]T

and 0 = [0, 0, 0]T .

2.1. Bioelectric model

Cardiac sources are the bioelectric processes generated by the heart dur-
ing contraction. There exist different, equivalent mathematical paradigms
to model the activity of cardiac sources, such as the monopole field and
the dipole field [20]. In this study, we model cardiac sources as a time-
varying dipole field, i.e. as a spatial distribution of time-varying dipoles
J(v, t) = [Jx(v, t), Jy(v, t), Jz(v, t)]

T on a volume V , where v denotes a point
located inside V and t denotes the time instant.
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The time-varying activity of cardiac sources can be measured by lead
systems, producing cardiac signals. Taking the dipole field as our reference
description for cardiac sources, we follow a lead-field approach to model car-
diac signals [20]. According to the lead-field theory, the cardiac signal c(t)
that is induced at a lead system by a dipole field J(v, t) can be expressed as

c(t) =

∫

V

LT (v)J(v, t)dv (1)

where the vector field L(v) = [Lx(v), Ly(v), Lz(v)]
T is the measurement sen-

sitivity distribution (MSD) and describes the ability of the lead system to
measure cardiac dipoles located at v ∈ V . In words, cardiac signals are a
weighted linear combination of the underlying cardiac sources.

2.2. Autocorrelation and spectrum of cardiac sources

The autocorrelation of a cardiac source, ρ(v, w, τ), ∀v, w ∈ V , is defined
as the collection of the cross-correlations between all pairs of dipoles in V .
Since cardiac dipoles are vectorial entities, the cross-correlation between two
dipoles consists of the cross-correlations between all three components of each
dipole [21]. In order to define the autocorrelation of a cardiac source, the
average dipole field J̄(v) needs to be introduced:

J̄(v) = 〈J(v, t)〉t

= [〈Jx(v, t)〉t, 〈Jy(v, t)〉t, 〈Jz(v, t)〉t]
T . (2)

Based on J̄(v), we define the zero-average dipole field J′(v, t) = J(v, t)−J̄(v),
so that 〈J′(v, t)〉t = 0. The cross-correlation matrix between two cardiac
dipoles J(v, t) and J(w, t), where v, w ∈ V , is then defined as

ρ(v, w, τ) = 〈J′(v, t+ τ)J′T (w, t)〉t

=





ρxx(v, w, τ) ρxy(v, w, τ) ρxz(v, w, τ)
ρyx(v, w, τ) ρyy(v, w, τ) ρyz(v, w, τ)
ρzx(v, w, τ) ρzy(v, w, τ) ρzz(v, w, τ)



 . (3)

Therefore, each entry of ρ(v, w, τ) contains the cross-correlation between one
component of J(v, t) and one component of J(w, t). For instance, matrix en-
try ρzy(v, w, τ) is 〈J ′

z(v, t + τ)J ′

y(w, t)〉t. Also, the average power of dipole
component J ′

x(v, t) is by definition Px(v) = ρxx(v, v, 0), and analogous expres-
sions can be obtained for the average power of dipole components J ′

y(v, t) and
J ′

z(v, t).
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The spectrum of a cardiac source, σ(v, w, f), ∀v, w ∈ V , corresponds to
the collection of the cross-spectra between all pairs of dipoles in V , and is
defined as

σ(v, w, f) = F [ρ(v, w, τ)]

=





σxx(v, w, f) σxy(v, w, f) σxz(v, w, f)
σyx(v, w, f) σyy(v, w, f) σyz(v, w, f)
σzx(v, w, f) σzy(v, w, f) σzz(v, w, f)



 (4)

where the operatorF [·] is applied to ρ(v, w, τ) on a component-by-component
basis. For instance, σzy(v, w, f) is F [ρzy(v, w, τ)].

We also define the total cross-correlation RJ(v, w, τ) between two car-
diac dipoles J(v, t) and J(w, t) as the sum of the entries of ρ(v, w, τ) and
the total cross-spectrum SJ(v, w, f) as the Fourier Transform of RJ (v, w, τ).
Mathematically, they can be expressed as

RJ (v, w, τ) = 1T
ρ(v, w, τ)1, (5)

SJ(v, w, f) = 1T
σ(v, w, f)1. (6)

Finally, we define the normalized cross-correlation ρ̂(v, w, τ) as the matrix
of entries

ρ̂ab(v, w, τ) =
ρab(v, w, τ)

√

ρaa(v, v, 0)ρbb(w,w, 0)
(7)

where a, b ∈ {x, y, z}, and the normalized total cross-correlation R̂J(v, w, τ)
as

R̂J(v, w, τ) =
RJ(v, w, τ)

max
τ

{RJ(v, w, τ)}
. (8)

2.3. Autocorrelation and spectrum of cardiac signals

Let c(t) be a cardiac signal measured by applying L(v) to a cardiac source
of autocorrelation ρ(v, w, τ) and spectrum σ(v, w, f) in V . Define c′(t) as
the cardiac signal c(t) minus its time-average value c̄ = 〈c(t)〉t,

c′(t) = c(t)− c̄. (9)

The autocorrelation function Rc(τ) of the cardiac signal c(t) is defined as the
following average [21]:

