
 

Page 1 

Diagnosis of pediatric obstructive sleep apnea: preliminary 

findings using automatic analysis of airflow and oximetry 

recordings obtained at patients’ home 

 

Author names and affiliations: Gonzalo C. Gutiérrez-Tobal*
1
, M. Luz Alonso-Álvarez

2
, 

Daniel Álvarez
1
, Félix del Campo

3,4
, Joaquín Terán-Santos

2
, and Roberto Hornero

1
. 

1
Biomedical Engineering Group, E.T.S.I. de Telecomunicación, Universidad de 

Valladolid, Valladolid, Spain.  

2
Unidad Multidisciplinar de Sueño. CIBER respiratorio. Hospital Universitario de 

Burgos, Burgos, Spain 

3
Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain,  

4
Hospital Universitario Río Hortega, Valladolid, Spain. 

 

*
Corresponding Author: Gonzalo C. Gutiérrez-Tobal, MSc, Departamento de Teoría de 

la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, Paseo 

Belén, 15, 47011, Valladolid, Spain; e-mail: gonzalo.gutierrez@gib.tel.uva.es; Phone 

number: +34 983423000 ext: 4716. 

 

 

 

 

 

 



 

Page 2 

Abstract 

The Obstructive Sleep Apnea Syndrome (OSAS) greatly affects both the health and the 

quality of life of children. Therefore, an early diagnosis is crucial to avoid their severe 

consequences. However, the standard diagnostic test (polysomnography, PSG) is time-

demanding, complex, and costly. We aim at assessing a new methodology for the 

pediatric OSAS diagnosis to reduce these drawbacks. Airflow (AF) and oxygen 

saturation (SpO2) at-home recordings from 50 children were automatically processed. 

Information from the spectrum of AF was evaluated, as well as combined with 3% 

oxygen desaturation index (ODI3) through a logistic regression model. A bootstrap 

methodology was conducted to validate the results. OSAS significantly increased the 

spectral content of AF at two abnormal frequency bands below (BW1) and above (BW2) 

the normal respiratory range. These novel bands are consistent with the occurrence of 

apneic events and the posterior respiratory overexertion, respectively. The spectral 

information from BW1 and BW2 showed complementarity both between them and with 

ODI3. A logistic regression model built with 3 AF spectral features (2 from BW1 and 1 

from BW2) and ODI3 achieved (mean and 95% confidence interval): 85.9% sensitivity 

[64.5-98.7]; 87.4% specificity [70.2-98.6]; 86.3% accuracy [74.9-95.4]; 0.947 area under 

the receiver-operating  characteristics curve [0.826-1]; 88.4% positive predictive value 

[72.3-98.5]; and 85.8% negative predictive value [65.8-98.5]. The combination of the 

spectral information from two novel AF bands with the ODI3 from SpO2 is useful for the 

diagnosis of OSAS in children. 
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Abbreviations 

Acc = accuracy; AF = airflow; AHI = apnea-hypopnea index; AROC = area under the 

receiver-operating characteristics curve; ECG = electrocardiogram; IQR = interquartile 

range; LR = logistic regression; MA = maximum amplitude of the power spectral density; 

mA = minimum amplitude of the power spectral density; Mf1-Mf4 = first to fourth 

statistical moments of the power spectral density; NPV = negative predictive value; ODI 

= oxygen desaturation index; OSAS = obstructive sleep apnea syndrome; PPV = positive 

predictive value; PSD = power spectral density; PSG = polysomnography; RP = 

respiratory polygraphy; Se = sensitivity; SLR = stepwise logistic regression; Sp = 

specificity; SpO2 = oxygen saturation of the blood. 
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1. Introduction 

Obstructive Sleep Apnea Syndrome (OSAS) is a disorder characterized by recurrent 

episodes of apnea (complete absence of airflow) and hypopnea (significant reduction of 

airflow) during sleep [1]. Apneic events lead to oxygen desaturations and arousals which 

prevent patients from resting while sleeping, disrupting both their health and quality of 

life. OSAS can affect both adults and children. Common symptoms in children include 

overnight snoring and sleep difficulties [2], which may derive in other daytime symptoms 

and illnesses such as cognitive and behavioral irregularities, abnormal growth, and 

cardiovascular risks [3], [4]. Moreover, pediatric OSAS is known to be underdiagnosed 

[5], and the scientific literature reports up to 6 % of children affected [3]. This indicates 

the high prevalence of the disease which, in turn, leads to an intensive use of the 

healthcare services [6].  

