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 A new fully automatic framework (PLCSF) for MRI pharynx and larynx cancer segmentation. 
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 Validation of the performance of the proposed framework with approach used in current clinical 

practice using well-established quality metrics. 
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 Applicability to MR images obtained from different MRI scanners with different imaging 

protocols. 
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treatment planning. 
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ABSTRACT 
 
 

A novel and effective pharynx and larynx cancer segmentation framework (PLCSF) is presented for 

automatic base of tongue and larynx cancer segmentation from gadolinium-enhanced T1-weighted 

magnetic resonance images (MRI). The aim of the proposed PLCSF is to assist clinicians in 

radiotherapy treatment planning. The initial processing of MRI data in PLCSF includes cropping of 

region of interest; reduction of artefacts and detection of the throat region for the location prior. 

Further, modified fuzzy c-means clustering is developed to robustly separate candidate cancer pixels 

from other tissue types. In addition, region-based level set method is evolved to ensure spatial 

smoothness for the final segmentation boundary after noise removal using non-linear and 

morphological filtering. Validation study of PLCSF on 102 axial MRI slices demonstrate mean dice 

similarity coefficient of 0.79 and mean modified Hausdorff distance of 2.2mm when compared with 

manual segmentations. Comparison of PLCSF with other algorithms validates the robustness of the 

PLCSF. Inter- and intra-variability calculations from manual segmentations suggest that PLCSF can 

help to reduce the human subjectivity. 

 
 

Index Terms - head and neck cancer, automatic segmentation, magnetic resonance imaging (MRI), 

fuzzy c-means clustering, fuzzy rules, level set method, radiotherapy 



 
1. INTRODUCTION 

 
 
 
 
1.1. Introduction  

In recent years, the incidence of head and neck cancer (HNC), and in particular, pharyngeal and 

laryngeal cancer has increased dramatically due to the influence of the human papillomavirus and 

other related factors [1]. Approximately 13000 new cases for HNC with 46% of pharyngeal and 

laryngeal cases are reported each year in the United Kingdom with over 3,300 deaths per year [1]. 

The definitive treatments of these types of cancer are surgery, chemotherapy and/or radiation therapy 

(RT) with preferred RT treatment in an effort to preserve the organs [2]. Computed tomography (CT) 

has been the primary imaging modality in RT for localisation (segmentation) and staging of cancer 

and treatment planning with secondary information obtained from magnetic resonance imaging 

(MRI) and/or position emission tomography (PET). However, in recent years, dedicated MRI 

scanners [3] are being developed in radiation oncology to smoothly integrate MRI in RT planning 

(RTP) as it demonstrates excellent soft tissue characterization, and has superior diagnostic accuracy 

when compared to CT [3]. Other benefits of MRI include functional imaging for tumour 

segmentation and dynamic imaging techniques for motion assessment, all without adding a radiation 

dose. Thus, localizing (segmenting) the pharynx and larynx cancer from MRI for staging and 

treatment planning is important in spatially localized RTP. In current manual approach to segment 

cancer regions from axial MRI slices, radiation oncologists draw the boundary of the cancer regions. 

This manual segmentation process is time-consuming and subject to inter- (Fig. 1) and intra-observer 

variations, especially in presence of weak boundaries (Fig. 1(a)). Further, clinical work on pharynx 

and larynx cancer segmentation involves huge amount of data from different hospital centres. Thus, 

an automatic segmentation framework that produces quantifiable and repeatable segmentation results 

for the data obtained from different MRI scanners is highly desirable. 



           

(a)       (b) 

  
Fig. 1: (a) Original T1+Gd (gadolinium enhanced T1-weighted) MRI slice with two red arrows to illustrate 

the weak and non-distinct boundary of the base of tongue cancer region, white arrow illustrate the throat 

region (b) Inter-variability in cancer segmentation drawn by two experts (red and white outline) 

 
 
 
1.2. Related work  

 
Many automatic and semi-automatic methods have been proposed for cancer segmentation 

from MRI. Some techniques [4-5] use multi-spectral MRI to segment cancer regions. However, 

obtaining multi-spectral MRI data is not always feasible and is expensive. Furthermore, multi-

spectral MRI data may require registration step prior to segmentation due to misalignment and 

inconsistency. Some other techniques to segment cancer regions from single modality MRI include 

seed-growing [6], watershed method [7] and fuzzy connectedness [8]. These techniques do not 

consider spatial constraints and thus are sensitive to noise and other MRI artefacts such as intensity 

inhomogeneity (IIH) [9]. Further, semi-automatic approach in [6] requires manual-placing of seed 

points or drawing of a close loop outside the tumour from expert to segment the tongue cancer. 