Rc(τ) = 〈c′(t + τ)c′(t)〉t, (10)
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and its power spectrum Sc(f) is defined as the Fourier Transform of its
autocorrelation function,

Sc(f) = F [Rc(τ)]. (11)

Based on (1), the following relationships can be derived between Rc(τ) and
ρ(v, w, τ), and betwen Sc(f) and σ(v, w, f) (see Appendix A):

Rc(τ) =

∫

V×V

LT (v)ρ(v, w, τ)L(w)dvdw, (12)

Sc(f) =

∫

V×V

LT (v)σ(v, w, f)L(w)dvdw. (13)

Equations (12) and (13) reflect the linear relationship between cardiac sig-
nals and sources [c.f. (1)], and can be used to gain insight into the nature
of the autocorrelation and spectrum of cardiac signals. According to (13),
two factors determine the spectrum of cardiac signals. The first factor is the
spectrum σ(v, w, f) of cardiac sources. It is worth noting that this is the
solely feature of the spatiotemporal dynamics of cardiac sources that mani-
fests on the spectrum of cardiac signals. The second factor is the MSD of the
lead system, L(v). Since L(v) is specific for each lead system, (13) reveals
that cardiac signals measured by different lead systems will in general have
different spectra for the same underlying spatiotemporal dynamics.

3. Analytical study

In this section we study analytically the spectral manifestation of two
second-order models of cardiac sources, namely the fully correlated (FC)
source and the fully uncorrelated (FU) source. The FC and FU models
are physiologically meaningful and can be used to describe the dynamics of,
respectively, highly organized and highly disorganized cardiac rhythms.

We firstly define the autocorrelation and the spectrum of the following
models of spatiotemporal dynamics: identically distributed (ID), FC and FU.
The ID model is introduced for facilitating the comparison of the spectrum of
cardiac signals measured during FC and FU dynamics. Secondly, we define
a simple, idealized model of MSD, namely the pulse model. Because of its
simplicity, the pulse model is used in the analytical derivations and in the
simulation experiments throughout this study. Finally, we derive analytically
the spectrum of cardiac signals measured by pulse MSD during FU and FC
dynamics.
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3.1. Models of spatiotemporal dynamics

We subsequently present the three second-order models of spatiotemporal
dynamics that we use in this study, namely the ID, the FC and the FU
models.

3.1.1. Identically distributed spatiotemporal dynamics

In this model of spatiotemporal dynamics all cardiac dipoles have the
same autocorrelation and spectrum,

ρ(v, v, τ) = ρ(τ), (14)

σ(v, v, f) = σ(f). (15)

By substituting (14) and (15) respectively into (5) and (6), it can be proved
that the total autocorrelation and total spectrum of all the dipoles are also
identical,

RJ(v, v, τ) = RJ(τ) = 1T
ρ(τ)1, (16)

SJ(v, v, f) = SJ(f) = 1T
σ(f)1. (17)

Note that this model only describes the activity of cardiac dipoles individu-
ally, and does not specify ρ(v, w, τ) nor σ(v, w, f) for v 6= w.

3.1.2. Fully correlated spatiotemporal dynamics

This model of spatiotemporal dynamics corresponds to highly regular
rhythms, such as sinus rhythm, in which the activity of one dipole J(w, t)
can be expressed as a delayed version of the activity of another dipole J(v, t),

J(w, t) = J(v, t− ζ(v, w)), (18)

where ζ(v, w) is defined as the time delay between the activities of dipoles
J(v, t) and J(w, t). Based on (18), it can be proved (see Appendix B) that
FC dynamics are also ID, ρ(v, v, τ) = ρ(τ) and σ(v, v, f) = σ(f) [cf. (14)
and (15)], and that the autocorrelation and the spectrum of FC sources can
be expressed as:

ρ(v, w, τ) = ρ(τ − ζ(v, w)), (19)

σ(v, w, f) = σ(f) exp[−j2πfζ(v, w)]. (20)

Consequently, FC sources are completely characterized by ρ(τ), σ(f) and
ζ(v, w).
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3.1.3. Fully uncorrelated spatiotemporal dynamics

This model of spatiotemporal dynamics constitutes an idealization of
highly irregular and disorganized rhythms, such as fibrillation, in which there
is no second-order relationship between the temporal activity of any pair of
cardiac dipoles. The autocorrelation and the spectrum of a FU source are
defined as

ρ(v, w, τ) = ρ(v, v, τ)δ(v − w), (21)

σ(v, w, τ) = σ(v, v, τ)δ(v − w). (22)

In words, the cross-correlation between two cardiac dipoles J(w, t) and J(v, t),
where v 6= w, is null.

3.2. Pulse model of MSD

In this section we define one simple, idealized model of MSD, namely the
pulse model. The pulse model describes a lead system that measures with
the same sensitivity every dipole within a region V0 of the volume source V ,
while rejecting the rest. Mathematically, this model is defined as

LV0
(v) =

{

1 if v ∈ V0

0 otherwise
. (23)

The pulse model can be treated as an approximation of physical MSD that
effectively concentrate their measurement in a region V0.

