
Prostate cancer recognition based on mass spectrometry 
sensing data and data fingerprint recovery

Khalfalla Awedata, Ikhlas Abdel-Qaderb, and James R. Springsteadc

aComputer Science, Pacific Luthran University, Tacoma, WA, USA

bElectrical and Computer Engineering, Western Michigan University, Kalamazoo, MI, USA

cChemical and Paper Engineering, Western Michigan University, Kalamazoo, MI, USA

Abstract

The high dimensionality and noisy spectra of Mass Spectrometry (MS) data are two of the main 

challenges to achieving high accuracy recognition. The objective of this work is to produce an 

accurate prediction of class content by employing compressive sensing (CS). Not only can CS 

significantly reduce MS data dimensionality, but it will also allow for full reconstruction of 

original data. We are proposing a weighted mixing of L1- and L2-norms via a regularization term 

as a classifier within compressive sensing framework. Using performance measures such as OSR, 

PPV, NPV, Sen and Spec, we show that the L2-algorithm with regularization terms outperforms 

the L1-algorithm and Q5 under all applicable assumptions. We also aimed to use Block Sparse 

Bayesian Learning (BSBL) to reconstruct the MS data fingerprint which has also shown better 

performance results that those of L1-norm. These techniques were successfully applied to MS data 

to determine patient risk of prostate cancer by tracking Prostate-specific antigen (PSA) protein, 

and this analysis resulted in better performance when compared to currently used algorithms such 

as L1 minimization. This proposed work will be particularly useful in MS data reduction for 

assessing disease risk in patients and in future personalized medicine applications.
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1. Introduction

Mass Spectrometry (MS) is often used to identify and quantify protein peptides and has the 

potential to be clinically used to differentiate between healthy and diseased patient samples. 

It has gained significant importance over the past years and of paramount challenge is the 

fact that MS data comes with high dimensionality. Being of such high dimensionality, MS 

data classification is computationally complex. Data reduction algorithms will be of critical 

importance in medicine going forward, having extensive application in the areas of disease 

risk assessment and personalized medicine. Major efforts are focused on improving 

classification while reducing computation [1]. Many algorithms have been proposed to 
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classify MS data. In some methods the classification utilizes the whole MS data where all 

peak intensities are considered. In other studies, [2,3], the linear discriminant analysis 

(LDA) and continuous wavelet (CWT) space have been used for MS classification. 

Furthermore, the Q5 algorithm has also been proposed for the probabilistic classification of 

a serum sample using mass spectrometry [4]. They enforced a dimensionality reduction via 

PCA, projecting the spectra-space into a lower dimension, where the cross class variance is 

maximized. Then, LDA is applied to classify the projecting data. Other Partial features are 

candidates for classification where some peaks or ranges of spectra, such as alignments or 

filters, are excluded during the preprocessing procedures. Guyon et. al [5] propose a 

Recursive Feature Elimination (SVMRFE) algorithm that selects important genes/

biomarkers for the classification of noisy data. The sparse proteomics analysis (SPA) is 

another way to complete feature selection based on the compressive sensing concept [6]. 

Sparse features are a small subset of features that can be used to accurately predict unknown 

proteomic data. Huang et. al propose sparse signal representation to be used for 

classification among multiple linear regressions [7]. In using this method, the test sample is 

linearly represented of all training samples. Coefficients entries are all zeros except for those 

associated with a particular class or category.

In this paper, we used regularization of least squares with L1 and L2-norm methods to 

recover and classify within data sparse representation. Furthermore, we verified our 

proposed method using a prostate cancer database. Finally, accuracy and precision of our 

results were compared to those using the L2-norm method or the Q5 method.

2. Material and methods

2.1. Compressive sensing framework

In compressive sensing, most efforts target an optimum solution for the linear system 

equation

(1)

where x ∈ ℝN is a sparse signal, ϕ ∈ ℝdxN is the measurement or sensing matrix, y ∈ ℝd is a 

measurement vector, and d is the number of measurements retained from the original length 

N. Choosing d ≪ N immediately gives a compressed measurement vector y of length d 
instead of N. The ϕ rows are incoherent and the columns are linearly independent [8]. The 

encoding phase is non-adaptive and does not need analysis in order to find the final 

encoding. Retained measurements d should always satisfy:

(2)

where C0 is a constant and is the k number of non-zero entries in x. Therefore, CS is based 

on the assumption of a severely undersampled signal but reconstruction is secured using 

methods of convex optimization [9], as given in Eq. (3).
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(3)

2.2. CS-based MS classification

MS data has very high dimensionality and the classification process is computationally 

expensive. A main objective of this study is to propose an accurate MS data classifier while 

reducing dimensionality. By modeling the MS data using CS technique, the sensing data 

does not only include lower dimensionality than the original data, but also the original 

information is preserved. This will allow us to go through the classification process with 

lower data dimensionality, leading to faster processes without losing classification accuracy. 