 
 

Active contour (AC) models [10] are also used in tumour segmentation for 2D and 3D 

datasets. AC is improved in [11] for concave shape brain tumours segmentation. Ho et al. [12] 

utilised cancer probability map as an initialization for the evolution of a level-set algorithm to 

segment blobby-shaped 3D cancer. Tongue cancer segmentation using manual initialization for 

level-set is proposed in our previous work [13]. AC models, however, are sensitive to initialization 

even when using 3D level set surface. 



 
Clustering techniques, due to their robustness and efficiency, are prevalent for cancer 

segmentation task [14-18]. Fuzzy c-means (FCM) clustering [19] technique is modified in [14] by 

adding neighbourhood spatial information to correct IIH and segment brain cancer image. This 

technique only works with salt and pepper noise and cannot compensate for severe IIH. Prior 

information on cluster centres and uncertainty modelling is considered in FCM in [15] to improve 

FCM performance under noise and variation in data acquisition. This technique is good only if 

cluster centres information is known prior. FCM has been modified in our previous work [16] to 

segment base of tongue (BoT) cancer from magnetic resonance (MR) images. Non-parametric mean 

shift (MS) clustering [20] is employed in [17] as an initial step for clustering similar voxels in 

multidimensional feature space for breast lesion segmentation. Spectral graph clustering method 

notably normalised cuts (Ncut) algorithm [21] is used for cancer segmentation in [18]. 

 
 

In this paper we present a new pharynx and larynx cancer segmentation framework (PLCSF) 

for automatic segmentation of BoT and larynx (voice box) cancers from 2D (axial) contrast 

(gadolinium)-enhanced T1-weighted (T1+Gd) MRI slices. The aim of this work is to assist clinicians 

in RTP by obtaining quantifiable and repeatable segmentation results in an unbiased manner. T1+Gd 

MRI compared to unenhanced (normal) T1, proton-density and T2-weighted MRI is superior to 

define tumour spread for BoT and larynx cancers [22-23], as it significantly improves soft tissue 

contrast and cancer margin definition. However, even with T1+Gd MRI (Fig. 1), pharynx and larynx 

cancer segmentation is a challenging task due to variability in its geometry, presence of necrotic 

tissues in the cancer region, no distinct boundaries between tumourous and healthy tissues (Fig. 1), 

overlap of feature values of the cancer and non-cancer pixels, and the presence of MRI artefacts. 

Further, significant inter- and intra- intensity variations in MRI data across patients and highly 

anisotropic MRI slices (maximum slice spacing 6 mm) used in this work make it reasonable to 

process each axial slice separately to obtain satisfactory segmentation results. 

 



 
The main objective of this work is to provide the robust cancer segmentation framework 

(PLCSF) that integrates spatial information in an unsupervised technique without requiring the use of 

complex statistical modelling, atlas or the training data. The novel contributions in this PLCSF are as 

follows: 1) to the best of our knowledge there is no computer-aided system in the literature that is 

focused on the automatic segmentation of BoT and larynx cancer from T1+Gd MRI slices; 2) the 

technique described in [9] is modified in this work in terms of spline distance (knot spacing) [24] 

parameter for bias field (IIH) estimation from a MRI slice 3) the algorithm developed for the throat 

region detection is novel in itself; 4) a novel technique based on FCM clustering is developed to 

robustly separate different tissue types in different clusters; 5) our approach does not require any 

manual interaction or different modalities of MRI. 

 
 
 

The organisation of the remainder of the paper is as follows. The framework (PLCSF) 

developed to segment BoT and larynx cancer is presented in Section 2. Real dataset, comparison 

algorithms (MS clustering and NCut) and evaluation parameters used for comparison are described 

in Section 3. Experimental results are reported in Section 4. Finally, discussions and conclusion are 

presented in Section 5. 



2. PHARYNX AND LARYNX CANCER SEGMENTATION FRAMEWORK (PLCSF) 
 
 

 
Pre-processing 

 
Region of interest selection 

Contrast enhancement and noise reduction  
Bias field (IIH) reduction using bicubic 

spline with adaptive spline distance 
 
 

 
Fuzzy rules based throat region detection 

 
 
 

Separation of different tissue types in different 
clusters using modified FCM clustering 

 
 

 
SUSAN and morphological filtering to 

reduce noise from selected cluster and level 
set evolution for final segmentation 

 

 
Fig. 2: Flowchart of the pharynx and larynx cancer segmentation framework (PLCSF).  