 

OSAS in children is diagnosed by means of nocturnal polysomnography (PSG) test, 

which acts as the “gold standard” [2]. PSG requires recording a wide range of 

physiological signals from patients overnight, including electroencephalogram (EEG), 

electrocardiogram (ECG), electromyogram (EMG), electrooculogram (EOG), thoracic 

and abdominal respiration movements, oxygen saturation (SpO2), and airflow (AF) [1]. 

Hence, the necessary acquisition equipment is both complex and costly [6]. OSAS 

diagnosis is established according to the apnea-hypopnea index (AHI), which estimates 

the number of apneic events per hour of sleep time. To derive AHI, the physiological 

recordings need to be examined. Consequently, PSG is also time-consuming [7]. 
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Furthermore, the equipment involved in PSG is often not well tolerated by children [8], 

interfering with their sleep routine. 

 

To overcome these drawbacks a number of alternatives have been studied. One common 

approach is the use of a reduced set of signals from PSG to compute different estimations 

of AHI. In this regard, the respiratory disturbance index obtained from respiratory 

polygraphy (RP) was successfully assessed in an in-lab study with children involving 6 

signals [9]: SpO2, AF, heart rate, chest movements, body position, and snoring. The 

oxygen desaturation index (ODI), in combination with common symptoms, has been also 

recently evaluated as an alternative to PSG in pediatric patients [10]. On the other hand, 

the automatic analysis of physiological signals has been also proposed. In this sense, 

features from photoplethysmography time series have shown their usefulness in OSAS 

detection in children [11]. Moreover, studies conducting an automatic processing of the 

SpO2 and ECG signals have been successfully performed in the context of adult and 

pediatric OSAS [12]-[16]. 

 

In this paper, a new method for OSAS diagnosis in children is assessed. Our 

methodology is based on the only use of spectral data from single-channel AF and the 3% 

ODI (ODI3), both of them obtained at patient’s home. The main objective is to evaluate 

the diagnostic usefulness of eventual differences in the AF spectrum of OSAS patients 

(OSAS-positive) and no-OSAS subjects (OSAS-negative) in combination with ODI3. As 

stated above, ODI3 is a commonly used parameter in OSAS studies. Moreover, the study 

of AF is a straightforward choice since apneas and hypopneas are defined on the basis of 
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its amplitude variations [17]. Additionally, the recurrence of apneic events naturally leads 

to the study of AF in the frequency domain. Recent works have shown that OSAS 

modifies the spectral content of AF recordings from adults at certain frequencies, and that 

the information contained in such frequencies is useful in OSAS detection [18], [19]. 

However, no studies have been found applying a similar analysis to AF recordings from 

children. According to the above mentioned, we pose the following research questions: 

i. How does OSAS modify the spectral information of airflow recordings from 

children? 

ii. Are these changes useful to distinguish OSAS in children from at-home 

recordings? 

iii. Is the airflow spectral information complementary to the classic oxygen 

desaturation index in pediatric OSAS detection? 

To answer them, we conduct an exploratory analysis of the power spectral density (PSD) 

of the AF recordings. We look for spectral bands of interest showing differences in 

OSAS-positive and OSAS-negative subjects, as well as their characterization. The single 

diagnostic performance of both the AF spectral features and the ODI3 are assessed. We 

also evaluate their usefulness and complementarity through logistic regression models. 

