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Energy Efficient Telemonitoring of Physiological
Signals via Compressed Sensing: A Fast Algorithm
and Power Consumption Evaluation
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energy consumption and extend sensor life, recorded sigrsl

are usually compressed before transmission. In this papenve )) (

adopt compressed sensing (CS) as a low-power compression |, b
framework, and propose a fast block sparse Bayesian learnm e ety
(BSBL) algorithm to reconstruct original signals. Experiments on
real-world fetal ECG signals and epilepsy EEG signals shovee
that the proposed algorithm has good balance between speeddd == ~———  —_______

data reconstruction fidelity when compared to state-of-theart CS battery driven wearable-equipment data central
algorithms. Further, we implemented the CS-based compregm

procedure and a low-power compression procedure based on aFig. 1.  The diagram of a Compressed Sensing (CS) based sdrele
wavelet transform in Filed Programmable Gate Array (FPGA), telemonitoring system.

showing that the CS-based compression can largely save eggr

and other on-chip computing resources.

Index Terms—Low-Power Data Compression , Compressed {0 Digital Converter (ADC). Those digitalized samples are
Sensing (CS) , Block Sparse Bayesian Learning (BSBL) , Elec- compressed by a simple matrix-vector multiplication anel th
trocardiography (ECG) , Electroencephalography (EEG) , Feld results are transmitted via wireless networks. At the data
Programmable Gate Array (FPGA) central, a CS algorithm is used to recover original signaisf

the compressed measurements.

Abstract—Wireless telemonitoring of physiological signals is uﬂu
an important topic in eHealth. In order to reduce on-chip ’_‘.'/\/\/\'.L—

I. INTRODUCTION

Monitoring physiological signals via wireless sensor nef- Overview of the Compressed Sensing
works is an important topic in wireless healthcare. One majo The basic goal of CS aims to solve the following underde-
challenge of wireless telemonitoring is the conflict betweeermined problem,
huge amount of data collected and limited battery life of ]
portable devices [1]5[3]. Data need to be compressed([B], [4 min x|}y sty = ex, )

bef_ore transmission. Most physiological _signals are rédnt,  \\hore x is the samples@® is the sensing matrix whose
which means that they can be effectively compressed [y number is smaller than column number, apds the
using transform encoders such as Discrete Wavelet TremeQ’fompressed measuremenis||; is the ¢; norm penalty of
(DWT) based method$[[5]. However, these methods consist,of \ hich prompts its sparsity.
sophisticated matrix-vector multiplication, sorting aadth- 1, practice, physiological signals are not sparse in the tim
metic encoding which subsequently drain the battery.  gomain, therefore one often resorts to a transformed domain
Compressed S_ensmg (CH) [6], can_recovera5|gnal with le§sh thatx can be expressed as = DO whereD is a
measurements given that the signal is sparse or can be Spgfgfonary matrix such that the representation coefficieht

represented in some transformed domains. CS-based \8irelgs, much sparser thaa The problem in[{L) then becomes
telemonitoring technology [7]=[12] can thus be viewed as a

lossy compression method. The block diagram of a typical CS- min |0, st y=(®D)0, 2
based wireless telemonitoring is shown in [Eig. 1. Physiicklg

signals are firstly digitalized (Nyquist Sampling) via anaeg The signal can be reconstructed afterwards ugirg D6 with

the recovered coefficientd. Most CS-based telemonitoring
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[13], [19] proposed the block sparse Bayesian learning (BSBwhich meansx has ¢g blocks, and only a few blocks are
framework. It showed superior ability to recover block sgar nonzero. Hered; is the block size for theith block. The
signals or even non-sparse raw physiological signals sachBSBL algorithms[[13] exploit the block structure and theant
fetal ECG [11] and EEG signal5110]. block correlation by modeling the signal blosk using the

o parameterized Gaussian distribution:
B. Summary of Contributions

BSBL algorithms [18] showed impressive recovery per- p(xi; 7, Bi) = N(x4;0,7B;). (4)
formance on physiological signals such as ECG and EEG.