We are particularly focused on producing optimal and robust solutions from MS data where 

the following assumptions are considered:

1. The MS data is noisy

2. The collected data (MS sample) is of a high dimension [typically 105 to 108].

3. The number of samples in the database is relatively small [typically 102 to 104].

Each sample is represented by a vector pair {m/z, I} ∈ ℝN where m/z is the mass to charge 

ratio xi = {Ii,1, Ii,2, ……Ii,ni} ∈ ℝNxni and I is the spectral intensity. Then we stack ni 
columns of ith class as xi = {Ii,1, Ii,2, …….Ii,ni} ∈ ℝNxni. Then the training set containing the 

n samples belonging to K classes can be represented as X = [x1, x2, …….xK ] ∈ ℝNxn, thus 

. In sparse representation, any test sample, x ∈ ℝN, can be represented as a linear 

combination of the entire training samples [10].

(4)

where r ∈ ℝn represents the coefficient vector that needs to be estimated. When N < n, the 

system is an underdetermined and would have an infinite number of solutions leading to a 

non-unique r. While the sparsest solution can be found using L1 norm, others chose to use 

nonlinear methods to find the nearest solution, such as convex optimization [8] and Newton 

methods [11]. It is proposed to reduce original high dimensionality of the data much using a 

sensing matrix and taking advantage of CS framework as also utilized by Liu et. al [12]. 

Instead of dealing with the X matrix, our MS data set, a new sensing data is generated by

(5)

where Y = [y1, y2, ….yK ] ∈ Rdxn and ϕ ∈ ℝdxn is the transformation matrix(ℝN → ℝd). In 

general, d has to be much smaller than N, to satisfy the underdetermined condition. Due to 

high dimensionality of MS features and especially in comparison with the number database 
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samples, we still have an overdetermined system. In contrast to the other study and their 

proposed solution via L1 [12], it is possible for us to estimate r using L2 norm by solving:

(6)

However, to overcome the limitation of L1 and L2 overfitting, the regularized regression 

method that linearly combines the L1 and L2 penalties has been suggested by Zou et. al 

[13]. Therefore, Eq. (6) is replaced with Eq. (7) in our solution:

(7)

where the term  is known as the Elastic net penalty, and both of the trade-off 

parameters λ1 andλ2 ≥ 0. Both represent the compromise between model complexity and 

results accuracy. Eq. (7) is equivalent to the optimization problem:

(8)

Once r coefficients are estimated, the identity of test sample y can be determined based on 

how well the coefficients from each category are assigned to the object by calculating the 

residuals between the sensing test sample and all categories. The class is assigned based on 

minimum residual as:

(9)

where δri is the regularization subvector coefficient of class i with dimension ni consisting of 

components of r and Yi is a dxni submatrix of Y, both corresponding to the class i samples 

[14]. The procedure for this proposed work is shown in Fig. 1.

3. MS recovery using CS framework

Although MS data is not naturally sparse, the difference between any two samples can be 

assumed as relatively sparse [12]. In Fig. 2, we show two diseased samples (D1 and D2) 

along with a healthy sample (C1) all taken from prostate cancer MS dataset for tracking 

PSA. This database is routinely used in assessment of patient prostate cancer risk [15]. We 

also show the difference between samples from patients with prostate cancer (D1–D2) is a 

sparse signal while the difference between the samples from healthy patients and patients 

with prostate cancer (C1–D2) is much less sparse. Consequently, we can use sparsity for 

reconstruction of the sample to its original size if needed, such as when abnormalities 

necessitate further analysis of original data.
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Using regulated L2 classification results to identify the nearest sample y* to a test sample yt, 

we can create the fingerprint signal as:

(10)

(11)

where yFP ∈ ℝM is the measurements vector which has been taken from the original signal 

fingerprint xFP (that is D1–D2). xFP is in a high dimensional space and can be recovered 

using compressed data yFP while ε is noise. The L1 minimization has been used to recover 

the data fingerprint in the study by Liu et. al [12]. However, due to MS instrument error, 

which causes a shift of features around m/z locations [16], the number of non-zero 

coefficients in the diseased sample fingerprint will still be large. Therefore, we propose 

using a technique that will have better results using less sparse data.