Our hypothesis is that the joint use of spectral information contained in single-channel 

AF and ODI3 could be useful to diagnose OSAS in children. 
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2. Methods and Materials 

2.1. Subjects and Signals under Study 

This study involved AF and SpO2 recordings from 50 children ranging 3 to 13 years old 

(24 OSAS-negative and 26 OSAS-positive). All of them were referred to the unit of 

respiratory sleep disorders of the University Hospital of Burgos (Spain), due to clinical 

suspicion of OSAS (snoring and/or witnessed breathing pauses). Those children suffering 

from serious chronic medical or psychiatric co-morbidities, those who required urgent 

treatment, and those with symptoms suggestive of sleep disorders other than OSAS (e.g., 

parasomnias, narcolepsy, or periodic leg movements), were excluded. AF and SpO2 were 

acquired during a polygraphy test performed at patients’ home through an eXim Apnea 

polygraph (Bitmed®, Sibel S.A., 

Barcelona, Spain). The sensor used to obtain AF was a thermistor and the sample rate 

was 100 Hz. SpO2 was recorded through an oximeter at the same sample rate. The 

physicians used the AHI derived from PSG to establish OSAS. For the overnight PSG, 

the Deltamed Coherence ® 3NT Polysomnograph, version 3.0 system (Diagniscan, S.A. 

ACH – Werfen Company; Paris, France) was used, recording EEG, right and left EOG, 

tibial and submental (leg and chin) EMG, ECG, AF by thermistor and nasal cannula, 

chest-abdomen movements with bands, body position, SpO2 (Nellcor Puritan Bennett – 

NPB- 290®), snoring, and a continuous transcutaneous recording of carbon dioxide 

(PtcCO2). The American Academy of Sleep Medicine (AASM) criteria were used to 

evaluate sleep states and respiratory events [17]. The median time between PSG and RP 

was 14 days ([6, 25], interquartile range, IQR). Apneas were scored after complete 

cessation of AF, as defined by the American Academy of Sleep Medicine [17]. 
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Hypopneas were defined after a 50% reduction of AF accompanied by a 3% decrease in 

SpO2 [17]. Amplitude cessations and reductions of AF required lasting 2 missed cycles in 

order to be considered as apneas or hypopneas, respectively [17]. An obstructive AHI 

threshold of 3 events/hour was used to distinguish OSAS-positive from OSAS-negative 

subjects [20]. ODI3 was estimated as the number of desaturations (at least 3%) per hour 

of recording. The interruption of the oronasal flow secondary to movements was not 

accounted for either the PSG or the RP. An uninterpretable AF signal was defined as no 

AF during 30 seconds of normal respiration, while respiratory motion signals and SpO2 

remained unchanged. Data were excluded from analysis if >60% of the AF was 

uninterpretable. The Ethics Committee of the University Hospital of Burgos accepted the 

protocol (approval #CEIC 936) and an informed consent was obtained for each subject. 

Table I summarizes clinical and demographical data from the subjects under study. No 

statistical significant differences in body mass index or age were found between groups 

(p-value >> 0.01). 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA 

Features All OSAS-positive OSAS-negative 

# Subjects 50 26 24 

Age
*
 (years) 5.3 ± 2.5 5.4 ± 2.7 5.2 ± 2.4 

Male (%) 54.0 61.5 45.8 

BMI
+
 (kg/m

2
) 16.5 ± 2.5 16.9 ± 3.0 16.1 ± 1.7 

Recording Time (h) 8.9 ± 0.8 8.8 ± 1.0 9.0 ± 0.5 

AHI (e/h) 9.9 ± 13.8 17.9 ± 15.4 1.3 ± 0.8 

BMI: Body Mass Index; AHI: Apnea Hypopnea Index; *p-value = 0.76; +p-value = 0.94 

 

2.2. Power spectral density of airflow 

We computed the PSD of each AF recording to explore eventual differences between the 

spectral information of OSAS-positive and OSAS-negative groups. The estimation of the 
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PSDs was carried out by the non-parametric Welch method, which is suitable for non-

stationary signals [21]. A Hamming window of 2
15

 samples (50% overlap) along with a 

discrete Fourier transform of 2
16

 samples were used. To avoid the influence of non-

physiological factors, each PSD was normalized (PSDn) by dividing all their spectral 

components by their corresponding total power [22]. Thus, the amplitude values of the 

PSDns, as measured in 1/Hz, reflect the occurrence of AF events at each frequency. 