However, these algorithms derived so far are not fast a\r’1vc'it h unknown deterministic parameterg and B;. -; is a

may limit their applications. The first contribution of ournonnegatwe parameter controliing the block-sparsity xof

. . . . “andB; is a positive definite matrix modeling the covariance
work is a fast mplementaﬂﬁmf the BSBL framework using
the Fast Marginalized (FM) likelihood maximization metho&truCture ofx;. We assume that the blocks are mutually
. . . . .. independent. Henceforth,

[20]. Experiments conducted on real-life physiologicglrgils
showed that the proposed algorithm had similar recovery p(x; {7, Bi}i) = N(x;0,T), ®)
quality as BSBL algorithms, but was much faster.

Power consumption is a major concern in wireless telemomihereI’ denotes a block diagonal matrix with tith principal
toring systems. Traditionally, the power consumption was-e block given by~,;B,;.
uated on a low-power Microcontroller (MCU)I[8]. However, The measurement noise is assumed to be independent and
MCU does not support fully parallel implementation and th&aussian with zero mean and unknown variagice. Thus
power estimate is affected by the coding style. In this wark, the measurement model is
analyzed the power consumption on Field Programmable Gate
Array (FPGA). In FPGA, we can implement the compressor p(ylx; B) = N(y; ®x, 37 '1). (6)
in parallel and control the overall activities. Only the ilog
cells related to the compression core are implemented and . o
rest are holding reset. E)I'herefore the powerpestimate is mdpy the posteriorp(x|y: {7i, Bi}:, 5) and the likelihood
accurate. In the experiment, the CS-based compressor Wil {7i, Bi}i, B) can be derived as follows,
compared to a low-power DWT-based compressor in terms p(xly; {7, Bili, B) = N(x; 1, 2), @)
of compression latency, the number of utilized on-chip re-
sources and power consumption. We proved that the CS-based p(yl{7i Bi}i, ) = N(y:0,C) )
architecture was more suitable for low-power physioloficg are 51 2 (T-! + ®73®)"!, p 2 ¥&TBy and C 2

telemonitoring applications. B+ ®T'®T. To estimate the parametefs;, B;}; and 3,
the following cost function is used, which is derived acdogd
t3 the Type Il maximum likelihood [13]:

Given the signal model5) and the measurement model

C. Outline and Notations

The rest of the paper is organized as follows. Section
presents the fast marginalized implementation of the BSBL L({vi,Bi}ti, 8) = —2logp(y|{7i, Bi}i, B) 9)
algorithm and Section 3 provides the simulation setup and T 1
evaluation metrics. In Section 4 and Section 5, we conduct xlog|Cl+y €y, (10)

experiments on Fetal ECG (FECG) and EEG signals. Thepnce all the parameters are estimated, the MAP estimate

are used to evaluate the performance of CS. FPGA implemegsterior, i.e.x = p.

tations and power consumption of the CS-based and the DWT-
based compression methods are given in Section 6. Conglusio
is drawn in the last section. B. The Fast Implementation of BSBL
Throughout the papeBold letters are reserved for vectors There are several methods to minimize the cost function as
x and matricesX. Tr(-) computes the trace of a matrix andshqyn in [13]. In the following we consider to use the fast

diag(A) extracts the diagonal vector of the matu (')_T marginalized (FM) likelihood maximization methdd [20].
is the transpose operatok/(x; 4, 1) denotes a multivariate  he cost function[{10) can be optimized in a block way.