For the subsequent analysis it is also convenient to quantify the spatial
resolution (SR) of pulse leads. The SR can be defined as the region of the
cardiac source that contributes the most to the measured signal. In this
study, we quantify the SR of pulse leads by introducing the notion of the
lead equivalent volume (LEV), which is defined as the relative size of V0 to
the size of V ,

LEV =

∫

V0

dv
∫

V
dv

=
MV0

MV

, (24)

where MV0
and MV are the sizes of V0 and V respectively. Thus, for local

measurements the LEV is close to zero, whereas for global measurements
where V0 ≃ V , the LEV is close to one.
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3.3. Spectrum of cardiac signals during FC and FU dynamics

3.3.1. Fully correlated spatiotemporal dynamics

We subsequently derive the spectrum of cardiac signals measured by pulse
leads during FC dynamics. By substituting (23) and (20) into (13) and using
(17), we can express the spectrum Sc(f) in terms of the total spectrum SJ(f)
and the time-delay ζ(v, w):

Sc(f) =

∫

V×V

LT
V0
(v)σ(v, w, f)LV0

(w)dvdw

=

∫

V0×V0

1T
σ(f) exp[−j2πfζ(v, w)]1dvdw

= 1T
σ(f)1

∫

V0×V0

exp[−j2πfζ(v, w)]dvdw

= SJ(f)

∫

V0×V0

exp[−j2πfζ(v, w)]dvdw. (25)

We can integrate (25) with respect to ζ by introducing the time-delay density
function (TDDF) over V0, FV0

(ζ). The TDDF FV0
(ζ) describes the frequency

that a time-delay ζ is observed between two dipoles in V0, and can be cal-
culated as follows. Consider all the pairs of dipoles that reside in V0. Given
a time delay ζ1, select all the pairs of dipoles whose activities are delayed
by ζ1. Then, the quantity FV0

(ζ1) corresponds to the density (fraction) of
those pairs of dipoles, with respect to all the pairs of dipoles in V0. Based on
FV0

(ζ), we can express (25) as

Sc(f) = SJ(f)

∫

∞

−∞

exp[−j2πfζ ]FV0
(ζ)dζ

= SJ(f)F [FV0
(ζ)]

= SJ(f)SV0
(f). (26)

In general, time delays ζ are expected to be short for small V0, i.e. small
LEV [c.f. (24)]. Hence, the smaller V0, the more concentrated FV0

(ζ) around
ζ = 0 and the broader SV0

(f). Therefore (26) reveals that cardiac signals
from local measurements (small LEV) during FC dynamics have broad band-
widths, whereas cardiac signals from global measurements (large LEV) have
narrow bandwidths. Equation (26) is a natural result, since the integral in
(1) averages delayed signals at different points within the effective measure-
ment region V0. As a result, when the LEV is large the lead system acts as
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a low-pass filter. By contrast, when V0 is small little averaging is performed
and the distortion introduced by the lead system is low.

3.3.2. Fully uncorrelated spatiotemporal dynamics

We now derive the spectrum of cardiac signals measured by pulse leads
during FU dynamics. By substituting (22) and (23) into (13), and using (6),
the spectrum can be written as

Sc(f) =

∫

V×V

LT
V0
(v)σ(v, w, f)LV0

(w)dvdw

=

∫

V0

1T
σ(v, v, f)1dv

=

∫

V0

SJ(v, v, f)dv. (27)

In words, the spectrum of cardiac signals measured during FU dynamics is
an average of the total spectra of the dipoles contained within V0. If the FU
dynamics is also assumed to be ID (ID-FU), then SJ(v, v, f) = SJ(f) [cf.
(17)] and (27) reduces to

Sc(f) =

∫

V0

SJ(f)dv = SJ(f)MV0
(28)

Hence, except for the factor of MV0
, the spectra of cardiac signals measured

by pulse leads during ID-FU dynamics are identical to the total spectrum
SJ(f).

4. Simulation experiments

In this section we present the results obtained in a computer simulation
environment, designed for investigating the spectral manifestation of cardiac
rhythms and the spectral effects of lead systems. Firstly, we describe the fol-
lowing aspects of our simulation experiments: the cardiac source model, how
we simulated FC and FU dynamics, and how we synthesized cardiac signals.
Secondly, we use multivariate signal analysis to describe the simulated FC
and FU dynamics. Thirdly, we analyze the TDDF of the simulated FC dy-
namics and its relationship with the spectrum of measured cardiac signals.
Finally, we analyze the effects of different pulse leads on the spectrum of
cardiac signals during FC and FU simulated dynamics.
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4.1. Simulation set-up

Cardiac activity was modeled by following a probabilistic cellular au-
tomata approach proposed in [22] which allows simulating complex spa-
tiotemporal dynamics such as fibrillatory conduction and rotors. In this
model, cardiac tissue is described as a grid of connected, excitable cells,
characterized by a time-varying transmembrane voltage. Cell excitation pro-
duces a transient change in the transmembrane voltage, causing excitation
in the neighboring cells. This activity results in excitation waves traveling
through the cardiac tissue.

