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Abstract: Permutation entropy (PE) is a well-known and fast method extensively used in many 

physiological signal processing applications to measure the irregularity of time series. Multiscale 

PE (MPE) is based on assessing the PE for a number of coarse-grained sequences representing 

temporal scales. However, the stability of the conventional MPE may be compromised for short 

time series. Here, we propose an improved MPE (IMPE) to reduce the variability of entropy 

measures over long temporal scales, leading to more reliable and stable results. We gain insight 

into the dependency of MPE and IMPE on several straightforward signal processing concepts 

which appear in biomedical activity via a set of synthetic signals. We also apply these techniques 

to real biomedical signals via publicly available electroencephalogram (EEG) recordings 

acquired with eyes open and closed and to ictal and non-ictal intracranial EEGs. We conclude 

that IMPE improves the reliability of the entropy estimations in comparison with the traditional 

MPE and that it is a promising technique to characterize physiological changes affecting several 

temporal scales. We provide the source codes of IMPE and the synthetic data in the public 

domain. 
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1. Introduction  

There are several main types of measures, such as, entropies and fractal dimensions, to compute 

the complexity of a system or signal. These are used to compare signals and distinguish or detect 

regular and random epochs (Bandt and Pompe 2002). As mentioned in (Kantz, Kurths et al. 

2011), healthy subjects and people with disease can often be distinguished by the complexity of 

their physiological activity (Goldberger, Peng et al. 2002).  

Entropy is one of the most popular and powerful concepts to evaluate the dynamical 

characteristics of a signal. This metric measures the uncertainty and irregularity of a time series. 

Higher entropy generally demonstrates higher uncertainty, whereas lower entropy shows more 

regularity and certainty of a system (Bandt and Pompe 2002, Sanei 2013). There are a number of 

entropy approaches commonly applied to physiological recordings, such as approximate entropy 

(ApEn) (Pincus 1991), sample entropy (SaEn) (Richman and Moorman 2000), fuzzy entropy 

(FuEn) (Chen, Wang et al. 2007), permutation entropy (PE) (Bandt and Pompe 2002) and 

wavelet entropy (Rosso, Blanco et al. 2001), each of which has its own advantages and 

disadvantages (Holzinger, Hörtenhuber et al. 2014).  

PE is based on the order relations among values of a signal, the permutation patterns. It is 

analogous to the Lyapunov exponents for some well-known chaotic dynamical systems, such as 

the noise-free logistic map, although PE yields more meaningful results in the presence of 
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observational and dynamical noise (Bandt and Pompe 2002, Zanin, Zunino et al. 2012). 

Compared with the other entropies, such as ApEn and FuEn, PE is theoretically simple and it has 

fewer parameters, it is relatively robust to artifacts and noise, and is computationally fast. 

Furthermore, the PE can be used for both the non-stationary and nonlinear signals. With respect 

to the signal length, PE is more robust than the zero-crossing rate (ZCR) (Bandt and Pompe 

2002). Because of the aforementioned advantages, PE has been extensively employed in the 

numerous real world physiological signal and image processing applications (Morabito, Labate 

et al. 2012, Zanin, Zunino et al. 2012). For example, Li et al. investigated the behaviour of PE to 

predict absence seizures in rats using EEG signals (Li, Ouyang et al. 2007). They showed that PE 

can track the dynamical changes of EEG recordings and that PE can predict absence seizures 

better than SaEn (Li, Ouyang et al. 2007). Ferlazzo et al. employed PE to reveal abnormalities of 

cerebral activity in patients with typical absences (Ferlazzo, Mammone et al. 2014). They 

concluded that PE is a valuable tool to detect abnormalities of cerebral electrical activity which 

are not revealed by conventional approaches for EEG signals (Ferlazzo, Mammone et al. 2014). 

However, PE is limited to assessing the values of entropy for only one temporal scale, the one 

associated with the original sampling of the signals. This may limit the ability of PE to inspect 

dynamics residing at longer temporal scales. In this sense, multiscale entropy (MSE), proposed 

by Costa et al. (Costa, Goldberger et al. 2002), calculates entropy over a range of scales to 

evaluate the complexity of a time series. In the original definition of MSE, SaEn was the metric 

used to assess the entropy over the temporal scales (Costa, Goldberger et al. 2002). Nonetheless, 

the concept of multiscale evaluation of entropy can be extended to other entropy metrics. 