IIH – Intensity Inhomogeneity, FCM – Fuzzy c-means, SUSAN - Smallest Univalve Segment Assimilating 

Nucleus 

 
 
2.1. Overview 

 

The flowchart in Fig. 2 illustrates the steps of the proposed PLCSF for BoT and larynx cancer 

segmentation from axial T1+Gd MRI slices. Each axial (2D) MRI slice is processed separately. The 

selected region of interest (ROI) is processed to increase the contrast between different tissues and to 

reduce background noise and IIH. Anatomical (Throat) regions which are close to the expected 

cancer location are detected from the ROI. Modified FCM which includes a squared Euclidean 

distance measure created from the average point of the throat region is used to separate different 

tissue types in different clusters. Further, (Smallest Univalve Segment Assimilating Nucleus) 

SUSAN technique [25] and morphological filtering [26] are applied to the selected cluster to reduce 

noise and wherever appropriate concavity checks are utilized for labelling of expected cancer 

regions. Finally, the labelled region is used as an initialization for the localized region based level set 



evolution [13] which converges to obtain the final segmentation boundary. 

 

2.2. Pre-processing 
 
 
The ROI is selected automatically from the original MRI slice using our technique described in [16], 

to reduce computational time and complexity. The contrast (intensity difference) among different 

tissue types present in a ROI is increased using background brightness preserving histogram 

equalization (BBPHE) [27]. For BBPHE, in this work the ROI is divided into two sub-images using 

the first local minima of the ROI histogram. Further, background noise from ROI is reduced using 

log-exponential transformation [26]. 

 
 
 
 
 
 
 
 
 
 
 
 

(a)  (b)       (c) 
 

Fig. 3: (a) MRI slice (b) estimated bias field (c) bias field reduced MRI slice 

 
Additionally, MR images used in this work suffer from low frequency intensity variation also 

called bias field or IIH. An estimated bias field from Fig. 3(a) is shown in Fig. 3(b). Due to this 

artefact, pixels belonging to one tissue type have varying intensities. To classify pixels belonging to 

one tissue type in one cluster, it is necessary to correct this IIH. The method described in [9] is used 

as a basis to reduce this IIH. 

 

An initial bias field (IIH) is estimated by fitting a third order polynomial function to the data 

excluding background pixels using least square approximation. The resulting bias field is then 

refined using a bicubic spline model. The important parameter in bicubic spline model is the ‘spline 

distance’ i.e. the distance between the knots (knot spacing) defining bicubic spline mesh [24] to 

correctly estimate the bias field. In [9], this parameter, spline distance, is set to a constant value 



(21mm) for all patients. 

 

In this work, spline distance is determined adaptively for each axial MRI slice using the 

technique described in [28] that is applied separately for rows and columns (Fig. 4(a)). 

 

 

 
 

Fig. 4: The procedure to determine spline distance parameter (distance between consecutive knots) for bias 
 
field reduction 
 
 

 

To determine spline distance, the fourth derivative of the data is calculated. This data is 

divided into distinct regions after passing it through a maximum filter [29] of window size 20. The 

value of window size is chosen so as to remove undesired high frequency components while 

avoiding excessive smoothing and merging of adjacent regions. The number of knots kN in each 

distinct region is computed [28] as: 
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where ir  is the region under consideration, K  is a constant and iM  is the fourth derivative value 

of a region under consideration. The error value   is determined from the region with global 

maximum value of the fourth derivative. The total number of knots is obtained by summing the 

number of knots in each distinct region. The distance between consecutive knots (spline distance) is 

subsequently calculated, as the number of elements in data divided by the total number of knots. The 

process of determining knot spacing for column from single axial MRI slice is illustrated in Fig. 4. 

 

With knots spaced evenly across the image, the estimated bias field value at each knot 

location is used for an optimization. The optimization is carried out by minimizing the local entropy 

of the corrected ROI, starting with knot with the highest estimated bias field value, and merging 

areas of lower values in sequential fashion [9]. Fig. 3(c) shows a typical IIH reduced image. 

 
 
 
 
2.3. Fuzzy rules based throat region detection 

 

In this work it is known that the BoT and larynx cancer will be adjacent to the throat region, as 

illustrated in Fig. 1(a). This information is used in FCM extraction of the cancerous regions. A 

combination of thresholding and fuzzy rule-based methods is used for the extraction of the throat 

region. The ROI is converted to a binary image IB  using a thresholding method described by Otsu 

[30]. A signature [26] of each connected component is calculated from the binary image. A signature 

is a 1-D representation of the boundary of an object, calculated as distance between pixels on the 

boundary of an object and its centroid. Any object with a maximum signature radius greater than 

30mm is removed from the upper half of the binary image to reduce false positives. The value 30 is 

decided with empirical tests in which a range of values were systematically tested in turn to assess 

the effect on detection results. Furthermore, the knowledge of the throat position is incorporated in 

two fuzzy rules to classify pixels as the candidates for the throat region: 

 



 
1) The throat region is present in the central part of the binary image. Pixels are associated with the 

throat region using a fuzzy vertical line membership function VLF  . VLF  is calculated from the column 

(Fig. 4(a)) centre ( vc ) and it is given as: 
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where nr  is the number of rows and nc  is the number of columns, a  is set to 5 and b  to 20. Thus, 

the highest membership value of 1 is given to vc and its immediate neighbours gradually 

decreasing the membership values on either side as distance increases from the centre. 