Based on this model, a 2D square sample of cardiac tissue consisting of
101× 101 cells was defined and two types of spatiotemporal dynamics were
simulated. The first type of dynamics was generated by stimulating one side
of the tissue sample at a rate of 1 Hz. This resulted in a FC dynamics
consisting of a regular train of plane excitation waves traveling along the x

axis (Fig. 1 (a)). The second type of dynamics corresponded to a chaotic
excitation pattern characteristic of FU sources. This spatiotemporal dynam-
ics consisted of multiple, fragmented excitation waves, traveling randomly in
every direction (Fig. 1 (b)).

[Figure 1 about here.]

By computing the voltage difference between neighboring cells, a 2D time-
varying distribution of cardiac dipoles J(v, t) = [Jx(v, t), Jy(v, t)]

T was sim-
ulated. The amplitude of the simulated cardiac dipoles was highest at the
wavefronts, where the voltage gradient is largest, and their direction was as
expected aligned with the direction of propagation of excitation waves. In
order to synthesize cardiac signals, eight square pulse MSD An, 1 ≤ n ≤ 8,
of increasing size and centered at the middle of the tissue sample were imple-
mented. Table 1 shows the sizes of each pulse MSD along with their LEV,
and Fig. 2 (b) depicts for illustrative purposes pulses A5 and A8. Finally,
a set of cardiac signals cn(t) were synthesized by applying each pulse An to
the simulated time-varying dipole distributions.

[Table 1 about here.]

4.2. Analysis of the spatiotemporal dynamics

In order to analyze the spatiotemporal characteristics of both simulated
dynamics, we obtained the average power of each dipole component, together
with the normalized cross-correlation [c.f (7)] and the normalized total cross-
correlation [c.f (8)] between every pair of dipoles.
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4.2.1. Fully correlated spatiotemporal dynamics

In this dynamics, the normalized autocorrelation and total autocorre-
lation were found to be approximately the same for every cardiac dipole,
ρ̂(v, v, τ) ≃ ρ̂(τ) and R̂J(v, v, τ) ≃ R̂J(τ). Accordingly, the dynamics were
classified as ID [c.f. (14) and (16)]. Also, the average power Px(v) was found
to be twice as high as Py(v). This observation is in agreement with the fact
that most of the dipoles were aligned with the direction of propagation of
the excitation waves, namely the x axis.

Figure 1 (c) shows the normalized cross-correlations between the x and
y components of dipole v1, and dipoles v1 (itself), v2 and v3. As expected,
ρ̂xx(v1, v1, τ) revealed a high degree of periodicity, which could be approxi-
mated by a regular train of impulses of period 1 s. This observation agrees
with the simulated stimulation rate of 1 Hz. By contrast, ρ̂yy(v1, v1, τ)
showed a lower degree of periodicity since Jy(v, t) components were ac-
tivated in a more sporadical manner. The normalized cross-correlations
ρ̂xx(v1, v2, τ) and ρ̂xx(v1, v3, τ) also consisted of a regular train of impulses
of period 1 s and additionally, their maximum values occured at τ = 0.004
s and τ = 0.048 s respectively. These delays corresponded to the travel-
ing times of the excitation waves from v1 to v2 and from v1 to v3, respec-
tively. Thus, ρ̂xx(v1, v2, τ) ≃ ρ̂xx(v1, v1, τ − 0.004) ≃ ρ̂xx(τ − 0.004) and
ρ̂xx(v1, v3, τ) ≃ ρ̂xx(v1, v1, τ − 0.048) ≃ ρ̂xx(τ − 0.048). In general, the maxi-
mum value of the cross-correlation between any two dipoles occurred at a time
delay ζ that corresponded to the traveling time of the excitation wave from
one dipole to the other, and also ρ̂xx(v, w, τ) ≃ ρ̂xx(v, v, τ − ζ) = ρ̂xx(τ − ζ).
This observation confirmed that this simulated dynamics followed a FCmodel
[c.f. (19)]. Finally, we observed that R̂J(τ) also exhibited a high degree of
periodicity (Fig. 1 (e)), which was mostly due to the highly periodic activ-
ity of ρ̂xx(v1, v1, τ). Accordingly, SJ(f) consisted of a sequence of harmonic
frequencies separated by 1 Hz (Fig. 2 (c)).

4.2.2. Fully uncorrelated spatiotemporal dynamics

In this dynamics, all the dipoles shared approximately the same nor-
malized autocorrelation and total autocorrelation, ρ̂(v, v, τ) ≃ ρ̂(τ) and
R̂J(v, v, τ) ≃ R̂J(τ). Thus, this dynamics could be classified as ID [c.f. (14)
and (16)]. Furthermore, ρ̂(τ) and R̂J(τ) were found to lack any periodicity
and consisted of a single impulse located at τ = 0, as illustrated in Fig. 1
(d) and (f). As opposed to the FC dynamics, Px(v) and Py(v) were approxi-
mately the same. This observation is in agreement with the fragmented and
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random nature of this simulated dynamics, in which dipoles were oriented
with equal probability in every direction.

