
 

  

 

ABSTRACT— The problem of epidemic control has to face with the resources allocation; a change in the strategy should be 

advisable during the epidemic spread in view of a rational use of the limited resources. The SIR epidemic model, which 

describes the dynamics of Susceptible, Infected and Removed subjects, is considered and an optimal vaccination strategy is 

proposed by introducing a cost index that weights differently the control depending on the severity of the disease. The introduced 

weight is a step-wise one and the switching instants are not known in advance. The meaningfulness of this approach has been 

tested and compared with the case of a constant weight for the control, showing a more efficient resource allocation in the 

proposed approach.   
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1. Introduction 

Epidemic models are a mathematical representation of 

diseases whose spread, if not controlled, may be particularly 

dangerous all over the world due mostly to the increased 

number of travelling people. These models are characterized 

by variables representing different status of the subjects. The 

most common are: the Susceptibles (S), that are subjects that 

may catch the disease, the Infected (I), that are the subjects 

that already caught the disease, the Removed (R), that are the 

subjects that aren’t infected anymore, the Quarantine subjects 

(Q) that are the ones that can’t have contacts with others, the 

Cross-immune subjects (C) that represent the subjects that 

may caught the disease again. Sometimes it may be useful to 

distinguish among the infected subjects (I) the ones that are 

infected but not yet infectious (E).  

Therefore, depending on the specific classes of subjects 

considered, the models usually studied are the SIR, the SIRS, 

the SIRC,  the SEIR, the SEIQR and so on, [1-11].  

The SIR model, originally formulated by Kermack and 

McKendrick [12], considers three classes of subjects, the 

Susceptible, the Infected and the Removed. To control an 

epidemic model means to introduce an external action aiming 

at the reduction of the effects of the disease: the vaccine, the 

quarantine, the drug distribution, for example. Among the 

different strategies the ones that rely in the framework of 

optimal control theory have received increasing attention [13]. 

The choice of the specific cost index is related to the aims to 

be pursued, generally a decrease in the number of infected 

subjects, with as less resources as possible. Then, a central 

aspect is the definition of the cost index, [9-14].  

The approach proposed in this paper introduces in the cost 

index a state dependent weight for the control depending on 

the number of the infected subjects, therefore changing 

intervention strategy on the basis of the varied conditions. The 

switching instants aren’t known in advance but are determined 

as consequence of the dynamic variables evolution and of the 

optimization process. The final time of the optimization 

process has to be minimized too. The proposed cost index is 

applied to a generic SIR model. The paper is organized as 

follows: in Section 2 the optimal control strategy is proposed 

for a SIR model after some recalls of its dynamics; in Section 

3 the impact of the proposed cost index on the control strategy 

is numerically analyzed. Conclusions and future developments 

are outlined in Section 4.   

 

2. Materials and Methods 

The SIR model is one of the most versatile one; it splits the 

population into three groups, the susceptibles (S), the infected 

(I) and the removed (R), indicated in the following equations 

by x , y  and z  respectively. A general description with birth 

term  , that takes into account all the effects that make the 

number of susceptible subjects increasing (immunes, 

newborns, new comings, and so on), and a control aiming at a 

prevention action (a vaccination strategy, for example) is [13]: 
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with   and   parameters chosen depending on the specific 

epidemic disease and )(tu  a bounded control. 

Be 0my  the minimum threshold over which a control 

action is needed, the aim is to determine the optimal control 

u , continuous almost everywhere and satisfying the box 

constraint Utu  )(0 , and the final time 0T   that 

minimize the cost index 
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which brings the number of infected subjects to the threshold 

value my . 

The constraint Utu  )(0  can be also written, in view of the 

approach proposed, as 

0)()(1 −= tutq , 0)()(2 −= Ututq  

The weight ( ))(tyP  changes in nonlinear way depending on 

the number of the infected subjects. the interval  )+,my  is 



 

divided into N subintervals  ) Niyy ii ,...,1,, 1 =+ , myy =1

and +=+1Ny . ( ))(tyP  is assumed such that: 

( )  ) NiRyytyfortyP iiii ,...,1,,)()( 1 == ++   

The quantities i  are chosen so that the higher is the severity 

of the disease, the lower is the cost of the control action in the 

cost index: N  21 . 

In the cost index (5) the term 1K  weights the time to eradicate 

the epidemic as soon as possible. Two terms depend directly 

on the number of the susceptibles and infected subjects, 

weighted respectively by 3K  and 4K ; there is also a mixed 

term that is the control weighted by the number of 

susceptibles, therefore  the assumed vaccination effort is also 

susceptible-dependent. The control acts when myty )( , so, 

for the present application, it can be assumed that 

myyty = 00 )( ; if  )10 , + ii yyy  for some i , the cost index 

to be firstly minimized is: 
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To solve the problem the classical optimal control theory is 

applied; let’s define the Hamiltonian in the normal case: 
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where )(1 t  and )(2 t  are the Lagrange multipliers. 

The necessary optimality conditions are, [13] 
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The control obtained is 
















−


−


−

−

=

U
Kttx

ifU

U
Kttx

if
Kttx

Kttxif

tu

i

ii














2

))()((

2

))()((
0

2

))()((

0))()((0

)(

21

2121

21

       (8)  

 

If there exists an instant Tt j +1  such that 11)( ++ = ij yty  or 

ij yty =+ )( 1 , then the obtained solution is a feasible one 

limited to the interval  )1, +jj tt  and, consequently, 1+jt  is a 

switching instant.  

Setting 1+= jj , the procedure is iterated. 