Gaussian distribution with mean and variances. We denote by®; the ith block basis in® with the column
I1. THE EAST IMPLEMENTATION OF THE BSBL indexes corresponding to théh block of the signak. Then
FRAMEWORK C can be rewritten as:
A. Overview of the BSBL Framework [13] C=5T+ Z &, 7B ®L + ®;7,B;®7, (11)
A block sparse signat has the following structure, mi
X = [Ila"' s Ldyy 3Ty 7'rdg]Ta (3) :C—i+¢i7iBi@?7 (12)
i X whereC_; £ 7T+, @ ymBim®,.

Using the Woodbury Identity,C| = |A;||C_;||A;* + si],
—1 whereA; £

—1

1The preliminary work of the developed algorithm is avaitabin 5 - )
http://arxiv.org/abs/1211.4909. C!=C;-C®,(A; " +s)'®]C
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7iBi, s; & ®I'C~{®, andq; £ ®/Cly, Equation [ID) D. Remarks orp

can be rewritten as: The paramete—! is the noise variance in our model. It

£ =log|C_;| +yTC ly can be estimated by solvingt from (I0),
+1log|Ly, + Assi| —al (A" +5s;)'q;,  (13) 5 M 1)
=L(—i) + L(3), (14) - Ti[ZeTe] + [y — 2ul3
where £(—i) = log |C_;| +ch:11y, and However, the resulting updating rule is generally not robus
A S . and thus requires some regularizationl [13]] [19]. Alteikredy,
L(i) = log|la, + Aisi| —q; (A; +8:) aq, (15) one can treat it as a regularizer and assign suitable vauies t

via cross-validation. In our experiments we gett = 10~¢ in
noiseless simulations angi-! = 0.01||y||3 in noisy scenarios,
which showed good performance.

which only depends om;.

Setting aaﬁﬁ) = 0, we have the updating rule

A, = si_l(ql-qiT - si)si_l. (16)
In our model we further parameteriz&; as A; = ;B; in E. The Fast Marginalized block SBL Algorithm

order.to impose some constraint (i.e. reg.ularization) a th The Fast Marginalized block SBL algorithm (BSBL-FM)
covariance structure (see the next subsection). Howéwae t is given in Fig.[2. Within each iteration, it only updates the
is ambiguity betweeny,; andB;. To solve this, we define;

as the norm ofA;, namely,

1: procedure BSBL-FM(y,®,n)
i = || Al 7, 17 2 Outputs:x, X

Initialize: 3! = 0.01]]y||% (noisy cases) op~!
10~° (noiseless casesB;, = I, s; = @l ®, q;, =

. . . . 3:
and defineB; as a matrix of unit norm which models the
covariance structure of theth block A;, namely,

By, Vi
A; 4:  while not convergedio
B, =— 18
Vi (18) 5: CalculateA’ = s; ' (q;q] —si)s; *, Vi
One can see this parameterization is a natural extensidreof t & Calculatey; = [|Ajl| o
basic SBL model proposed by Tipping [21]. 7 Imposing Structural Regularization dBy;
8: Re-build A} = v;B?
. o o: CalculateAL(i) = L(A}) — L(A;), Vi
C. Imposing the Structural Regularization @&y 10 Select theith block s.t AL(7) = min{AL(i)}
As noted in [1B], regularization td, is required due 11 Re-calculatey, 3, {s;}, {a;}
to limited data. A good regularization can largely reduceo. end while
the probability of local convergence. Although theories 0A3: end procedure
regularization strategies are lacking, some empiricahog
[13], [19] were presented. Fig. 2. The Proposed BSBL-FM Algorithm.
In this paper we focus on the following two correlation
models. One is the simple (SIM) model, block signal that attributes to the deepest desceu}(of. The
. detailed procedures on re-calculation @f3X, {s;}, {q;} are
B, = I(V). (19)  similar to [20]. The algorithm terminates when the maximum

When the developed algorithm uses this regularization, w8ange of the cost function is smaller than a threshpléh
denote it byBSBL-FM(0). This model assumes that entrie®Ur €xperiments, we set= le™".
in each block are not correlated.