The cross-correlation between dipoles decreased rapidly with the distance
that separated them. Figure 1 (d) shows that ρ̂yy(v1, v2, τ) consisted of a
small but distinct spike, whereas ρ̂xx(v1, v3, τ) and ρ̂yy(v1, v3, τ) were prac-
tically zero. In other words, this dynamics exhibited highly localized spa-
tiotemporal correlations. Accordingly, although this dynamics was approx-
imately FU, it could be more accurately described as partially correlated

(PC). We estimated the region whose dipoles showed a high degree of corre-
lation with the dipole at v1, and found it corresponded approximately to A1.
Interestingly, ρ̂xx(v1, v2, τ) ≃ 0, and the maximum of ρ̂yy(v1, v2, τ) occurred
at τ = 0, as seen in Fig. 1 (d). In words, only the y components of dipoles at
v1 and v2 were correlated and they showed frequent simultaneous activities.
The explanation for this observation is the following. Dipoles at v1 and v2
shared the same x coordinate and they were simultaneously activated when-
ever local excitation wavefronts traveled along the y direction, which favored
the generation of y dipole components. As a consequence, the y components
of cardiac dipoles at v1 and v2 were often activated simultaneously and hence,
ρ̂yy(v1, v2, τ) showed its maximum at τ = 0.

[Figure 2 about here.]

[Figure 3 about here.]

4.3. Analysis of the TDDF during FC dynamics

Following (26), the spectrum of cardiac signals measured by pulse MSD
during FC dynamics can be expressed as the product of the total spectrum by
the Fourier Transform of the TDDF. We used our simulations to compare the
spectrum of synthesized cardiac signals during FC dynamics, Scn(f), and the
spectrum predicted by (26). Firstly, we estimated spectra Scn(f) by applying
to cn(t) Welch’s method [23], with a 2048-samples Hamming window and 50%
overlap. This configuration resulted in a high spectral resolution suitable to
identifying the harmonic structure of cn(t). We subsequently built the time-
delay function ζAn

(v, w) for each An, by computing the difference between
the excitation times of each pair of cells within An. Then, we obtained
the TDDF FAn

(ζ) from ζAn
(v, w), and we calculated its Fourier Transform,

SAn
(f). Finally, we obtained the spectrum predicted by (26) by estimating

the total spectrum of a single dipole SJ(f) and multiplying it by SAn
(f). In
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all cases, the spectrum obtained by virtue of (26) matched the spectrum of
synthesized cardiac signals.

We illustrate these results with pulse MSD A5 and A8. Figure 2 (a) shows,
on an isochronal map of cell excitations, the 21× 21 pulse corresponding to
A5, and the 81 × 81 pulse corresponding to A8. The excitation times of
four isochrones are also indicated, namely t = 0.01, 0.05, 0.07 and 0.11 s.
According to this map, the earliest excitation in pulse A5 (A8) was te = 0.05
s (te = 0.01 s), whereas the latest excitation was tl = 0.07 s (tl = 0.11 s).
Thus, the maximum time delay between excitations in pulse A5 (A8) was
ζmax = tl − te = 0.02 s (ζmax = tl − te = 0.1 s). Also, since the time delay
function satisfies ζ(v, w) = −ζ(w, v), the minimum time delay in A5 (A8)
was ζmin = −0.02 s (ζmax = −0.1 s) and thus, the possible values of time
delays within A5 (A8) lied in the range |ζ | ≤ 0.02 s (|ζ | ≤ 0.1 s).

The generated TDDF, FA5
(ζ) and FA8

(ζ), are shown in Fig. 2 (b).
Because of the property ζ(v, w) = −ζ(w, v), they were symmetric around
zero. In addition to this, they exhibited a triangular shape and FA5

(ζ) = 0
(FA8

(ζ) = 0) for time delays |ζ | ≥ 0.02 s (|ζ | ≥ 0.1 s). In all cases, we found
that FAn

(ζ) had a triangular shape, which is a consequence of the constant
speed of the excitation wave. We also observed that the smaller An, the nar-
rower FAn

(ζ), since the maximum difference of time delays was also smaller.
Accordingly, SAn

(f) had a square-sinc shape and the smaller An the broader
SAn

(f). As illustrated in Fig. 2 (c), SJ(f), Sc5(f) and Sc8(f) shared the
same harmonic structure, which consisted of harmonic frequencies located
at multiples of 1 Hz. This is in agreement with the fundamental periodicity
imposed by the simulated stimulation rate. Figure 2 (c) also shows that the
envelopes of Sc8(f) and Sc5(f) conformed respectively to SA8

(f) and SA5
(f).