Morabito et al. used multiscale PE (MPE) to assess the complexity of electroencephalogram 

(EEG) recordings in Alzheimer’s disease (Morabito, Labate et al. 2012). 
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The multiscale evaluation of entropy has notorious advantages. First of all, it allows us to inspect 

dynamics along more than one temporal scale. This is very significant for biological systems 

which need to operate across multiple spatial and temporal scales, and therefore their complexity 

is also multiscaled (Costa, Goldberger et al. 2005). Secondly, unlike SaEn, MSE is consistent 

with the Fogedby study (Fogedby 1992) illustrating that the complexity of 1/f noise is higher 

than white Gaussian noise (WGN). 

The coarse-graining of MPE and MSE methods are based on Costa’s algorithm (Costa, 

Goldberger et al. 2002, Morabito, Labate et al. 2012). The first step of MPE, the coarse-graining 

process, considerably reduces the time series length because, to inspect the deeper temporal 

scales, MPE uses a procedure similar to sub-sampling. This may yield an imprecise estimation of 

entropy when the time series is too short. Hence, the basic MPE method may not provide a 

reliable analysis for short time series. To overcome this problem, in this paper, an improved 

MPE (IMPE) is proposed. This is in contrast with the alternative MPE algorithm by (Shaobo, 

Kehui et al. 2014) called modified MPE (MMPE). In the MMPE, a coarse-grained sequence is 

built subsampling the original signal by taking one out of   samples, where   denotes the 

temporal scale. However, no filtering is used. Therefore, this procedure will necessarily lead to 

aliasing, thus changing important properties of the signal. For example, for 3   and i=2, 

(3)

2 5 8(2, ) { , , ,...}j x x xy , some important information of the original time series 
1 2{ , ,..., }Nx x x  

may be omitted in the MMPE. 

Because of the relevance and the possible usefulness of MPE and IMPE in a number of 

biomedical signal analyses, it is important to understand and exemplify the behavior of the 

measure for different kinds of classical signal concepts such as frequency, amplitude, noise 
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power, and signal bandwidth. This study addressed this issue to help to illustrate the dependency 

of both MPE and IMPE on these concepts and to compare both techniques. Moreover, we will 

illustrate the application of MPE and IMPE to five different datasets of real EEG signals.  

In the following section, the concepts of PE and MPE are described. Our proposed method is 

explained in Section 3. In Section 4, the synthetic signals and real EEG datasets employed in this 

paper are introduced. Then, the results and discussions of the proposed method (IMPE) and the 

conventional MPE are explained in Sections 5 and 6, respectively. The conclusions of the paper 

are drawn in the last section. 

 

2. Background on PE and MPE 

In this section, we briefly describe PE and MPE. 

2.1. Permutation Entropy 

Assume we have a given time series of length N, and let the time series be 1 2{ , ,..., }Ny y yy . At 

each time t of y, a vector including the d-th subsequent values is constructed 

as:
,

( 2) ( 1)Y { , ,..., , }d l

t t t l t d l t d ly y y y     for t=1,2,…,N-(d-1)l, where d, which is named the 

embedding dimension, determines how much information is contained in each vector and l is the 

time delay. To calculate the PE, the d values yi are associated with numbers from 1 to d and 

arranged in increasing order as
1 2 1( 1) ( 1) ( 1) ( 1){ , ,..., , }

d dt j l t j l t j l t j ly y y y
        . For different samples, 

there will be d! potential ordinal patterns,  , which are named “motifs”. For each 
t , ( )tp   

demonstrates the relative frequency as follows: 
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, ,

,
#{ , type(Y ) }

( )
1

d l d l

t id l

i

t t N d
p

N d




  


 
                                                                                    (1) 

where #{} denotes the cardinality of the set (the number of elements) (Bandt and Pompe 2002, 

Zanin, Zunino et al. 2012). The PE is computed as follows: 

!

1

( , , ) ( ) ln ( )
k

k

d

k kH d l p p




 




 y                                                                                                   (2) 

When all motifs have equal probability, the largest value of PE is obtained, which has a value of 

ln( !)d . In contrast, if there is only one ( )kp   different from zero, which illustrates a completely 

regular signal, the smallest value of PE is obtained as much as 0 (Bandt and Pompe 2002, Zanin, 

Zunino et al. 2012). 