Another is to model the entries in each block as an I1l. SYSTEM EVALUATION SETTINGS
Autoregressive (AR) proces5 [13], [19] of ordérwith the A. The Experiments Setup
coefficientr;. The correlation level of the intra-block correla-
tion is reflected by the value of, which can be empirically In our experiments, physiological signals were dividea int
calculated [[IB] from the estimate®; in (I8). In many real- packets. Each packet consisted of digitalized samplesateli
world applications, the intra-block correlation in eaclod® Within a time windowt,, wheret, = Nt,, N was the number
of a signal tends to be positive and high together. Thus, \@é samples within a packet artd was the sampling interval.
further constrain that all the intra-block correlationues of The packet was compressed by multiplying a sparse binary

blocks have the same AR coefficien{13], matrix ® of size M x N with k non-zero entries of each
g column. Note that the sparse binary sensing malrix [8]},[10]
- EZ”' (20) [11] has been widely used in CS-based telemonitoring for
9= its efficiency in storage and matrix-vector multiplicatiorhe

ThenB; is reconstructed as a symmetric Toeplitz matrix Witﬁompressmn ratio(R) was defined as
the first row given by(1,r,---,r%~1]. Our algorithm using CR — N—-M (22)
this regularization is denoted BSBL-FM(1). N



B_ The Compared CS Algorlthms 100 (a) Original FECG Packet 100 (b) BSBL-FM
We compared the proposed algorithm with state-of-the-art | ° L
CS algorithms. The algorithms and their features are listed 27 27
. £ —200] £ —200]
Table[]. Throughout the experiments, the number of samples < < oo
—ao0 400 PRD=4.3048,
TABLE | 100 200 300 400 500 100 200 300 400 500
Samples Samples
THE CSRECOVERY ALGORITHMS USED IN THIS PAPER (c) BSBL-BO (d) BP
100 100
0
CS Algorithm Objective Function Features 2 100 P
BP [22] £1 minimization Ex_m f;:
Group BP[[16] group/; minimization block -300 S oROo11 o1t
BSBL-BO [13] BSBL based block + correlation A e 0 0 o0 200 300 a0 o
BSBL-FM(0) fast BSBL based block Samples Samples
BSBL-FM(1) fast BSBL based block + correlation

Fig. 3. (a) A raw FECG packet. (b), (c) and (d) are the recaVeignals
by BSBL-FM, BSBL-BO and BP, respectively. The compressiatiorCR, =
within a packet was fixed t&V = 512. Default parameters for 0.60 andD was a discrete cosine transform dictionary matrix. Noté the

. ificant “spikes” are the QRS complex waves of the mateB@G. The
BP W?I;e used". For GI’Opr BP, we tuned_the parameters ‘opt sired fetal ECG is buried in the baseline noise and thernst&CG.
to 107° and ‘iterations’ t0200 for optimum performance.
B~1 = 107° was selected for BSBL based algorithms. The

same block partition (block size equals3®) was used for all The recovered signals as well as the distortions usingreifite

block based recovery algorithms. CS algorithms are shown in Figl 3.
In the following we analyzed various factors that affected
C. The Performance Indexes the distortion of CS, including the choice of the dictionary

matrix D and the compression rati0R. The ICA decompo-
&ftions on the recovered recordings were used to verify the
r(E'esign results.

Throughout the experiments, we used two performan
indexes. One was the Percentage root-mean squared disto
(PRD), defined as

1% — X2

[1x][2
heres h d sianal of th ioaaTh The dictionary matrixD was used to sparsely represent
wherex was the reconstructed signal of the true sigaalhe o physiological sighak in a transformed domain. In this
lower the PRD, the better the recovery performance. Anot)—gﬂ
i

he CPU ti hich lculated experiment, we considered six orthogonal dictionary roafi
was the time, which was calculated on a computer Wigh,q \y a5 the Discrete Cosine Transform (DCT) matrix, which
2.9GHz CPU and 16G RAM.