4.4. Analysis of the spectral effects of lead systems

According to (26) and (28), the spectral effects of pulse MSD are qualita-
tively different for FC and ID-FU dynamics. In order to explore our analytical
results, we compared the spectra obtained by pulse MSD An during the sim-
ulated FC and FU dynamics. We estimated the spectrum of each synthesized
cardiac signal based on Welch’s method, using a 512-samples Hamming win-
dow and 50% overlap. This configuration resulted in a low spectral resolution
suitable to study the spectral envelope. Based on the estimated spectra, we
computed the 95% power bandwidth of synthesized signals during FC and
FU dynamics (Table 1).
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During FC dynamics, we observed that as the size of An increased, the
bandwidth of synthesized cardiac signals decreased accordingly (Fig. 3 (a)).
In order to assess quantitatively the effects of the LEV on the spectrum of
cardiac signals, we compared the 95% power bandwidth of synthesized signals
against the LEV (Table 1). This comparison shows that during FC dynamics,
the larger the LEV, the narrower the bandwidth. By contrast, during FU dy-
namics the spectrum remained approximately unchanged across the different
leads, except for the smallest pulses, A1 and A2 (Fig. 3 (b)). Accordingly,
the 95% power bandwidth remained approximately unchanged and discrep-
ancies were observed only for the smallest LEV (Table 1). The changes in
the spectrum of cardiac signals synthesized by pulse MSD with small LEV
during FU dynamics could be ascribed to the previously identified, localized
spatiotemporal correlations. Within small regions of the cardiac source, it
could no longer be assumed that the activities of the dipoles were uncor-
related and hence, signals measured by pulse MSD whose LEV was small
enough, would exhibit a spectrum dependency on the LEV, characteristic of
correlated sources. In our simulations, the estimated volume of correlation
during FU dynamics was close to A1 and so, the effects of local correlations
manifested more clearly in A1 and A2.

5. Conclusions and discussion

In this paper we have presented a mathematical formalism for investigat-
ing the spectrum of cardiac signals. Our formalism reveals that the spectrum
of cardiac signals can be expressed in terms of the spectrum of the underlying
cardiac source and the MSD of the lead system [c.f. (13)]. Two main con-
clusions can be drawn from (13). Firstly, the information contained in the
spectrum of cardiac signals is limited to the second-order characteristics of
cardiac sources. And secondly, for the same underlying spatiotemporal dy-
namics, different lead systems will, in general, produce cardiac signals with
different spectra. Although the distortion introduced by the lead system fol-
lows in a natural way from the linearity of the measurement (1), to the best
of our knowledge this has not been formulated before.

To gain understanding of the spectrum of cardiac signals, we have further
analyzed (13) for specific models of MSD and cardiac sources. Our analytical
results show that the spectral effects of pulse lead systems is qualitatively
different during FC and FU dynamics. During FC dynamics the spectrum
of cardiac signals depends on the lead SR, which we quantified with the
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LEV [c.f. (26)]. Specifically, the spectral envelope of cardiac signals from
local measurements (small LEV) is broad, whereas the spectral envelope
from global measurements (large LEV) is narrow. By contrast, during FU
dynamics the spectrum of cardiac signals is a volume average [c.f. (27)] and
hence, during ID-FU dynamics it remains the same irrespective of the LEV
[c.f. (28)]. We have further explored the spectral manifestation of FC and
FU dynamics in a simulation environment and our simulation results are in
agreement with the analytical ones.

Based on our simulation experiments, we could also explore the spectral
manifestation of PC sources. In the analysis of the spatiotemporal char-
acteristics of simulated FU dynamics, we observed localized spatiotemporal
correlations which allowed us to more accurately describe the simulated dy-
namics as PC. Also, when analyzing the spectrum of cardiac signals synthe-
sized from this dynamics, we observed spectral distortions for small LEV.
These observations could be explained as follows. For large LEV, lead sys-
tems measure uncorrelated dipoles, and no spectral distortions are observed.
However, for small LEV lead systems focus within regions where the dipoles
are in fact correlated and accordingly, some distortions on the spectrum of
cardiac signals are expected. Our observations encourage us to speculate that
in general, irrespective of the type of MSD, the lead SR is a major factor in
determining the spectrum of cardiac signals. We have derived analytically
this result for idealized pulse MSD during FC and FU dynamics, but not for
generic MSD nor for PC dynamics. We can speculate that in those scenarios
where the LEV is larger than the volume of correlation, PC dynamics can be
treated as FU, whereas whenever the LEV is within the volume of correla-
tion, PC dynamics can be treated as FC. Nevertheless it remains to further
study the spectrum of cardiac signals for generic lead systems and generic
spatiotemporal dynamics. The formalism that we have presented constitutes
a convenient mathematical framework for investigating the spectrum of car-
diac signals measured during generic spatiotemporal dynamics. Within our
formalism, a meaningful definition of the degree of spatiotemporal correla-
tion and the volume of correlation could be proposed, and by using (13) its
effects on the spectrum of cardiac signals could be thoroughly investigated.