 

2) The throat region is close to the first row compared to the other objects in the middle part of the 

binary image. Thus, fuzzy height membership rule HF is used to associate the closeness of pixels to 

the first row of the binary image. 

Therefore, HF is given as: 
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where is set to 1 and d to nr . 

The fuzzy ‘min’ operator is used to select the minimum of these two membership values for each 

element. It is given by: 

HVLVLH FFF   (4) 
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The weights 1w  and 11 w  are assigned to the membership values to vary the relative importance 

between ),( jiH and ),( jiVL . Finally, candidate pixels for the throat region are chosen as: 

IVLHtsecInter BFF   (5) 
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tsecInterF  of these two fuzzy rules is demonstrated in Fig. 5(a). From tsecInterF pixels with highest 

membership values are chosen as pixels belonging to the throat region. The detected throat region 

from representative MRI slice is illustrated in Fig. 5(b). 

 

 

Fig. 5: (a) tsecInterF  (b) detected throat region (in red) from MRI slice 
 
 

The squared Euclidean distance measure is created from the centre )ct,rt(  of the detected throat 

region and is given as: 
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where nc   and nr   are number of columns and number of rows in the ROI respectively. This 

distance matrix is normalized and converted into one a dimensional feature vector. 

 
 

 

2.4. Expected cancer region extraction using modified fuzzy c-means (MFCM) clustering 
 
 

The standard FCM [19] is an iterative process that produces optimal C  clusters of the grayscale 

image 
N

1kk }I{   where N is number of pixels, by minimizing the following objective function: 
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where iv  is the cluster centre of cluster i . Here C  is the number of tissue types in the image. 
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10  is the membership degree of thk  pixel to thi  cluster. m (> 1) controls the fuzziness of 

membership function ik
 . )I,v(d ki  is the Euclidean distance between iv and pixel intensity kI . The 

membership functions are subject to the following constraints: 
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The squared Euclidean distance measure (6) is added to the objective function of the standard FCM. 

The intuition of this additional distance measure is that the probability of being cancer pixel is 

proportional to its distance to the throat region pixels. This leads to assigning a high membership 

values to the pixels when the distance to the throat region pixel is small and vice versa. The modified 

objective function is given as [16]: 
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In (9) STJ  can be minimized under the same constraint of ik  as in (8).The membership functions 

ik  and cluster centres iv  are updated iteratively as follows:  
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(10) 

 

To reduce the sensitivity to noise, local spatial information described in [31] is employed in this 

membership function. 

 

Fig. 6: Histogram of representative MRI slice from 10 patients showing 5 peaks (red stars) demonstrating five  

clusters for each slice 

 
 
 

Using the MFCM, the IIH corrected ROI is divided into five clusters as it is known that the 

ROI consists of four main tissue types (fatty tissues, cancer tissues, normal tongue/ larynx tissues, 

and normal muscle tissues) and background (Fig. 6). Five clusters of the pre-processed slice are 

shown in Fig. 7(a). It is known that gadolinium-enhanced cancer pixels occupy the higher end of the 

histogram. This is utilized to select the cluster with the expected cancer regions. From selected 

cluster, pixels with membership value ≥ 0.8 are considered (labelled) as the candidates for the cancer 

pixels (Fig. 7(b)). 



 
 
 
 
 
 
 
 
 
 
 

(a)      (b)       (c) 

 

Fig. 7: (a) Five clusters represented with different grey-levels (b) cluster with expected cancer region (c) 

smooth boundary of the labelled cancer region (black outline), manual outline (white) 

 
 
 
 
2.5. Labelled region boundary refinement 

 

Further, noise and isolated speckles present in the selected cluster are reduced using SUSAN 

technique [25] and morphological filtering [26]. The SUSAN algorithm uses non- linear filtering to 

reduce noise while preserving edges. A mask of 3x3 and brightness threshold of 10 was used to 

discriminate noise and underlying image features. Morphological filtering here is a closing operation 

followed by an opening process with disk shape structuring element of radius 5. This filtering 

operation removes small regions while it can preserve topology of large regions. 

 
 
 

For some MRI slices, the labelled cancer region is around the throat region. To decide the 

throat region inclusion in a detected region, a concavity measure [26] of the detected region is 

computed. Concavity measure is obtained by dividing the area of object with its convex area. If the 

concavity of the detected region is less than certain value, the throat region is included in the detected 

cancer region, otherwise it is excluded. 