. ied | has been widely used in biological signal processing [Hd]].[
Tvc\é((); exllaenmelnts. Wetse. c_?rne ,OUI' OOne was Feta Ecﬁm next five were wavelet transform matrBeBamely, the
(FECG) telemonitoring. Similar as i [10]. [11], we compare . wavelet, the Symmlet wavelet (the number of vanishing

the Indepepdent ComponenF Analysis (ICA) decompo;iticmomems was set t6), the Daubenchies wavelet (the number
[23] of original FECG recordings to the ICA decompositiony \ 2 nishing moments was set &), the Coiflet wavelet and

of recovered FECG recordings. o . _the Beyklin wavelet. In this experimeny = 512, k = 2 and
Another experiment was EEG telemonitoring for ep|lept|@R — 0.60. The results are shown in Figl 4.

patients. We evaluated the distortion of CS by comparing the

PRD = - 100, (23) A. The Dictionary MatrixD

seizure classification results. The metric, called Areaeyitlide 18 <

receiver operation Curve (AUC)I[4], was calculated to eatdu o/ : § § § /T

the classification performance. AUC denotes the area below j f l

the plot of sensitivity (true positive rate) versus speitififtrue wr I\ o L 3' """ =
negative rate). A/ LA - b S N Ko

GROUP BP

A BSBL-BO
P /A NN T BSBL-FM(0)

: . 2 \ - A- BssL-rM(1)

| A -

: V)

PRD

IV. APPLICATION TOTELEMONITORING OF FETAL
ELECTROCARDIOGRAM

The FECG dataset used in the experiment was the same a
in Section I11.B of [ﬂ]ﬁ. The FECG dataset consisted of eight 4
abdominal (channels) recordings sample@@®iHz and each Q
recording contained0240 data points. S

An exampl_e on a raw FEC.:G paCkEt rec.onStrUCted by d|ffe'g_- . 4. The performance comparison of CS algorithms in redog the
ent CS algorithms is shown in Figl. 3. In this example, a I:Ec\gr’ﬁole Fetal ECG recordings using different dictionary neas.
packet ofN = 512 samples was compressed Witk = 0.60.

3The wavelet transform matri® was generated using thevemaftunction
2Available on-line: https://sites.google.com/site/@stbyzhang/bsbl of the wavelabtoolbox, available at http://www-stat.stanford.edufrelab/



From Fig.[4 we found that the algorithms derived frontract the clean FECG from the raw FECG recordings recovered
the BSBL framework had better performance than the othiey different CS algorithms. In this experimer@R = 0.60,
recovery algorithms. The best performance of the BSBL = 2, N = 512 andD was a DCT dictionary matrix. The
family was obtained whe was the DCT matrix. extracted FECGs of different CS algorithms are shown in Fig.

[4 and the average PRDs and the CPU time of these algorithms
B. The Compression RatioR are shown in TablEJll. We can see that although BSBL-FM(0)

The data distortion from CS is also affected by the conftad slightly poorer recovery performance than BSBL-BO, it
pression raticCR. As more measurements are obtained, a (s much faster. Furthermore, as shown in[frig.7, the extlact
algorithm’s recovery performance can be further improved. clean FECG using ICA from the recovered recordings by
this experiment we studied the recovery performance of &FBL-FM(0) was almost the same as the extracted one from
compared algorithms in terms of CR. The dictionary matri$e original recordings.

D was a DCT matrix,N = 512, andk = 2. The results are
shown in Fig[b and Fid.]6.

(a) FECGs from original signal
T T T T T
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200 400 600 800

“ 1000 1200 1400 1600 1800 2000

PRD

12

10

—f— BP
GROUP BP
BSBL-BO
BSBL-FM(0)
- A BSBL-FM(1)

(b) FECGs from BSBL-FM(0)

-4+ —— PRD=7.3234
. . . . . . . . .