The study that we have presented has practical implications on the analy-
sis of the spectrum of cardiac signals. We have shown that during correlated
dynamics leads can distort the spectral envelope, whereas the harmonic sepa-
ration remains unchanged. Therefore, spectral features which depend on the
spectral envelope such as the peak frequency [6, 7], the mean frequency [24],
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and the organization index [4], can be affected by the characteristics of the
lead system, whereas those features that only depend on the harmonic sepa-
ration, notably the DF [8, 9, 10, 11, 12], are insensitive to the characteristics
of the lead system. This conclusion supports, from a theoretical standpoint,
recent experimental studies which assessed the robustness of the DF. In [25]
it was reported that the values of the DF obtained from unipolar and bipo-
lar cardiac signals correlate highly with the DF values obtained from optical
signals. Other studies have compared the DF values obtained from cardiac
signals measured by contact and non-contact intracardiac mapping systems,
and have found good agreement between the DF values obtained from each
mapping system [17, 18]. Finally, a high correlation between DF values from
intracardiac EGM and surface ECG signals was found in [26]. In summary,
these experimental studies indicate in agreement with our theoretical results,
that the DF is a robust spectral feature of cardiac signals. Therefore, there
is both experimental and theoretical evidence of the robustness of the DF,
which pave the ground for developing novel DF mapping systems for di-
agnosing and managing of fibrillation, such as non-contact, intracardiac DF
mapping systems [17, 18] and non-invasive, surface DF mapping systems [19].

Appendix A. Derivation of the Correlation and the Spectrum of

Fully Correlated Sources

By setting v = w in (3) and substituting (18) into it, it can be proved that
the autocorrelations of any two dipoles J(v, t) and J(w, t) in a FC source,
are always identical.

ρ(w,w, τ) = 〈J′T (w, t+ τ)J′(w, t)〉t

= 〈J′T (v, t+ τ − ζ(v, w))J′(v, t− ζ(v, w))〉t

= 〈J′T (v, t′ + τ)J′(v, t′)〉t

= ρ(v, v, τ) (A.1)

where t′ = t − ζ(v, w). Therefore, FC sources are by construction also ID,
ρ(v, v, τ) = ρ(τ) and σ(v, v, f) = σ(f). By substituting (18) into (3),
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ρ(v, w, τ) can be expressed in terms of ρ(τ):

ρ(v, w, τ) = 〈J′T (v, t+ τ)J′(w, t)〉t

= 〈J′T (v, t+ τ)J′(v, t− ζ(v, w))〉t

= 〈J′T (v, t+ τ)J′(v, t)〉t ∗ δ(τ − ζ(v, w))

= ρ(τ) ∗ δ(τ − ζ(v, w))

= ρ(τ − ζ(v, w)). (A.2)

In words, ρ(v, w, τ) is a ζ(v, w)-delayed version of ρ(τ). As a consequence,
by applying the Fourier Transform to (A.2), the spectrum of a FC source can
be expressed as:

σ(v, w, f) = F [ρ(v, w, τ)]

= F [ρ(τ) ∗ δ(τ − ζ(v, w))]

= F [ρ(τ)]F [δ(τ − ζ(v, w))]

= σ(f) exp[−j2πfζ(v, w)]. (A.3)

Appendix B. Connecting the Spectrum of Cardiac Signals to the

Spectrum of Cardiac Sources

By substituting (1) into (9), we can express c′(t) in terms of J′(v, t),

c′(t) =

∫

V

LT (v)J(v, t)dv − 〈

∫

V

LT (v)J(v, t)dv〉t

=

∫

V

LT (v)J(v, t)dv −

∫

V

LT (v)J̄T (v)dv

=

∫

V

LT (v)(J(v, t)− J̄(v))dv

=

∫

V

LT (v)J′(v, t)dv. (B.1)

Then, by substituting (B.1) into (10), we can write the autocorrelation of
a cardiac signal Rc(τ) in terms of the autocorrelation of the cardiac source,
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ρ(v, w, τ):

Rc(τ) = 〈

∫

V

LT (v)J′(v, t+ τ)dv

∫

V

LT (w)J′(w, t)dw〉t

=

∫

V×V

LT (v)〈J′(v, t+ τ)J′T (w, t)〉tL(w)dvdw

=

∫

V×V

LT (v)ρ(v, w, τ)L(w)dvdw. (B.2)

Finally, following (11), we apply the Fourier Transform to (B.2) and derive
the relationship between the power spectrum of a cardiac signal Sc(f) and
the spectrum of the cardiac source, σ(v, w, f):

Sc(f) = F

{
∫

V×V

LT (v)ρ(v, w, τ)L(w)dvdw

}

=

∫

V×V

LT (v)F{ρ(v, w, τ)}L(w)dvdw

=

∫

V×V

LT (v)σ(v, w, f)L(w)dvdw. (B.3)
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A probabilistic model of cardiac electrical activity based on a cellular
automata system, Rev. Esp. Cardiol. 58 (1) (2005) 41–47.

21



[23] J. G. Proakis, D. K. Manolakis, Digital Signal Processing, Prentice Hall,
2006.

[24] R. Dzwonczyk, C. Brown, H. Werman, The median frequency of the ecg
during ventricular fibrillation: its use in an algorithm for estimating the
duration of cardiac arrest, IEEE Trans. Biomed. Eng. 37 (1990) 640–646.

[25] O. Berenfeld, S. Ennis, E. Hwang, B. Hooven, K. Grzeda, S. Mironov,
M. Yamazaki, J. Kalifa, J. Jalife, Time- and frequency-domain analy-
ses of atrial fibrillation activation rate: The optical mapping reference,
Heart Rhythm 8 (11) (2011) 1758 – 1765.