 
 
 

Finally, the level set function (signed distance function) where zero (initial) level set 

represents the boundary of the estimated cancer region is evolved to obtain the final smooth 

boundary of the labelled cancer region. In this work the statistics (mean and area) of the local interior 



 
and exterior region around each point on the zero level set [13] is considered as a force for evolution. 

The mean separation energy where optimization of energy occurs when foreground and background 

have maximally separate mean intensities is used to stop the evolution [13]. When the level set 

evolution stops after 500 iterations, the final tumour segmentation boundary is obtained. Obtaining 

the smooth boundary of the cancer region using level set is important in radiation oncology as 

clinical expert outlines the cancer borders using contouring for radiotherapy planning as opposed to 

pixel by pixel labelling as done in clustering algorithms. This smoothing process is expected to 

obtain a cancer boundary close to the expert’s manual contouring. The qualitative result of level set 

evolution is shown in Fig. 7(c). 

 
 
 

3. DATASETS AND EVALUATION METHODS 

 

3.1. Real MRI data set 

 

The performance of the PLCSF algorithm was evaluated on real axial T1+Gd MRI slices from 10 

patients (6 base of tongue (BoT) and 4 laryngeal cancers). All MRI scans were obtained before 

radiotherapy treatment from three different 1.5Tesla MRI scanners namely Magnetom Avanto from 

Siemens, Intera Neuro coils from Philips Medical Systems, and Signa HDxt from GE Medical 

Systems. 

 
 

T1+Gd MRI scans were acquired after 15-20 minutes of intravenous injection of 0.1ml/kg, 

with typical 3-5mm slice thickness. The range of other imaging parameters were, 3.3-6 mm spacing 

in between slices, 9.06-20ms echo time, 542-1066ms repetition time, 90
o
-150

o
 flip angle, 0.43x0.43-

0.94x0.94 in-plane resolution, 256x256-512x512 acquisition matrix and 97.65-221 Hz/pixel 

bandwidth. All images were obtained in standard digital imaging and communications in medicine 

(DICOM) format. In total 102 (55 BoT and 47 laryngeal) axial T1+Gd MRI slices from 10 patient 

with visible cancer regions were selected to validate the proposed PLCSF algorithm. Eight axial 

T1+Gd MRI slices from the dataset used to validate the PLCSF algorithm is shown in Fig. 8. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

       (a) 
  
 
 
 
 
 
 
 
 
 
 
 

 

      (b) 

 

Fig. 8: Typical real MRI dataset used to validate PLCSF (pharyngeal and laryngeal cancer segmentation 

framework). Different contrast uptake, shape and size of the cancer regions can be observed (a) MRI slice 

with cancer region that is not fully enhanced. (b) MRI slice with cancer region diffused in normal tissues with 

no distinct edge. 

 

3.2. Manual segmentation procedure and Evaluation parameters 

 

To obtain the reference segmentation for comparison with the automatically obtained results from the 

PLCSF, the MRI scans were peer reviewed in the oncology centre at the head-and-neck radiotherapy 

weekly team meeting. From that meeting, expert general consensus on the tumour outline on 2D 

(axial) slices for all 10 patients, which is considered as a gold standard in current clinical practice 

was obtained. In order to analyse inter-variability in manual segmentation, two independent radiation 

oncologists’ (RO1 and RO2), sub-specializing in head-and-neck cancer and with the experience of 

approximately 10 years, manually outlined the cancer region in all axial slices according to the 

published guidelines [32]. For intra-variability evaluation both RO1 and RO2 repeated this procedure 

on the same dataset approximately one month later. The PLCSF results were also compared to RO1 

and RO2 outlines.



For PLCSF performance assessment, two metrics were utilized; Dice Similarity Coefficient 

(DSC) [33] and Modified Hausdroff Distance (MHD) [34]. Spatial overlap between two 

segmentation results was measured using DSC. A high value of DSC (i.e.1) indicates good 

agreement between two segmentation results. Compared to original Hausdroff distance, MHD 

reduces impact of outliers and noise and it was used for shape variation evaluation between 

segmentation results. In addition, relative area difference (RAD) was calculated as: 
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where (.)Area  is the area of either manual or automatically segmented cancer region. The Pearson 

correlation coefficient (PCC) with p-value is used to test the statistical significance of the PLCSF. 

The PCC value of -1 indicates negative correlation, 0 indicates no correlation and 1 indicates positive 

correlation. 

 
 
 
 
3.3. Other algorithms 

 

The MFCM clustering method proposed in PLCSF was compared to two other clustering algorithms 

in the literature used for cancer segmentation [17-18]. One was mean-shift (MS) clustering [20] and 

other was spectral clustering (Ncut) [21] technique. The comparison was performed on MRI dataset 

described in Section 3.1. 