200 400 600 800 1000 1200 1400 1600 1800 2000

(c) FECGs from BSBL-BO

Fig. 5. The PRDs of different CS algorithms with varying coegsion ratios 200 400 600 800
CR.

1000
Samples

1200 1400 1600 1800 2000

From Fig.[® we found that the proposed algorithm showed
similar performance as BSBL-BO, and all BSBL aIgorithmE‘g- 7. Extracted clean FECGs using ICA (a) from the origiraall FECG

ianifi | £ d oth | ith recordings, (b) from the recovered raw FECG recordings bIBEM(0),
significantly outperformed other algorithms. and (c) from the recovered raw FECG recordings by BSBL-BQy@he first

2000 sampling points of the datasets are shown in the figure. Theaged
o ! ! ! ! ! PRDs in recovering the whole Fetal ECG recordings are shawhe corner
08 : : : : of subfigure (b) and (c). The red circles denote the detectsaks of the

FECGs using the MATLAB functiorfindpeakswhere ‘MinPeakHeight' was
set to1.6 and ‘MinPeakDistance’ was set &).

:2: BSBL-BO
BSBL-FM(0)

- A\ ' BSBL-FM(1)

o
iy

TABLE Il
THE AVERAGE PRDAND CPUTIME IN RECOVERING THEFECG
RECORDINGS BY ALL ALGORITHMS.

Averaged CPU Time (s)

BP Group BP
20.98 11.43
0.074 0.126

BSBL-BO BSBL-FM(0)
6.65 7.32
0.620 0.122

PRD
CPU Time (s)

CR

Fig. 6. The average CPU times of different BSBL algorithmshwiarying
compression ratio§’R.

From Fig.[®, we may conclude that our fast implementationy, A pp| |cATIONS TOEEG TELEMONITORING FOR THE
was in average- 7 times faster than BSBL-BO. We also noted

that, in the DCT transformed domain, the coefficiefitarere
almost not correlated. Therefore, the algorithms BSBL-EM(  Epilepsy is a common chronic neurological disorder. About
and BSBL-FM(1) yielded similar performances. However, byne out of every three patients with epilepsy continue teeexp
regularizingB; = I, BSBL-FM(0) reduced computational loadrience frequent seizures [24]. Using EEG signals as theyprox
compared to BSBL-FM(1). to identify and detect epilepsy seizures has been widetliestu

- ~ [24]-[27]. A low-energy designed telemonitoring frameWwor
C. The ICA Decomposition of Recovered FECG Recordingg valuable for such application as it can provide all-dayglo

As illustrated in Fig[B, the desired FECG was buried inontinuous monitoring, which makes epilepsy more likely to
baseline noise and maternal ECG. Thus, we used ICA to ée detected and suitably treated.

EPILEPTIC PATIENTS



A. Description of the EEG datasets

The EEG dataset used in this experiment was the same as
[24], [28]. It consisted of EEG recordings with intractable
seizures fron22 subjects. For each subject, there were hours
of recordings with clinician annotated seizure segmenishS
annotations were used to evaluate the epileptic classificat
results. The EEG dataset was sample@&tHz with 16-bit
resolution. Our objective here is to evaluate the distartd
lossy compression via CS.

—#—BP
Group BP
BSBL-BO
BSBL-FM(0)

B. Experiments Setup Fig. 9. The PRD in recovering EEG signals with different CRuea. With
. . .. . CR = 0.80, the averaged CPU time in recovering the whole EEG recosding
In the experiment, EEG signals were divided into packetgere 0.071s for BP, 0.163s for Group-BP, 0.420s for BSBL-B@ @.097s

Each packet was 2s long which contain®d= 512 samples. for BSBL-FM(0).