 

In order to define the spectral bands of interest, we looked for statistical significant 

differences between PSDns from OSAS-positive and OSAS-negative groups. Data were 

not normally distributed. Hence, we used a p-value based methodology consisting in 

applying the non-parametric Mann-Whitney U test to the amplitude values of the PSDns 

from both groups, at each frequency [19]. Fig. 1 shows the median values of the PSDns 

from OSAS-positive (black line) and OSAS-negative (grey line) samples. It also shows 

the p-values obtained in the comparison of both groups (light grey line). We found 

marked drops in the p-values around [0.06-0.2] Hz., [0.35-0.43] Hz., and  [0.7-1] Hz. 

However, in order to avoid type I errors, we only defined as bands of interest those 

spectral bands in which the p-value were lower than 0.01. Thus, two bands were finally 

defined: 0.119-0.192 Hz (BW1); 0.784-0.890 Hz (BW2). At each band, we let 10% of 

components have a p-value above 0.01 to maintain coherence with the p-value tendency 

showed in Fig. 1. This avoids the disaggregation of one single homogeneous band into 

several due to spurious values. 

We characterized these two bands by extracting six common spectral features from each 

of them: 
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 Maximum and minimum amplitude (MA, mA), computed as the highest and the 

lowest PSDn values in each band. These features measure the maximum and 

minimum occurrence of AF events at the bands. 

 

Figure 1. Median values of the PSDns from OSAS-positive (black line) and OSAS-negative (grey line) 

samples, and p-values at each frequency (light grey line). Significance level p-value = 0.01 (black dashed 

line). In Fig. 1 a, the spectral bands of interest BW1 and BW2 are delimited outside the normal respiratory 

rate. In Fig. 1 b, BW2 has been expanded for a better viewing. 
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 First to fourth statistical moments (Mf1-Mf4). Mean (Mf1), standard deviation (Mf2), 

skewness (Mf3), and kurtosis (Mf4), quantify central tendency, dispersion, 

asymmetry, and peakedness of the spectral data, respectively.   

 

2.3. Logistic Regression: feature selection and classification 

The logistic regression (LR) method is a supervised learning algorithm which estimates 

the posterior probability of a given instance xi (in our case, a vector containing the 

extracted features) belonging certain class Ck (in our case, Ck = OSAS-positive or OSAS-

negative). Hence, the posterior probability p(Ck | xi), i.e. the probability of a subject 

belonging to OSAS-positive or OSAS-negative group, is computed through the logistic 

function: 

       

,
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 (1) 

where β0 and β are obtained by the weighted least squares minimization procedure [23].  

Thus, an instance xi is assigned to the class with larger posterior probability. 

 

First, we used LR to automatically select those relevant and non-redundant features. This 

was performed through the stepwise LR method (SLR), proposed by Hosmer and 

Lemeshow [23]. Specifically, we applied the well-known forward-selection backward-

elimination algorithm. Then, LR was also used to assess the joint potentiality of the 

selected features from BW1 and BW2 to predict OSAS in children.  
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2.4. Statistical analysis 

Data did not pass the Lilliefors normality test. Hence, the non-parametric Mann-Whitney 

U test was used to evaluate statistical differences in the obtained features from OSAS-

positive and OSAS-negative groups. Sensitivity (Se, percentage of OSAS-positive 

subjects rightly classified), specificity (Sp, percentage of OSAS-negative subjects rightly 

classified), accuracy (Acc, overall percentage of subjects rightly classified), positive 

predictive value (PPV, proportion of positive test results which are true positives), and 

negative predictive value (NPV, proportion of negative test results which are true 

negatives) were used to measure the diagnostic ability of both single features and LR 

models. In the assessment of single features, a receiver operating-characteristics (ROC) 

analysis was conducted. Thus, the area under the ROC (AROC) was also computed for 

each case. 

 

2.5. Results validation: bootstrap 0.632 

We used the bootstrap 0.632 algorithm to validate our results since it is particularly 

useful to estimate statistics in small-size samples [24]. Given a sample of N instances, 

this method proposes building B new samples (bootstrap samples) of size N by 

resampling with replacement from the original one [24]. A uniform probability is used to 

randomly select the instances for each B. Thus, the instances can be selected several 

times for a particular sample Bi, which acts as a training group and, most probably, will 

contain repeated instances [24]. Consequently, for each new sample, a number of 

instances from the original are not selected. These instances act as the test group.  