 

 
MS clustering algorithm was chosen due to its unsupervised non-parametric nature that does 

not require prior knowledge on number of clusters or cluster positions. The method uses a gradient 

ascent technique to detect local maxima of data density in feature space. The data points associated 

with same local maxima are considered as a member of the same cluster. 

 
 
 
 



Ncut [21] is a graph based segmentation method. Ncut is included in comparison due to its 

popularity among spectral clustering methods. Ncut views an image as a graph, where image pixels 

represent nodes and edges between nodes are weighted according to the similarity between pixels. In 

this work, brightness (intensity) and spatial location was used to assign weights to the edges. The aim 

of Ncut is to find a partition of a graph that minimizes the normalised cut between two parts. The 

normalised cut avoids bias for partition of small set of points normally observed in graph-cut 

approach [21]. The partition of the image is obtained by thresholding the resultant eigenvectors. 

 
 
 

For both algorithms (MS and Ncut), the input was the pre- processed MRI slice obtained from 

Section 2.2. From the clusters (partition) obtained from both algorithms only the bright (intensity-

wise) cluster near the throat region was further processed using the techniques described in Section 

2.5. Parameters for both algorithms were chosen so as to give the best performances across the MRI 

dataset. For implementation of MS clustering and Ncut, we used publicly available Matlab codes 

[35-36]. 

 
 
 

4. EXPERIMENTAL RESULTS 
 
 
 
 

The proposed PLCSF was implemented in Matlab 2014a (MathWorks, Natick, MA), on a Windows 

7 system. The software was executed on Dell U2412M with Processor Intel Xeon E5-1607 3.00 GHz 

and 8GB RAM. 



4.1. Spline distance comparison: constant vs. adaptive 

 

As described in section 2.2, in this work spline distance, i.e. the distance between the knots defining 

bicubic spline mesh, is determined adaptively as opposed to the literature [9] where this distance is 

set to a constant value of 21mm for each MRI slice. The spline distance in this work ranged from 

11mm to 38mm for 102 axial MRI slices from three different MRI scanners. Experiments were 

performed by comparing a set of constant spline distances (21mm, 30mm, 60mm) against adaptive 

distance for each MRI axial slice for 10 patients. Coefficient of variation (CoV) for cancer region 

segmented using manual consensus outline from corrected MRI slice was calculated and is given as: 

corrected

correctedCoV



  

(12) 

where  and   are standard deviation and mean respectively. From Fig. 9 it can be noticed that 

CoV value for adaptive distance is less compared to other constant values except for one patient 

(Patient 2). The requirement for adaptive spline distance for the MRI dataset in this work can be 

attributed to different range of imaging parameters, variability in cancer area (range: 89.97-3361.46 

mm
2
) and significant inter- and intra- intensity variations in MRI data across patients. 

 

 
 

Fig. 9: Coefficient of variation (CoV) for different knot spacing (spline distance) parameter to reduce the bias 
 
field. 



4.2. Comparison with manual segmentation results 

 

The visual comparison of the segmentation results between the PLCSF and the gold standard 

(consensus manual outline) for each patient for single axial MRI slice is demonstrated in Fig. 10. In 

Fig. 10: Patients 1 and 2 demonstrate that the PLCSF system can effectively segment small cancer 

regions (area: 89.97-246.67mm
2
). Other examples in Fig. 10 such as Patients 3 to 8 demonstrate the 

variability in cancer segmentation outlines. For some MRI slices (Fig. 10: Patients 3 and 4), where 

the cancer region depicts intensity range close to surrounding tissues and the non-distinct boundary 

between surrounding and cancerous tissues leads to a slight over segmentation by PLCSF. Inclusion 

or exclusion of the throat region in the outline may also influence the segmentation results as 

illustrated in Fig. 10: Patient 5. There is no particular guideline as to include or exclude throat region 

from segmentation results. A variation in the segmentation results (DSC: 0.65) between manual and 

PLCSF outline is shown in Fig. 10: Patient 6. This variation is mostly observed in MRI slices where 

the cancer region is small and often fused into nearby normal structures. For example in Fig. 10: 

Patient 6, PLCSF overestimated cancer region by including normal palatine tonsils in the outline. 

 
 
 
 
 
 
 
 
 
 

 
1 (BoT cancer) 2 (BoT cancer) 3 (larynx cancer) 4 (BoT cancer) 5 (larynx cancer) 

 
 
 
 
 
 
 
 
 
 

6 (BoT cancer) 7 (larynx cancer) 8 (larynx cancer) 9 (BoT cancer) 10 (BoT cancer) 
 
 
 
Fig. 10: Examples of PLCSF segmentation results (black outline) on small cancer regions or challenging 

cases, superimposed with the gold standard (consensus manual outline) (white outline) from real MRI dataset. 