2.2. Multiscale Permutation Entropy 

MPE, like MSE, includes two main steps. First, a “coarse-graining” process is applied to a time 

series. Consider a real-valued time series  1 2,  ,···, Nx x x of length N. Multiple successive coarse-

grained versions are made by averaging the time data points within non-overlapping windows of 

increasing length  , which is called scale factor. A schematic illustration of the coarse-grained 

procedure is shown in Figure 1. According to the following equation, each element of the coarse-

grained time series 
( )

j

y  is defined as: 

( )

( 1) 1

1
         1

j

j i

i j

N
x j




   

 
    

 
y                                                                                             (3) 
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where a    denotes the largest integer not greater than a. The length of each coarse-grained time 

series is 
N



 
 
 

. Second step is calculating the PE for each coarse-grained time series. The 

attained values can be plotted as a function of the scale factor   (Costa, Goldberger et al. 2002, 

Morabito, Labate et al. 2012). 
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Figure 1. The scheme demonstrating the coarse-graining of a sequence for scale factor 2   and 

3  .  Figure is modified from the one published in (Costa, Goldberger et al. 2005). 

 

 

3. Improved Multiscale Permutation Entropy 

The conventional MPE has two main drawbacks. Firstly, the MPE is not symmetric. For example 

in scale 3, we could rationally expect the metric to behave the same for x3 and x4, in comparison 

with x2 and x3. However, at scale 3, x1, x2 and x3 are separated from x4, x5 and x6. The second 

drawback is the relative variability of the MPE results for long temporal scales. When the MPE 
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is computed, in the coarse-graining process, the number of samples of the resulting coarse-

grained sequence is 
N



 
 
 

. When the scale factor   is high, the number of samples in the coarse-

grained sequence decreases. This may yield an unstable measure of entropy.  

To overcome these problems, the IMPE is proposed based on the idea originally reported by Wu 

for MSE (Wu, Wu et al. 2014). Here, because of some advantages of PE over SaEn, we use PE 

instead. Hence, the IMPE is calculated in two main steps: 

1) In the first step, 
( ) ( ) ( )

,1 ,2{ , ,...}  i i iz y y  are generated where 

1

( 1)

0( )

,

f i j

f

i j

x

y











  





. As can be 

observed in Figure 2, in the IMPE algorithm, for each  , we have   different time series 

( ) | ( ..., )1,iz i  , while in the MPE method, only 
( )

1z


is considered. 

2) For a defined scale factor  and embedding dimension d, PE of each of 
( ) | ( ..., )1,iz i   is 

separately calculated. Then, the average of PE values is computed as follows: 

( )

1

1
IMPE( , , ) PE( )i

i

x d z



 

                                                                                                         (4) 

d determines the number of accessible states d! .  
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Figure 2. The scheme demonstrating the proposed coarse-graining of a sequence for scale factor 

2   and 3  . 
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Due to the key role of embedding dimension for the PE, an important issue is choosing the 

embedding dimension d. In order to work with reliable statistics, for calculating PE, it is highly 

recommended !d N  or  1 !d N  (Kowalski, Martín et al. 2007, Li, Yan et al. 2014). In 

addition, when d is too large, the computation time will be higher. On the other hand, when d is 

high, the number of accessible states will be large, and the value of the PE will probably be more 

reliable. All in all, we should make a trade-off between the aforementioned cases. It is worth 

noting that, since the number of sample points for a coarse-grained sequence at level   is 
N



 
 
 

, 

we have the condition  1 !
N

d


 
   

 
 for MPE or IMPE. 

4. Evaluation signals 

To evaluate the IMPE and MPE, we will use both synthetic signals and real EEG data. 

4.1. Synthetic signals 

In this subsection, the signals used to study the MPE and IMPE measures, and their 

interpretability in terms of classical signal processing concepts such as frequency, amplitude, 

noise power, and signal bandwidth are described. We also consider the performance of the 

entropy metrics on WGN and 1/f noise. All these synthetic signals, except WGN and 1/f noise, 

have a sampling frequency (fs) of 150 Hz and a length of 100 s. Therefore, they have 15000 

sample points. The time plots of these synthetic signals, and their corresponding spectrograms, 

and two zooms (for each kind of signal) on their start and end, to demonstrate the changes in 

their characteristics, appear in Figure 3. Some of them have been employed to inspect the 

Lempel-Ziv complexity measure and auto-mutual information function rate of decrease and have 

been explained in (Aboy, Hornero et al. 2006) and (Escudero, Hornero et al. 2009) respectively.  
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1) MPE and IMPE Versus Noise Signals: White Gaussian noise is a random signal which has 

equal energy across all frequencies. The name white originates from the fact that this kind of 

signal has a constant power spectral density ( )S f  as follows: 

0
( ) wC

S f
f

                                                                                                                                    (5) 

where Cw is a constant (Sejdić and Lipsitz 2013). White can be regarded as a sequence of 

consecutively uncorrelated random variables with zero mean and finite variance (Diebold 2006). 