 



Gutiérrez-Tobal Page 13 

 

 

The number of subjects in our database is N=50 and the number of bootstrap samples 

chosen was B=1000, since it ensures a proper estimation of the 95% confidence interval 

[25] (CI). Thus, 1000 new groups of size 50 were built, acting as training groups. As 

stated above, the instances not included in each case acted as the corresponding test 

groups. Following bootstrap 0.632, a statistic s obtained from a test set would be a 

downward estimation of the true one [25]. Hence, both the training and the test groups 

are used to compute s by weighting their corresponding estimations as follows [24]: 

.368.0632.0 trainingtest sss   (2) 

Finally, the B estimations of s are averaged to show a global performance. 

 

3. Results 

3.1. Descriptive analysis and feature selection 

Table II summarizes the values (median and IQR) of each spectral feature. Consistent 

with Fig. 1, the values of MA, mA, and Mf1 in BW1 and BW2 were significantly higher in 

OSAS-positive than in OSAS-negative subjects (p-value < 0.01). Near to significant 

differences were found in Mf2 from both bands, and there were no differences in Mf3 and 

Mf4. As expected, ODI3 also showed statistical differences between groups (OSAS-

negative: 0.87 e/h IQR [0.44, 1.9], OSAS-positive: 5.9 e/h IQR [1.8, 9.1], p-value < 

0.01). 

 

SLR was used twice to select relevant and non-redundant features. First, we applied SLR 

to the 12 spectral features previously obtained. Thus, mA from BW1, and Mf3 and Mf4 

from BW2 were automatically selected by SLR to form the corresponding model 
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(SLRSpec). Second, the selection process was repeated with the 13 features, i.e., including 

ODI3. In this case, ODI3, mA and Mf4 from BW1, as well as Mf3 from BW2 were 

selected for the model (SLRSpec-ODI3). 

TABLE II.  FEATURE VALUES FOR OSAS-POSITIVE AND OSAS-NEGATIVE GROUPS 

 

BW1 BW2 

median [IQR] 
p 

median [IQR] 
p 

OSAS-positive OSAS-negative OSAS-positive OSAS-negative
 

MA (10
-3

) 3.0 [1.3, 4.4] 1.3 [0.8, 2.4] <0.01 0.11 [0.08, 0.28] 0.06 [0.05, 0.12] <0.01 

mA (10
-4

) 13.0 [7.0, 18.0] 5.1 [4.0, 6.7] <<0.01 0.5 [0.4, 1] 0.3 [0.2, 0.5] <<0.01 

Mf1 (10
-3

) 1.9 [0.9, 2.7] 0.9 [0.5, 1.4] <0.01 0.08 [0.06, 0.14] 0.04 [0.03, 0.07] <0.01 

Mf2 (10
-4

) 3.5 [1.4, 6.8] 1.5 [0.8, 3.9] 0.045 0.16 [0.11, 0.31] 0.09 [0.06, 0.19] 0.029 

Mf3 (10
-1

) 5.9 [2.9, 8.7] 5.4 [3.5, 9.1] 0.993 3.9 [1.8, 6.6] 4.3 [1.9, 9.3] 0.541 

Mf4 (10
0
) 2.7 [2.3, 3.3] 2.7 [2.5, 3.3] 0.749 2.7 [2.4, 3.3] 2.5 [2.3, 3.1] 0.356 

p: p-value of the Mann-Whitney U test; IQR: interquartile range. 

 

3.2. Diagnostic performance 

Table III shows the diagnostic performance of the spectral features and ODI3 after the 

bootstrap 0.632 procedure. Se, Sp, Acc, PPV, and NPV values (mean and 95% CI) were 

obtained by weighting the training and test estimations according to bootstrap 0.632, and 

averaging the results from the 1000 training-test group pairs. The best single feature in 

terms of Acc and AROC was the spectral mA from BW1 (76.3% [65.7-84.2]; 0.743 

[0.584-0.871], respectively), outperforming ODI3 from oximeter (75.3% [67.0-83.4]; 

0.676 [0.513-0.829]).  