The ith packet was denoted g},---,x{} whereC' was

the number of electrodes and! was theith packet from

electrodej. A binary sensing matrix® with two entries of

1s in each column (k=2) was generated. Each packékin

was compressed using this sensing matrix, resulting in the ‘ | ——5p

compressed measuremess } . ST S S - :g:§§§L‘i';§P
We used machine learning techniques to automatically de- ; ‘ : Nom oo ed

tect the epileptic seizure packets. The diagram of the gile A Y A

seizure classifier is shown in Figl 8. The features used & thi ‘ ‘ ‘

X

1 - . L
{yid ‘ CS Packet %} Feature Binar i 0
v 0.9 0.8 07
i Reconstructor ! Extractor Classifier CR

. o . » Fig. 10. The classification performance index AUC on the veoed EEG
Fig. 8. The epileptic seizure classifier block. The com@esSEG packets gjgnals by all CS algorithms at different CR values. Fordsetomparison,

received at the data central are denoted{lpy}. The original EEG signals he AUC calculated on the original EEG signals is also showah denoted
{%k;} are reconstructed fronfly;} using CS solvers and piped through theoy ‘non-compressed'’.

feature extractor and the classifier. The classifier outpuisrobability p;
which denotes abnormality of the current packet.

li f SST251126 v A i VI. HARDWARE IMPLEMENTATION AND EVALUATION
paper were non-linear featurés [25].[26], namely Appraaden A. Background

Entropy [29], Sample Entropy [30], Hurst Exponentiall[31], . _
and Scale Exponential [32]. These features were fed into aWe implemented data compressors in FPGA and evaluated

Random Forest (RF)[83] classifier to classify the epilepti®€ Power consumption. Unlike Microcontrollers (MCU), the
seizure segments. FPGA supports fully parallel implementation and compact

design. It uses only the logic cells related to the compiresso
while the rest are holding reset, therefore the power estéima
C. Epileptic Seizure Classification Results at Different CIR more accurate.
Values A typical design flow on FPGA involves mapping the high-
level description language into the real-time logic cefighe
The distortion introduced by CS varies with different C@pip. For Xilinx FPGAs, the basic cells are Flip-Flops (deth
solvers and different CR values. In this experiment, weedri 35 FFs), Look-Up-Tables (LUTS), Dual-port memories (de-
CR from 0.5 to 0.9 and calculated the average PRD of eachoted as RAMs) and DSP48 sliéd;n order to achieve low-
algorithm. The result is shown in Fifll 9. Again we saw thgjower consumption, the design should utilize less resayrce
BSBL-FM(0) had similar recovery performance as BSBL-BQave low Flip-Flop toggling rates and be multiplierless.
but was much faster.
The AUC of the epileptic seizure classifier on the recovergsl Implementation
signals was also calculated. The classifier was trained &t 80 T . for tel itori hvsiological
of the recovered dataset and tested on the rest datasdLO-ig. . WO compression systems for telemoni oring physiologica
shows the calculated AUCs when the classifier performed gllgnals were implemented. One was a traditional DWT-based
the recovered signals by all algorithms at different CR &alu and angther was our CS-based architecture.
The result showed that BSBL-FM(0) had similar recovery “The basic memory primitive of Xilinx Spartan 6 FPGA is RAMSHR.

quality as BSBL-BO. All the BSBL based algorithms had* RAMBBWER (RAM for short) provides a total memory of 9Kb. The
SP48 slices are digital signal processing logic elemeAt®SP48 slice

comparable AUC metrics to the ‘non-compressed’ with Cgan perform fixed-point arithmetic operations such as plyHaccumulator,
ranging from0.50 to 0.90. multiply-adder, etc.



1) DWT-based physiological signal compressighDWT where {p}, p?} are the indexes of 1s im,. (24) can be
based one dimensional (1D) signal compression core weaculated in parallel with no multipliers. The implemeiua
implemented using the Cohen-Daubechies-Feauveau (Ch#-shown in Fig[IR.