A stochastic process appropriate to model evolutionary or developmental systems characterized 

by equal energy per octave is called pink noise, whose power spectral density is as follows: 

( )
fC

S f
f


                                                                                                                                    (6) 

where Cf  is a constant and   can be changed between 0 and 2. As can be seen in Equation 6, the 

power spectrum density of pink noise is inversely proportional to frequency (Sejdić and Lipsitz 

2013). We expect pink noise to be more complex than WGN, due to the presence of long-range 

correlations in the data. 

2) MPE and IMPE Versus Frequency: In order to clarify how the MPE and IMPE change when 

the amplitude and frequency of sinusoidal signals are changed, two kinds of synthetic signals are 

created. The first one consists in a constant amplitude chirp signal whose frequency is swept 

logarithmically from 0.1 Hz to 30 Hz in 100 s. The second kind of signal, whose frequency is 

swept logarithmically from 0.25 Hz to 5 Hz in 100 s, was generated by modulating the amplitude 

of the chirp signal by a pure sinusoid. MPE and IMPE were applied to each of the two kinds of 

signals using a moving window of 6.667 s with 80% overlap with the objective of testing if MPE 

http://en.wikipedia.org/wiki/Serial_correlation
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Mean_%28statistics%29
http://en.wikipedia.org/wiki/Variance
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and IMPE are sensitive to frequency or amplitude changes. Figures 3(a) and 3(b) demonstrate the 

constant chirp signal and the amplitude modulated chirp, respectively. 

3) MPE and IMPE Versus Noise Power: In order to understand how the MPE and IMPE change 

with the level of noise affecting quasi-periodic signals, we created an amplitude-modulated 

quasi-periodic signal with additive WGN of diverse power. The signal was generated as an 

amplitude-modulated sum of two sine waves with frequencies at 0.5 Hz and 1 Hz. The first 20 s 

of this sequence does not have any noise. After that, WGN was added to the signal, with the 

noise power increasing every 10 s. Figure 3(c) shows this time series. 

4) MPE and IMPE Versus Bandwidth of Colored Noise: In order to determine the relationship 

between MPE or IMPE and noise bandwidth, a synthetic signal consisted of a 100-s time series 

composed of the five segments of colored noise with increasing bandwidth is employed. The 

frequency spectra of the colored noises are all centered at fs/4 and their bandwidth increases from 

fs/15 to fs/3 in five equal steps. Figure 3(d) depicts this signal. 

5) MPE and IMPE Versus Spectral Content of Colored Noise: In order to investigate the 

dependence between the MPE or IMPE and the spectral content of colored noise, an 

autoregressive (AR) process of order 1, AR(1), was generated varying the model parameter, ρ, 

linearly from +0.9 to –0.9. Its energy therefore moved from low to high frequencies. When ρ was 

equal to 0, the sequence corresponded to WGN, in the center of the synthetic signal. Figure 3(e) 

depicts the corresponding spectrogram, time plot and zoom views. 

6) MPE and IMPE Versus Changes from being Non-deterministic to Deterministic: In order to 

inspect how the MPE and IMPE change when a stochastic sequence progressively turns into a 

periodic deterministic signal. For this end, we generated a MIX process employed by (Pincus 

1991, Ferrario, Signorini et al. 2006, Escudero, Hornero et al. 2009) . It is defined as follows:  
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MIX (1 )z x zy                                                                                                                          (7) 

where z denotes a random variable which equals 1 with probability p and equals 0 with 

probability 1 p , x shows a periodic time-series created by  2 sin 2 /12kx k  and y is a 

uniformly distributed variable on 3, 3 
 

 (Ferrario, Signorini et al. 2006, Escudero, Hornero 

et al. 2009). The synthetic time-series was based on a MIX process whose parameter varied 

between 0.01 and 0.99 linearly. Therefore, this signal, depicted in Figure 3(f), evolved from 

randomness to orderliness. 