Otherwise, when  )21,)( yyty  ,  Ttt j , , and therefore 

myyTy == 1)( , the procedure ends and the optimal solution 

( )ooooo Ttutztytx ),(),(),(),(  is obtained by composing 

the expressions defined in each subintervals  )1, +jj tt . 

In the solution represented in (8) the costate )(1 t  and the 

state )(tx  appear explicitly; they can be determined with )(ty  

and the costate )(2 t  taking into account the initial conditions 

(4) with Equations (6) and (7). 

 

3. Numerical Results 

In this Section some numerical results are used to show the 

behavior of the proposed approach and to compare it with the 

classical approach which makes use of constant weights 

coefficients in the cost function. Consider the model described 

in Equations (1)-(4), with 005.0= , 7.0= , 80= , 1=U  

and initial conditions, at time 00 =t , chosen as 5000 =x , 

1010 =y  and 00 =z . 



 

In the simulations, for sake of simplicity only two subintervals 

have been fixed. They correspond, with respect to the 

infection propagation, to two operative conditions: a low 

dangerous situation, in which the infected subjects are less 

than 40% of the initial population of susceptibles, and a very 

serious condition, in which they exceed such a threshold.  

So, according to the problem formulation, one may set  
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Moreover, 100=my  has been chosen, meaning that once the 

infected becomes less than 20% of the initial population of 

susceptibles further action is no longer required. As far as the 

parameters in the cost index (5), the values 101 =K , 

,1.02 =K 1.03 =K , 1.04 =K  are chosen. 

The simulation results are reported hereafter. Time history of 

the susceptibles as well as the infected subjects are depicted in 

Figure 1 while Figure 2 shows the behavior of the optimal 

control. 

In order to put in evidence if, how and where the proposed 

switching cost function represents an improvement with 

respect to more traditional approaches, a comparison between 

this optimal solution and the solutions with constant weights, 

1=  and 10= , have been performed. Reporting the 

behavior of the number of infected )(ty  and the control action 

)(tu , Figures 3 and 4 are obtained. 

 

Fig. 1. Time history of susceptibles and infected subjects. 

 

 

Fig. 2. Optimal control with switching instants. 

 

 

Fig. 3. Comparison of the infected subjects’ evolutions. 

 

 

Fig. 4. Comparison of the control actions. 

 



 

Clearly, making use of the fixed large weight 10=  a small 

control action is obtained producing a high number of infected 

at each time. Obviously, the contrary also holds: to the lower 

weight 1= , a higher control effort and a lower number of 

infected follow. The switching optimal solution seems to have 

an intermediate behavior in the infected evolution. The 

optimal switching control seems to follow better what one can 

expect in this kind of situation: a low control action is 

required, with corresponding reduced social and economic 

cost, if the epidemic diffusion is under the prefixed dangerous 

entity; a higher control is more appropriate when the 

dangerous level is exceeded, but limiting its action to the time 

in which the infection is more critical. 

A quantification of such behaviors, with the aim of giving 

some references for quality comparison, can make use of the 

computation of the quantities 
t

du
0

)(   and 
t

dy
0

)(   for 

 Tt ,0 . The first one corresponds to a sort of energy 

consumption evaluation for the control and it is directly 

related to the actual cost of the intervention; the second gives a 

measure of the number of infected subjects taking into account 

how long such a condition holds. This latter quantity can give 

a measure of the social and treatment costs. Results are in 

Figures 5 and 6. 

 

 

Fig. 5. Control energy estimation: 
t

du
0

)(   vs. time t  

 

 

Fig. 6. 
t

dy
0

)(   vs. time t  

As far as the optimal final time, for the switching case one 

gets 06.5=T  while 86.5=T  is for the fixed weight 1=  

and 82.3=T  for the fixed weight 10= . 

In Table 1, the quantities 
T

du
0

)(   and 
T

dy
0

)(   are 

compared  with the corresponding ones obtained with the 

switching optimal control, 
T

o du
0

)(   and 
T

o dy
0

)(   

respectively, assuming the latter as reference. 
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Optimal 

switching 

control 

0.92 880 0 0 

1=  1.7 600 +84% -32% 

10=  0.26 1160 -71% +32% 

 

Table 1. Evaluation of the total values for 
T

du
0

)(   and 

;)(
0
T

dy   comparison with 
T

o du
0

)(   and 
T

o dy
0

)(   assumed 

as reference ones 

 

The use of a low ( 1= ) constant weight in the cost function 

instead of a state dependent switching one produces a 

reduction of 32% in the amount of infected, but paying this 

with an increment of 84% of the control energy. On the other 

hand, once one tries to reduce the control effort making use of 



 

a large weight value ( 10= ), a reduction of 71% produces an 

epidemic 32% more severe.  

The effectiveness of a switching approach can be derived also 

comparing the minimum value for the number of susceptibles 

and the time in which this happens. Figure 7 shows that for the 

switching control the minimum value is reached before and it 

is lower than both constant cases. 

 

Fig. 7. Comparison of the minimum values for susceptibles  

 

4. Conclusions 

In this paper an optimal control approach with a state 

dependent switching cost index is proposed to determine the 

best strategy to control via a vaccination the epidemic disease 

by using a SIR model. Therefore, it is possible to change 

control strategy whenever new different conditions in the 

epidemic spread are present. Analytical  solution is studied 

and numerical results are discussed. The proposed 

methodology, here presented with reference to a simple single 

input SIR model,  could be generalized to the case of double 

control (both on susceptibles and infected subjects) and to 

more complex models. 
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