 

Table IV includes the diagnostic performance of SLRSpec and SLRSpec-ODI3. SLRSpec, 

which only used spectral information from AF, outperformed all the single features in 

terms of Acc and AROC (79.1% [68.6-87.9]; 0.875 [0.723-1]). The SLRSpec-ODI3 model, 

which combines spectral information from AF with ODI3 from SpO2, obtained the 
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highest results at each statistic (85.9% Se [64.5-98.7]; 87.4% Sp [70.2-98.6]; 86.3% Acc 

[74.9-95.4]; 0.947 AROC [0.826-1]; 88.4% PPV [72.3-98.5]; 85.8% NPV [65.8-98.5]). 

 

TABLE III.  DIAGNOSTIC PERFORMANCE OF THE SINGLE FEATURES 

BW1 
Se (%)  

[CI] 

Sp (%) 

[CI] 

Acc (%) 

[CI] 

PPV (%) 

[CI] 

NPV (%) 

[CI] 

AROC 

[CI] 

MA 
60.2 

[37.0,87.8] 

71.7  

[34.5,95.8] 

65.6 

[55.4,74.2] 

71.7 

[53.6,94.9] 

62.9 

[49.1,80.3] 

0.651 

[0.450,0.805] 

mA 
71.9 

[47.1,87.4] 

81.1 

[65.3,100.0] 

76.3 

[65.7,84.2] 

80.9 

[62.3,100.0] 

73.2 

[58.7,87.3] 

0.743 

[0.584,0.871] 

Mf1 66.4 

[40.5,85.9] 

72.3  

[50.2,95.1] 

69.1 

[54.7,77.3] 

72.9  

[57.9,91.6] 

67.3 

[53.2,83.6] 

0.684 

[0.515,0.825] 

Mf2 59.4 

[32.0,85.3] 

67.0  

[31.9,91.6] 

62.9 

[52.4,72.7] 

67.1  

[51.4,88.7] 

60.8 

[46.0,77.2] 

0.603 

[0.416,0.769] 

Mf3 53.8 

[29.2,78.7] 

57.0  

[30.8,79.2] 

54.0 

[43.4,67.7] 

57.5  

[40.1,75.5] 

53.6 

[38.5,72.1] 

0.542 

[0.422,0.675] 

Mf4 52.1 

[27.3,77.9] 

56.3  

[29.3,80.8] 

60.2 

[42.2,67.9] 

57.8  

[40.5,77.9] 

50.7 

[25.8,71.6] 

0.539 

[0.372,0.698] 

BW2       

MA 
74.6 

[53.1,95.6] 

64.4  

[43.8,82.7] 

70.6 

[60.5,79.2] 

70.1  

[57.6,83.2] 

73.2 

[55.2,93.9] 

0.670 

[0.498,0.809] 

mA 
83.4 

[48.6,98.7] 

65.6  

[51.2,85.8] 

74.8 

[61.1,83.6] 

72.3  

[60.5,84.4] 

80.8 

[56.7,98.0] 

0.730 

[0.576,0.859] 

Mf1 79.7 

[40.4,96.4] 

65.2  

[47.8,84.4] 

72.7 

[59.6,81.3] 

71.2  

[58.8,83.5] 

76.6 

[55.2,94.7] 

0.698 

[0.527,0.837] 

Mf2 74.6 

[42.1,92.2] 

64.2  

[41.7,83.6] 

69.5 

[57.6,79.1] 

69.3  

[56.1,82.8] 

71.1 

[53.0,89.9] 

0.627 

[0.449,0.784] 

Mf3 52.4 

[27.6,78.2] 

52.1  

[25.8,78.7] 

52.4 

[39.1,67.1] 

53.4  

[30.2,73.2] 

50.9 

[32.7,71.8] 

0.557 

[0.422,0.706] 

Mf4 60.3 

[33.5,83.4] 

58.9  

[34.6,80.1] 

59.6 

[48.1,70.4] 

61.5  

[47.4,78.0] 

58.1 

[42.0,74.2] 

0.574 

[0.436,0.712] 

ODI3 
70.9 

[49.5,94.6] 

80.3 

[46.5,100.0] 

75.3 

[67.0,83.4] 

81.9 

[62.9,100.0] 

72.8 

[37.0,87.8] 

0.676 

[0.513,0.829] 

CI: 95% confidence interval.  