    
       

(a)                                                                    (b)                                                                  



14 

 

            
                                    (c)                                                                        (d) 
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                                   (e)                                                                              (f) 

Figure 3. Spectrograms, time plots and zoom views on the first and last time intervals of the 

synthetic signals used in this study. (a) Test a: Chirp signal with constant amplitude. (b) Test b: 

Amplitude modulated chirp signal. (c) Test c: Quasi-periodic signal with increasing additive 

noise power. (d) Test d: Colored noise with increasing bandwidth. (e) Test e: AR(1) process with 

variable parameter. (f) MIX process evolving from randomness to periodic oscillations. Red 

corresponds to high power, and blue corresponds to low power. 
 
 
 

 

4.2. Real EEG signals 

The MPE and IMPE were applied to five groups (denoted A, B, C, D, and E) of real EEG signals 

to compare the ability of each method to account for different characteristics of the real 

biomedical data. These recordings belong to the EEG database made available online by 
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Andrzejak et al. at the Department of Epileptology, University of Bonn (Andrzejak, Lehnertz et 

al. 2001). Here, we only describe these signals briefly and the reader is referred to (Andrzejak, 

Lehnertz et al. 2001) for additional information. Each of the five datasets consists of 100 single-

channel EEG segments of 23.6 s recorded with fs= 173.61 Hz (4096 sample points). 

Subsets A and B include EEG signals recorded extracranially during the relaxed state of five 

healthy people with eyes closed and eyes open, respectively. The signals in sets A and B were 

acquired at surface electrodes placed according to the international 10-20 system. 

We also applied our methods to three subsets (C, D and E) of EEG data from five epileptic 

subjects, who had achieved full seizure control after a surgical procedure (Andrzejak, Lehnertz et 

al. 2001). Therefore, the EEG signals were not acquired in the same way in healthy subjects and 

epileptic patients. 

Signals in set D were recorded from within the epileptogenic zone, whereas segments in set C 

were acquired from the hippocampal formation of the opposite brain hemisphere. Strip 

electrodes were implanted onto the lateral and basal regions of the neocortex. Both sets C and D 

included only activity measured during seizure-free intervals. Nonetheless, it might be possible 

that some epileptic abnormalities are still present in these recordings. In contrast, set E contains 

seizure activity throughout (i.e., all epochs in set E were recorded during ictal periods). All EEG 

recordings were prepared with the same 128-channel amplifier system, employing an average 

common reference. Electrodes with pathological activity (C, D, and E) or strong eye movement 

noise (A and B) were removed from the computation of the reference (Andrzejak, Lehnertz et al. 

2001). 
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Before computing the entropy of these signals, all recordings were digitally filtered employing 

an FIR band-pass filter with cut-off frequencies at 0.5 Hz and 40 Hz, a band typically used in the 

analyses of brain activity.  

 

5. Results 

5.1. Synthetic Signals 

In the first place, we evaluated the values of MPE and IMPE for WGN and 1/f noise as two 

widespread sequences in multiscale entropy-based analyses (Costa, Goldberger et al. 2005, Wu, 

Wu et al. 2013, Wu, Wu et al. 2014). 

As it can be seen in Figure 4, for uncorrelated WGN, the MPE and IMPE values decreased 

monotonically with scale factor  . This is in agreement with the MSE-based results in (Costa, 

Goldberger et al. 2005, Wu, Wu et al. 2014). In contrast, for a long-range correlated signal such 

as 1/f noise, the PE values first decreased and then approximately became constant over deeper 

temporal scales (Figure 5). Each error bar of each scale   depicts the standard deviation (SD) of 

the average of results of 40 signals for each WGN or 1/f noise. As can be seen in Figures 4 and 5, 

the results using IMPE had notably smaller SD than those of MPE. The length of the 1/f noise 

and WGN sequences was 20000N  . Subsequently  
20000

1 ! 500
40

d
 

   
 

, and d can be 

given a value of 2, 3 or 4. Here, we chose d=4. 
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Figure 4. Mean value of results of the MPE and IMPE computed from 40 different WGN test 

signals. Red and blue indicate MPE and IMPE results, respectively. 