[26] S. R. Dibs, J. Ng, R. Arora, R. S. Passman, A. H. Kadish, J. J. Gold-
berger, Spatiotemporal characterization of atrial activation in persistent
human atrial fibrillation: multisite electrogram analysis and surface elec-
trocardiographic correlations–a pilot study., Heart Rhythm 5 (5) (2008)
686–693.

22



List of Figures

1 Analysis of simulated fully correlated (FC) and fully uncor-
related (FU) dynamics. (See text for explanation.) Voltage
maps during (a) FC and (b) FU dynamics, showing source
locations v1, v2 and v3. Normalized correlations ρ̂xx(v1, w, τ)
and ρ̂yy(v1, w, τ), where w = v1, v2, v3, during (c) FC and (d)

FU dynamics. Normalized total autocorrelation R̂J(τ) during
(e) FC and (f) FU dynamics. . . . . . . . . . . . . . . . . . . 24

2 The envelope of cardiac signals measured during fully corre-
lated (FC) dynamics conforms to the Fourier Transform of the
time-delay density function (TDDF). (a) An isochronal map
of cell excitations during simulated FC dynamics and the re-
gions covered by pulses A5 and A8 are shown. (b) Based on
the time delay between cell excitations, the TDDF correspond-
ing to pulses from leads A5 and A8, FA5

(ζ) and FA8
(ζ), are

generated. (c) As predicted by (26), the multiplication of the
total spectrum SJ(f) by the Fourier Transforms of the TDDF
SA5

(f) and SA8
(f), matches the spectra of signals generated

by pulses A5 and A8, Sc5(f) and Sc8(f). . . . . . . . . . . . . 25
3 The spectral effects of the characteristics of pulse MSD are

qualitatively different during FC and FU dynamics. (a) Dur-
ing FC dynamics, the smaller the pulse, the broader the band-
width of synthesized leads. (b) During FU dynamics, spectra
remain approximately unchanged across different leads except
the smallest ones, A1 and A2. This behavior can be explained
by the existence of localized spatiotemporal correlations in the
simulated FU dynamics. . . . . . . . . . . . . . . . . . . . . . 26

23



(a)

−1 0 1

0

1

τ = 0.048

τ = 0.004

ρ̂xx(v1, w, τ)

τ = 0

v3

v2

v1

−1 0 1

0

1

τ (s)

τ = 0.004

ρ̂yy(v1, w, τ)

τ = 0

v3

v2

v1

(c)

−8 −6 −4 −2 0 2 4 6 8

0

1
R̂J(τ )

τ (s)

(e)

(b)

−1 0 1

0

1
ρ̂xx(v1, w, τ)

τ = 0

v3

v2

v1

−1 0 1

0

1

τ (s)

τ = 0

ρ̂yy(v1, w, τ)

τ = 0

v3

v2

v1

(d)

−8 −6 −4 −2 0 2 4 6 8

1

0

R̂J(τ )

τ (s)

(f)

Figure 1: Analysis of simulated fully correlated (FC) and fully uncorrelated (FU) dy-
namics. (See text for explanation.) Voltage maps during (a) FC and (b) FU dynam-
ics, showing source locations v1, v2 and v3. Normalized correlations ρ̂xx(v1, w, τ) and
ρ̂yy(v1, w, τ), where w = v1, v2, v3, during (c) FC and (d) FU dynamics. Normalized total

autocorrelation R̂J(τ) during (e) FC and (f) FU dynamics.
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Figure 2: The envelope of cardiac signals measured during fully correlated (FC) dynamics
conforms to the Fourier Transform of the time-delay density function (TDDF). (a) An
isochronal map of cell excitations during simulated FC dynamics and the regions covered
by pulses A5 and A8 are shown. (b) Based on the time delay between cell excitations, the
TDDF corresponding to pulses from leads A5 and A8, FA5

(ζ) and FA8
(ζ), are generated.

(c) As predicted by (26), the multiplication of the total spectrum SJ(f) by the Fourier
Transforms of the TDDF SA5

(f) and SA8
(f), matches the spectra of signals generated by

pulses A5 and A8, Sc5(f) and Sc8(f).
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Figure 3: The spectral effects of the characteristics of pulse MSD are qualitatively dif-
ferent during FC and FU dynamics. (a) During FC dynamics, the smaller the pulse, the
broader the bandwidth of synthesized leads. (b) During FU dynamics, spectra remain
approximately unchanged across different leads except the smallest ones, A1 and A2. This
behavior can be explained by the existence of localized spatiotemporal correlations in the
simulated FU dynamics.
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Table 1: Definition and lead equivalent volume (LEV) of the measurement sensitivity
distributions used in the simulations and bandwidth of the corresponding simulated signals
during fully correlated (FC) and fully uncorrelated (FU) dynamics

Lead Dimensions LEV (%) BWFC (Hz) BWFU (Hz)

A1 5× 5 0.2 114 79
A2 9× 9 0.8 77 63
A3 13× 13 1.6 85 61
A4 17× 17 2.8 70 60
A5 21× 21 4.3 60 58
A6 41× 41 16.4 35 54
A7 61× 61 36.4 28 54
A8 81× 81 64.3 24 54
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