 

 

TABLE IV.  DIAGNOSTIC PERFORMANCE OF THE LOGISTIC REGRESSION MODELS 

 
Se (%) 

[CI] 

Sp (%) 

[CI] 

Acc (%) 

[CI] 

PPV (%) 

[CI] 

NPV (%) 

[CI] 

AROC 

[CI] 

SLRSpec 
79.2 

[59.1,96.6] 

79.4 

[59.3,95.8] 

79.1 

[69.6,87.9] 

81.2 

[65.2,94.5] 

78.8 

[60.4,95.4] 

0.875 

[0.723,1] 

SLRSpec-ODI3 
85.9 

[64.5,98.7] 

87.4 

[70.2,98.6] 

86.3 

[74.9,95.4] 

88.4 

[72.3,98.5] 

85.8 

[65.8,98.5] 

0.947 

[0.826,1] 
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4. Discussion 

In this paper, an alternative diagnostic methodology for OSAS in children was developed 

by combining spectral information from AF with the classic ODI3 from SpO2. Our 

proposal was assessed by answering three research questions. 

 

i. How does OSAS modify the spectral information of airflow recordings from 

children? 

We found that the spectral power of AF was significantly higher in OSAS-positive 

subjects at novel frequency bands below (BW1) and above (BW2) the typical respiratory 

range in children reported in previous studies (0.220-0.430 Hz) [3], [26], [27]. The 

relationship of BW1 with apneas and hypopneas can be explained on the basis of the 

definition of these apneic events in children. As stated in section 2.1, apneas and 

hypopneas require at least 2 missed breaths of length in order to be scored [17]. Missing 

2 cycles means that the recurrence of these apneic events is every 2 normal breaths, at 

most. Therefore, their frequency has to be located below the half of the normal 

respiratory frequency range, modifying the spectrum of AF in such band. Since BW1 is 

located below the half of the normal respiratory band, it is consistent with the occurrence 

of apneas and hypopneas. On the other hand, differences in the high frequency band, 

BW2 (0.784-0.890 Hz.), may be explained as the typical respiratory overexertion after an 

apneic event, which increases the respiratory rate [9]. Moreover, the greater variability in 

the PSDn of OSAS-positive children in the range 0.35-0.43 Hz., which is shown in Fig. 

1, is consistent with the decrease of the deep sleep stage time of these patients reported in 

other works [28]. During deep sleeping, respiration becomes more regular [29], which 
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leads to a condensed normal breathing band in the PSDn. OSAS interrupts the sleep cycle 

by the recurrence of arousals [1], causing respiratory instabilities [29] and, consequently, 

a more variable normal breathing rate. 

 

ii. Are these changes useful to distinguish OSAS in children from at-home 

recordings? 

Seven out of the 13 extracted features were significantly different in OSAS-positive than 

in OSAS-negative subjects, (6 out of 12 from AF, and ODI3). In the diagnostic ability 

assessment, mA from BW1 outperformed ODI3, whereas mA from BW2 performed 

similarly. Both SLRSpec and SLRSpec-ODI3 outperformed all the single features. Particularly 

high was the diagnostic ability of SLRSpec-ODI3, which widely improved the performance 

of an in-lab 6-channel RP (74.2% Se, 81.8% Sp, 77.4% Acc, and 0.852 AROC) [9], only 

requiring information from 2 channels (thermistor and oximeter) recorded at patients’ 

home. Additionally, SLRSpec (information from single-channel AF only) also 

outperformed this 6-channel RP.  

 

iii. Is the airflow spectral information complementary to the classic oxygen 

desaturation index in pediatric OSAS detection? 