 

Figure 5. Mean value of results of the MPE and IMPE computed from 40 different 1/f noise test 

signals. Red and blue indicate MPE and IMPE results, respectively. 
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To understand the relationship between MPE or IMPE and the frequency of a signal, we 

employed a sliding window moving along a chirp signal. Then, for each scale factor, the MPE or 

IMPE of that part of the signal was computed. The corresponding results of MPE and IMPE are 

illustrated in Figures 6(a) and 6(b), respectively. When the window occupied the beginning of 

the signal, which had lower frequency, the permutation entropy was low. Both the MPE and 

IMPE increased when considering latter samples of the signal, which were associated with 

higher frequencies. It can be noticed that, in this case, entropy was maximized when the 

relationship between temporal window (TW) and scale factor   was close to: 

20.02315 1.617 80.39TW       . This curve, which was obtained using a second order 

polynomial fitting, is shown in the top right part of Figure 6(b). In this case, considering that 

time is related to the instantaneous frequency of the signal according to 
/100( ) 0.1 300t

if t    and 

the relationship between temporal window and time, it is possible to estimate that for some 

frequencies the coarse-graining process leads to maximal entropy. We also show two additional 

curves on Figure 6(b), with equations 
20.03216 1.999 76.33TW        and 

20.04227 2.381 70.39TW       , which model similar relationships for which the relationship 

between frequency of the synthetic signal and scale is such that PE maximises. 

To understand the dependence of MPE and IMPE and simultaneous frequency and amplitude of 

a signal, we used the amplitude modulated chirp signal. The results using MPE and IMPE can be 

observed in Figures 6(c) and 6(d), respectively. The obtained patterns were very similar to the 

ones obtained with the constant-amplitude chirp signal. 
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In Figures 6(e) and 6(f), it can be observed that both the MPE and IMPE were sensitive to 

changes in additive noise power, becoming larger when noise power increased until they reached 

saturation. As mentioned in 2.1, the highest possible value of PE for d=4 is ln(4!) 3.1781  as it 

can be seen in the figures. We have also shown the curve in Figure 6(f) that approximately limits 

the range of maximal entropy. This is given by 
20.281 1.98 9.159TW       . 

Figures 6(g) and 6(h), respectively, show the relationship between MPE or IMPE and the 

bandwidth of noise. In case of 1   or 2  , the PEs gradually increased along the signal. This 

fact is due to the increasing bandwidth of the noise. From 3   to 30  , the PE values is 

decreasing slowly, while in each scale factor, PEs are relatively equal.  

The results demonstrated in Figures 6(i) and 6(j) represent how the MPE and IMPE, in that 

order, change with the signal spectral content investigated using an AR process. For smaller 

scale factors, the PEs increase until almost the middle of the signal and then decrease. As can be 

seen in Figures 6(i) and 6(j), the general trend of the PEs is decreasing from 1   to 30  . 

Figure 6(k) and Figure 6(l), respectively, show the results of MPE and IMPE using the test signal 

which aimed to model the evolution from randomness to deterministic oscillations. The 

frequency of the MIX signal at the latter samples was 1/12. Hence, high PE values can be 

observed for the temporal scales 
1

12
f

    and its multiple, 24  . The curves that seem to 

approximate limit the ranges of maximal entropy are also shown in Figure 6(l) as 

2 0.7712 18.63 43.79TW        and 
20.6916 33.42 334.9TW        , respectively  
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                                   (a)                                                                          (b)  

 

                                   (c)                                                                          (d)  
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                                   (e)                                                                          (f)  

 

                                   (g)                                                                          (h)  
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                                   (i)                                                                          (j)  

  

                                   (k)                                                                          (l)  



24 

 

Figure 6. Results of the tests performed to gain better understanding MPE and its interpretation. 

Relationships between: (a) MPE and chirp signal with constant amplitude, (b) IMPE and chirp 

signal with constant amplitude, (c) MPE and amplitude-modulated chirp signal, (d) IMPE and 

amplitude-modulated chirp signal, (e) MPE and quasi-periodic signal with increasing additive 

noise power, (f) IMPE and quasi-periodic signal with increasing additive noise power, (g) MPE 

and a signal including five segments of colored noise with increasing bandwidth, (h) IMPE and a 

signal including five segments of colored noise with increasing bandwidth, (i) MPE and AR(1) 

process with variable parameter, (j) IMPE and AR(1) process with variable parameter, (k) MPE 

and a MIX process which evolves from randomness to periodic oscillations, (l) IMPE and a MIX 

process which evolves from randomness to periodic oscillations.  

 

We also compared some of these results with the MMPE approach by (Shaobo, Kehui et al. 