 
The results for laryngeal cancers, Fig. 10: Patients 7 and 8, demonstrate less agreement (DSC: 

0.7-0.8) between manual and PLCSF results as compared to BoT cancer, Fig. 10: Patient 9 and 10, 

which has a DSC: >0.9. The possible reason for this bias is the distinct characteristics of cancer 

tissues as compared to surrounding tissues in BoT cancer than laryngeal cancer. 

 
 
 

The performance measures calculated between the manual outlines from different experts and 

PLCSF are shown in Table 1. 

 
Table 1: Quantitative measures between manual outlines from experts and PLCSF outlines (mean (standard 
 
deviation)) 
 
 

 

 

The mean DSC of 0.79 and RAD of 34.03% for all 10 patients indicates acceptable [11, 17] 

agreement between manual segmentation results and PLCSF. The standard deviations show the range 

of performance of PLCSF for different patients. In some MRI slices, small DSC and large area 

difference are due to the shape variation between manual and automatic results, as the PLCSF 

segments concavity region in detail than manual results (Fig. 10: Patient 8).  

The box plot demonstrating distribution of DSC is shown in Fig. 11. The MHD of average 

2.2 mm indicates that the estimated cancer boundaries are comparable to the expert outlined 

boundaries. 



 

 

Fig. 11: Box plot showing DSC (dice similarity coefficient) distribution between manual and PLCSF 

(pharyngeal and laryngeal cancer segmentation framework) results.   

RO1 – Radiation Oncologist 1, RO2 – Radiation Oncologist 2 

 
 

The Pearson correlation coefficient (PCC) between PLCSF results and the gold standard 

(consensus manual outline), is 0.89 with p<0.05 (Fig. 12) verifying statistically significant results in 

terms of cancer area. Similarly, PCC between PLCSF cancer area and RO1 and RO2 cancer area is 

0.81 and 0.90 respectively with p<0.05. The PCC between PLCSF and consensus manual outline for 

BoT cancer is 0.95 as compared to 0.83 (p<0.05) for laryngeal cancer indicating that PLCSF 

performs better for BoT cancer than for larynx cancer. 

 
 

Fig. 12: Correlation analysis between PLCSF and consensus manual outline cancer areas. 
 
 



4.3. Inter- and Intra-operator variation calculations 

 

Inter-operator variation was calculated between manual segmentations from RO1 and RO2 for the 

same dataset. The variation in the area was calculated in percentage (%) as the difference between 

cancer areas from RO1 and RO2 divided by the average of two areas. The average variation in area is 

25.28%, mean DSC is 0.80 and mean MHD is 2.24mm. These values are consistent with comparison 

of PLCSF and manual segmentation results. The PCC between RO1 and RO2 in terms of cancer area 

is 0.88 (p<0.05). This PCC value suggests that there is no significant difference in RO1 and RO2 

outline. However, RO1 over-estimates the cancer region as compared to RO2 due the practice to 

draw the cancer boundary just outside the detected cancer edges rather than drawing them on the 

cancer edge. 

The intra-variability between first and second manual segmentation from RO1 in terms of 

mean DSC, MHD is 0.85 and 1.67mm respectively and for RO2, DSC is 0.86 and MHD is 1.39mm. 

 
 

4.4. Comparison of PLCSF with other algorithms 

 

Qualitative results in Fig. 13 shows comparable performance of PLCSF with manual outline (Fig. 

13(e), (f)) as compared to Ncut and MS clustering algorithms. 

 

For Ncut algorithm, it is well known that this clustering is biased towards partitioning slice 

into equal segments. This bias affects the segmentation results specifically in case of small cancer 

regions (Fig. 13(a)). For MRI cases with low variation between cancer and surrounding tissues, Ncut 

shows low performance due to segmentation leakage (Fig. 13(b)). Furthermore, this algorithm is 

computationally intensive. The average time for cancer outline per axial slice using Ncut is 82 

seconds compared to average of 45 seconds (in non-optimized Matlab code) per slice for PLCSF. 

 

The results we observed with MS clustering shows that it tends to over-segment the MRI 

slice giving large number of clusters rather than finding the right object (Fig. 13(c), (d)). 

Furthermore, the varied number of clusters obtained by MS clustering for each MRI slice makes it 



challenging to select cluster with candidate cancer pixels. The MFCM used in this work clustering 

lack this issue as number of clusters was fixed. 

 
 
 
 
 
 
 
 
 
 
 

(a)    (c)         (e) 
 
 
 
 
 
 
 
 
 
 
 

 
   (b)        (d)            (f) 

 

                                 Ncut                                  MeanShift                           PLCSF 

 
Fig. 13: Qualitative comparison of segmentation results. Results of proposed PLCSF framework (column 3 – 

black outline) are qualitatively more similar to the Gold Standard (consensus manual segmentation) (white 

outline) as compared to Ncut (Normalised Cut) (column 1 –black outline), and Mean-shift clustering (column 

2 –black outline). 