5/3 wavelet filter. This biorthogonal wavelet is multipless

and it also supports lift-based filteringl [5], as shown in.Fig : EN|
[I3. We also implemented multiple transformation stages to
successively improve the resolution. The high-pass caetfiis

output

Fig. 12. The implementation of the CS-based compregses @). Block UO

is a Read-Only-Memory (ROM) block that stores the locatiofds in the
sensing matrix. Block Ul is a synchronous Dual-port membat stores the
compressed measuremeytsd,‘}’b anddff’b denote the data inputs and outputs
of ULl. When a new sample; arrived, the system reads out the contents in
Ul Where{p},pf} point to, accumulates by; and write them back. Ul is
cleared after being unloaded for the compression of the pasket.

output

Fig. 11. The implementation of CDF 5/3 wavelet compressiamne.c

‘dwtb3core’ implements the lift-based filterind. and H denote the storage C. Evaluation

for low-passed and high-passed coefficients respectively. In the experiment, the number of stages of the DWT-based
o compressor wa$ andT' in the threshold testing module was
x;, and the low-pass coefficients are computed as The compression rati@R of the CS-based compressor was

0.50. We stored 20 packets of EEG recordings in a ROM
and each data sample was quantized with 16-bit resolution.

. . 1 , , 1 The FPGA sequentially read out the data and compressed
(i) = 2(2i = 1) + b [on (i = 1) +2a ()] + §J’ (25) them using the two compressors we had implemented. The
where| | is the floor functionz(2i), =(2i + 1) andz(2i — 1) on-chip signals were monitored using the chipscope logic
are data samples or the low-passed DWT coefficients ofeRalyzer via a debug cable. We then exported the compressed
previous stage. The multiplication with/2 and 1/4 in the Measurements captured by chipscope in the Value Change
lifting process can be efficiently implemented in FPGA usingump (VCD) file format. These VCD files were used in
shifting operations. Therefore, no multiplier is used. ATLAB to assess the distortion of data recovery.

The compression is achieved by passing the DWT co- 1) On-chip Activities: On-chip activities of a compressor
efficients through a threshold testing module. This modufé€ mainly reflected by the compression latency and the
discards all coefficients with encoding bits less tiani.e., t0ggling rates. The compression latency, denoted; bis the
lz;/27| < 0. Finally, both the coefficients and their correnumber of clock cycles a core takes to compress a packet.
sponding locations are outputted. The toggling rates, denoted bY,, represents how often

2) CS-based physiological signal compressicfhe CS- the signals in FPGA toggle their values with respect to the
based compression is expressedyas ®x, where® is the System clock. For example, a signal toggles its value atyever
sparse binary matrix with each column containing only twBSing edge of the system clock has a toggling rates equal to

entries of 1s. Our implementation can compress the sampl&§%. The FPGA chip is dynamic within the toggling times
and static (idle) otherwise. The compression latency aed th

en(i) = 2(20) + |~ 2 e~ D) +a@i+ 1] ], (29)

on-the-fly
N toggling rates can be precisely calculated using the VCI file
y=®x = Z bizi, (26) monitored by chipscope.
i=1 The CS-based implementation compresses the data on-the-

where ¢, is theith column vector of the sensing matrix. Leflly, therefore the compression ends immediately after tbe la

y(k) be the Compressed measurements afterk]ﬂhesamme sample of a packet. In contrast, the DWT-based implemen-

z has been collected, i.ey® 2 Zleqjig;i_ Starting tation operates in a batch mode and it requires a whole

with y(© = 0, the compressed measurements are iterativélf;\Cket to perform the multistage data transformation. The

updated with each new sampie available, latencyt; of a 4-stage DWT core can be roughly calculated
; (i1 ast; ~ (N + N/2+ N/4 4+ N/8) where N represents the

,(,1) = y,(,é_l) + @4, 1/1(:2) =Yy ) 4z (27)  number of samples within a packet.

Y



In our experiment, the compression latencieand the tog-
gling ratesT,. monitored by chipscope are shown in Table IlI.
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