2014) . The performance of the MMPE method, which subsamples the original signal without 

any averaging or filtering, is shown for the chirp signal with constant amplitude and a quasi-

periodic signal with increasing additive noise power in Figures 7(a) and 7(b), respectively. 

Comparing these figures with the corresponding results of IMPE (Figures 6(b) and 6(f), 

respectively), it can be appreciated the difference in the entropy results. In addition to the 

abovementioned technical problems of MMPE, MMPE may not able to characterize the constant 

chirp time series and quasi-periodic signal with increasing additive noise power in the larger 

scale factors τ.  
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                                   (a)                                                                         (b) 

Figure 7. Results of the tests performed using MMPE (Shaobo, Kehui et al. 2014). (a) 

Relationship between MMPE and chirp signal with constant amplitude, and (b) MMPE and 

quasi-periodic signal with increasing additive noise power. 

 

5.2. Real EEG Signals 

We illustrate the performance of the IMPE and MPE to characterize real EEG signals using 

datasets A, B, C, D, and E. Each of them includes 100 signals with a length of 4097 sample 

points. Since  
4097

1 ! 136
30

d
 

   
 

, d can be equaled 2, 3, or 4. 
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For d=2, d=3 and d=4, the results for the MPE and IMPE of sets A, B, C, D, and E are shown in 

Figures 8, 9 and 10, respectively. The error bar of each scale   demonstrates the SD of the mean 

value of results of 100 signals for each real  

 

Figure 8. Plots with error bars illustrating the distributions of the permutation entropy values 

computed from real EEG signals (embedding dimension d=2). (a) Surface EEG signals recorded 

from healthy volunteers with eyes open. (b) Surface EEG signals recorded from healthy 

volunteers with eyes closed. (c) EEG signals recorded from epilepsy patients in the hippocampal 

formation of the opposite hemisphere of the brain. (d) EEG signals recorded from epilepsy 

patients in the epileptogenic zone during a seizure-free interval. (e) EEG signals recorded from 

epilepsy patients during epileptic seizures. 
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Figure 9. Error bars illustrating the distributions of the permutation entropy values computed 

from real EEG signals (embedding dimension d=3). (a) Surface EEG signals recorded from 

healthy volunteers with eyes open. (b) Surface EEG signals recorded from healthy volunteers 

with eyes closed. (c) EEG signals recorded from epilepsy patients in the hippocampal formation 

of the opposite hemisphere of the brain. (d) EEG signals recorded from epilepsy patients in the 

epileptogenic zone during a seizure-free interval. (e) EEG signals recorded from epilepsy 

patients during epileptic seizures. 
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Figure 10. Error bars illustrating the distributions of the permutation entropy values computed 

from real EEG signals (embedding dimension d=4). (a) Surface EEG signals recorded from 

healthy volunteers with eyes open. (b) Surface EEG signals recorded from healthy volunteers 

with eyes closed. (c) EEG signals recorded from epilepsy patients in the hippocampal formation 

of the opposite hemisphere of the brain. (d) EEG signals recorded from epilepsy patients in the 

epileptogenic zone during a seizure-free interval. (e) EEG signals recorded from epilepsy 

patients during epileptic seizures. 

 

 

6. Discussions 

In this study, the behavior of MPE and IMPE for synthetic signals, in terms of straightforward 

signal processing concepts, and real EEG data was assessed. 
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6.1. Synthetic Signals 

The comparison of 1/f noise and WGN illustrated that 1/f noise is structurally more complex than 

uncorrelated WGN. It is also important to notice that the mean values of MPE and IMPE for all 

scale factors were approximately equal, although the estimations of entropy based on IMPE had 

smaller variability than those of MPE. In other words, the SD of each of entropy measure using 

IMPE for each scale factor was smaller than the SD of corresponding ones using MPE. This fact 

confirms our theoretical expectations about IMPE producing more stable results than MPE.  

For both the constant and amplitude modulated chirp signal, the values of PE tended to increase 

as the temporal window progressed along the signal, until they reach a plateau of high values. 

For these signals, the PE values provided by the IMPE were more robust and stable than those 

obtained by the MPE. Moreover, for both synthetic signals, the IMPE values changed more 

smoothly than the MPE ones at all scales when moving from the first to the last samples. 

Another important point is that the comparison of results obtained by using the constant and 

amplitude modulated chirp signals showed the PE values do not significantly change with slow 

changes in amplitude. 