The study showed complementarity between features in two cases: first, between features 

from the two novel AF bands, since SLR automatically selected features from both of 

them to build the SLRSpec and the SLRSpec-ODI3 models; second, between features from the 

two spectral bands BW1-BW2 and the ODI3, since the latter was also selected for the 

SLRSpec-ODI3 model. 
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Other recent studies also analyzed physiological signals to help in pediatric OSAS 

diagnosis. Shouldice et al. used 50 ECG recordings, and reached 85.7% Se, 81.8% Sp, 

and 84% Acc in a test set (AHI ≥ 1), by applying a quadratic linear discriminant to 23 

features [15]. Gil et al. investigated the diagnostic usefulness of the information 

contained in 21 PPG time series, reporting 75.0% Se, 85.7% Sp, and 80.0% Acc after a 

leave-one-out cross-validation procedure (AHI ≥ 5) [11]. The relationship of high 

frequency inspiratory sounds (HFIS) to OSAS in children has been evaluated as well 

[30], [31]. Rembold and Suratt reported data to estimate that 10 HFIS events per hour can 

be useful to discriminate OSAS in children both for AHI ≥ 1 (70% Se, 100% Sp, and 

76.9% Acc) and AHI ≥ 3 (61.5% Se, 100% Sp., and 80.8% Acc) [30]. Questionnaires and 

common symptoms have been also involved in screening tools for OSAS and sleep-

disordered breathing. Spruyt and Gozal proposed a severity scale based on the answers of 

1,133 children from general population to 6 sleep-related questions [32]. They used a 

predictive score which reached 59.0% Se, 82.9% Sp, 0.79 AROC, 35.4% PPV, and 

92.7% NPV (AHI ≥ 3).  Kadmon et al. validated this 6-item questionnaire in a sample of 

85 children referred to a pediatric sleep clinic [33], reaching 83.0% Se, 64.0% Sp, 0.65 

AROC, 28.0% PPV, and 96% NPV (AHI ≥ 5). Finally, Chang et al. combined symptoms 

(observable apnea, restless sleep, and mouth breathing) with ODI from 141 children to 

assess both a logistic regression model and a new discriminative score [10]. The former 

reached 76.6% of diagnostic accuracy whereas the latter achieved 60.0% Se, 86.0% Sp, 

71.6% Acc, 84.0% PPV, and 64.0% NPV (AHI≥5). Our SLRSpec-ODI3 outperformed the 

reported diagnostic ability in these studies, even though we used recordings obtained 
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from an unsupervised environment. However, Shouldice et al used a more restrictive AHI 

threshold to differentiate patients from control subjects and Gil et al., as well as Rembold 

and Suratt, worked with one single channel.  

 

Some limitations have to be addressed in this study. The sample size should be larger to 

empower the generalization ability of our results. Although the bootstrap 0.632 algorithm 

is known to provide good estimates from small datasets [24], the assessment of our 

methodology in a larger sample is a very interesting future target. Additionally, a larger 

sample would let us define the AF bands of interest through an independent set of 

subjects. Nonetheless, our bands were consistent with the pathophysiology of the apneic 

events. A wide sample of subjects would be also useful to optimize the set of selected 

features. Moreover, since our methodology relies on a classification problem, it only 

provides information about the presence of OSAS and not about its severity. In this sense, 

future work focused on estimating the AHI or assessing different AHI thresholds could 

complement our findings. The only use of a thermistor to record AF is another limitation 

of the study since the AASM recommends the use of a thermistor to score apneas and a 

nasal pressure transducer to score hypopneas [17]. However, our approach does not rely 

on event scoring and, in spite of using thermistor alone, results showed high diagnostic 

ability. Recent studies have shown high performance when using automatic analysis of 

single-channel AF from thermistor in adults [18], [19]. Finally, the application of 

different spectral or non-linear measures, as well as the training of more complex 

classification models, may be also useful to enhance our methodology.  
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5. Conclusion 

To the best of our knowledge, this is the first time that the spectral information of AF 

recordings from children is analyzed in the context of OSAS. We showed that OSAS in 

children significantly modifies the PSDn of AF at two abnormal respiratory bands. 

Diagnostic ability of single features from these novel bands is similar to that of classic 

ODI3. Additionally, the information contained in the two bands showed complementarity 

both between them and with ODI3. Our optimum LR model, built with information from 

thermistor and oximeter at-home recordings, outperformed the diagnostic ability reported 

in previous in-lab studies focused on finding new alternatives to standard PSG. These 

results suggest that the spectral information contained in AF recordings is useful to help 

in pediatric OSAS and that its combination with ODI3 could be beneficial to diagnose 

OSAS in children at home. 
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