 

DSC comparison results for these three methods for all 10 patients to the gold standard 

(consensus manual outline) as a reference are shown in Fig. 14. This comparison yielded mean DSC 

of 0.71 for Ncut, 0.75 for Mean Shift and 0.79 for proposed PLCSF algorithm. 

 
 
 

The PLCSF algorithm exhibits a lower CoV (0.07) on average for DSC compared to Ncut 

(0.11) and MS (0.09) clustering. Comparison of MS clustering and PLCSF using paired t-test shows 

statistically significant improvement in DSC (p-value: 1.44 x 10
-3

) with the PLCSF method. 

 



 
 

Fig. 14: Comparison of DSC (Dice Similarity Coefficient) for Ncut (Normalised Cut), Mean-shift and the 

proposed method on real MRI data set, demonstrates improved spatial overlap with the proposed method. 

Black vertical bar indicates ± standard deviation for MRI slices for each patient for the proposed method. 

 
 
 
 

5. DISCUSSION AND CONCLUSIONS 

 

5.1. Discussion 

 

Segmentation of BoT and larynx cancer regions is particularly difficult due to the presence of MRI 

artefacts, enhancements of other non-cancer regions (blood vessels, salivary glands), geometric 

variability and weak edges of the cancer regions across the patients. An unsupervised segmentation 

framework (PLCSF) was presented in this paper for this task that does not require any manual 

intervention or training data. This framework makes no assumption about the shape or size of the 

cancer regions, thus can successfully segment the cancer regions with geometric variability. Also, the 

cases used in this study are representative of everyday clinical challenges. 

 
 
 

In this framework, a novel adaptive determination of parameter spline distance (knot spacing) 

allowed the estimation of complex bias field (IIH) present in MRI slices used in this work. Detection 

of the throat region using fuzzy rule based technique allowed the knowledge of the approximate 



cancerous position to be embedded in the system, particularly in MFCM, thus reducing further 

processing steps to eliminate healthy tissues from cancer detected clusters that are away from the 

throat region. Comparison of MFCM with the standard FCM [19] in [16] showed that MFCM 

achieved better results compared to the standard FCM. The continuity and spatial smoothness of the 

cancer boundary was ensured by evolving the level set surface on the detected cancer region. 

 
 
 

Quantitative comparison with the Gold Standard (consensus manual outline) on 102 T1+Gd 

MRI axial slices from 10 patients, the system (PLCSF) shows no significant difference in 

performance (PCC: 0.89, p<0.05) with the method used in current clinical practice. The PLCSF 

result also demonstrated improved performance when compared to other algorithms (MS clustering 

and Ncut). Existing semi-automatic approach [6] for tongue cancer segmentation validated on 16 

patients (78 axial slices) demonstrated mean correspondence ratio of 0.83 which is comparable to 

PLCSF DSC of 0.79. However, the semi-automatic approach in [6] required manual-placing of seed 

points in the tongue tumour region or drawing of close loop outside the tumour from expert and have 

no results to prove any validation on laryngeal cancer. 

 
The limitation of the current framework (PLCSF) is over-segmentation of cancer region in 

case of similar characteristics of cancer tissues as compared to surrounding tissues. 

 
One of the main purposes of the automatic cancer region segmentation of T1+Gd MRI slices 

is the reproducibility of the segmentation results that contain intra- and inter- variability from manual 

segmentation results. For this framework, if the parameters values are unchanged, the system obtains 

similar results for repeated number of times, indicating the reproducibility of the system. Further, 

using single modality (T1+Gd) in RTP can reduce scanning and processing time of MRI slices and 

increase the computational efficiency. Thus, this tool can assist RO in RTP to obtain pharynx and 

larynx cancer boundaries from T1+Gd MRI axial slices in time-effective and unbiased manner. To 

the best of our knowledge this is first automatic tool focused on segmentation of BoT and larynx 



cancer from T1+Gd MRI. The system also demonstrated that it can perform robustly against 

variations caused by different MRI scanners protocols with different manufacturer and scanner 

models. 

 

5.2. Conclusions 

 

This new and automatic pharynx and larynx cancer segmentation framework (PLCSF) shows initial 

acceptable statistically-validated results in BoT and larynx cancer segmentation from axial T1+Gd 

MRI slices. This framework may help reduce inter- and intra- variability and can assist radiation 

oncologists with time-consuming, complex radiotherapy planning. 

 
 
 

Future work will focus on testing the system on large cohort of BoT and larynx cancer 

patients. Further, when labelling the MRI slice, during manual outline, knowledge from the previous 

and next slices is used. The current system does not make use of this information. Future work will 

make use of this information in 3D segmentation and visualization of the cancer. 
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