In the case of the quasi-periodic synthetic signal, the PE values in the deeper temporal windows 

for both the MPE and IMPE generally increase. In addition, the fluctuations between two 

successive scale factors or temporal windows were smaller for IMPE than for MPE. As can be 

seen in Figure 6(e), when we focus on the scale factor 1 (τ=1, i.e., original PE), the amount of 

noise power is not recognizable from the entropy values because they have saturated. However, 

when considering deeper scale factors, it is possible to appreciate that different levels of noise 

power led to a different number of temporal scales being saturated. This depicts the importance 

of multiscale concept in signal processing applications. 
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For colored noise with increasing bandwidth, when the scale factor   was too high, the effective 

sampling frequency of the coarse-graining sequence became very low, and such effective 

sampling frequency might be below the lower limit of the bandwidth of the colored noise 

(because our colored noise is centered at fs/4). In this case, both MPE and IMPE behaved 

similarly because their entropy values decrease, although the results provided by IMPE are still 

more stable than those of MPE. 

This analysis on AR(1) process with variable parameter showed that part of the signal with wider 

spectra (e.g., white noise) provides higher PEs. In contrast, time series with narrower spectral 

content produces lower PEs, regardless of whether their spectra were centered at low or high 

frequencies. When the scale factor τ goes up, the general pattern for both MPE and IMPE 

decreased gradually. 

As expected on the basis of the concept of entropy, moving along the mix process evolving from 

randomness to periodic oscillations, the PEs decreased for both of MPE and IMPE, although for 

IMPE, the change was more stable. In addition, the highest scale factors lead to lower values of 

entropy for both the IMPE and MPE. Nonetheless, if a signal has one single frequency 

component, then the temporal scales where   equals the period of that component will lead to a 

coarse-graining sequence that has almost no signal contribution, as this will have been averaged 

out. In such case, any small presence of noise may lead to high values of entropy, as evidenced 

by the maximal values of entropy for τ=12 and τ=24 in Figure 6(l). 

6.2. Real EEG Signals 

The mean values of MPE and IMPE for all scale factors and sets were approximately equal, 

although the averages of IMPE results were comparatively more stable. Moreover, for almost all 
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scale factors changing from 1 to 30, each SD of results of IMPE was smaller than the 

corresponding SD of results of MPE. This fact hence confirms the superiority of IMPE over 

MPE in terms of stability of the results. 

It should be added that the intracranial EEG signals’ amplitudes are around 100 mV, while those 

of seizure activity voltages can exceed 1000 mV. However, different levels of amplitude do not 

affect the outcomes of the PE considerably because this entropy measure is sensitive to the 

frequencies and the ordering of the samples, instead of the amplitudes, of the signals. 

In addition to the interpretation of MPE and IMPE in terms of the changes in frequency, 

bandwidth, amplitude, and power noise depicted with the synthetic signals; our results illustrated 

that both the MPE and IMPE can be employed as a powerful indicator of complexity in 

biomedical signals. Hence, MPE and IMPE may be used to distinguish disorders and 

irregularities of physiological recordings. 

All in all, although the ranges of the results for both MPE and IMPE are similar, the variability 

of IMPE for subsequent temporal scales is smaller than MPE. This is because, for each scale, the 

standard deviation of IMPE results are notably smaller than MPE results on the synthetic data 

and real biomedical signals. This fact is because of averaging the results of several new proposed 

versions of the coarse-grained sequences. Hence, IMPE may be better able to characterize 

abnormal dynamics related to disease.  

 

7. Conclusions 

MPE is a powerful indicator of entropy for different types of signals, including nonlinear and 

non-stationary signals. To increase the stability of MPE, we have proposed the IMPE. Then, 
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using synthetic signals, the MPE and IMPE results were investigated to better understand their 

behavior in terms of signal processing concepts such as frequency, amplitude, noise power, and 

signal bandwidth. The results showed that a signal with noise, larger bandwidth and/or higher 

frequency would generally lead to higher values of entropy. MPE and IMPE results were not 

sensitive to slow changes in amplitude. In the deeper scale factors, because of the filtering effect 

of the coarse-graining process, the MPE and IMPE tended to have lower values for the tested 

signals, except for constant and amplitude modulated chirp signals. Furthermore, the capabilities 

of MPE and IMPE to assess physiological complexity were assessed by analyzing publicly 

available EEG signals. The results derived from both synthetic and real EEG signals support the 

idea that IMPE has a better performance than MPE, although both are useful and informative 

tools to calculate the complexity of a time series. 
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