Recent algorithms such as Block Sparse Bayesian Learning (BSBL) were proposed as new 

methods to compress/reconstruct a non-sparse data set [17]. The BSBL family has been 

applied for non-sparse signals such as EEG and ECG by exploiting the intracorrelation of a 

block itself. In this paper, the BSBL is proposed to reconstruct the fingerprint MS data. The 

BSBL framework exploits the temporal correlation to improve its performance with the first 

basic model assumption:

(12)

where xFP can be viewed as non-overlapping blocks , b is the size of the 

blocks and bi (∀i) are not necessarily identical, with the locations of non-zero blocks 

unknown. The second assumption is to model the noise signal ε, for sparse Bayesian 

framework, as a Gaussian distribution p (ε, σ2) = N (0, σ2) with zero-mean and a variance of 

σ2. One advantage of the multivariate normal distribution stems from the fact that it is 

mathematically tractable and quality results can be and have been obtained [18,19]. We 

propose to apply Bayesian inference on MS signal fingerprint

Each block xi ∈ ℝbix1, i = 1, 2, ….g is assumed to satisfy a parameterized multivariate 

Gaussian distribution given by:

(13)

where αi (∀i) are hyperparameters controlling the block-sparsity of x. Few blocks have a 

nonzero value, and Bi ∈ ℝdixdi (∀i) is a positive definite matrix which captures the 
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correlation structure among the blocks which are assumed to be mutually uncorrelated. The 

αB terms are represented in the diagonal matrix Σ0:

(14)

Having defined this matrix with Bayes’ rule implementation, we can express the posterior 

distribution of all unknowns overweight by:

(15)

where the posterior covariance and mean are given by:

(16)

(17)

Once the hyper parameters σ2,  are estimated, usually carried out using the type-II 

Maximum Likelihood (ML) [20], we apply the maximum a posterior (MAP) to estimate xFP. 

[21]. The estimated data x̂FP can be reconstructed directly from the posterior mean:

(18)

The block sparsity is controlled by two parameters  and Σ0; by setting αk = 0 for kth 

block, block k will be pruned and due to the presence of noise, αk will never be zero. Thus a 

threshold δ will be used to prune out small αk (∀i). The smaller value of threshold means 

fewer  are pruned out, and thus few blocks will be zeros [22]. Once xFP has been 

estimated, it can be used to reconstruct the original data as:

(19)

where x* is the training sample that is the corresponding to y* signal which is derived from 

the classification process.
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4. Results and discussion

To verify our proposed framework, we used prostate cancer SELD–TOF mass spectra 

datasets from the NIH and FDA Clinical Proteomic Program (http://home.ccr.cancer.gov/

ncifdapromics-/ppatterns.asp) [15]. Table 1 shows this data content with respect to Prostate 

Specific Antigen (PSA) levels. PSA is a protein produced by cells of the prostate gland, 

levels at which routinely are measured to assess patient risk of prostate cancer. PSA levels 

were measured in blood samples, and diagnosis is performed on these measurements as 

listed in Table 1.

Due to high variation of amplitude peaks, the normalization process is used to set the 

intensities to new values in the range [0,1]. For normalization purposes we used:

(20)

where max (xi) and min (xi) are the maximum and minimum intensity peaks.

4.1. Classification performance

The database matrix has been arranged with the dimension of (15200 × 237) and contains 

four categories. To assess the L2-norm method, one sample has been selected randomly as a 

test sample. The dimensionality reduction step has been applied using the sensing matrix ϕ 
with the number of rows (0.2*N where N is number of features). Each column contained 

random (0.125*N) entries equal to one, while other entries equal to zero [23]. The classifier 

can achieve the same accuracy even with a compression ratio less than 0.2. Importantly, 

original data can also be recovered in our system in cases where further analysis is critical. 

Therefore, in this work, 0.2 compression ratio has been selected in all classification and 

recovery procedures. In Fig. 3, the test sample chosen belongs to subject 2, so one can assign 

the test sample to the category, which can give the best approximation minri (y).

Performance of this suggested scheme was also compared with two most effective 

classification algorithms PCA/LDA [24] and compressed sensing recognition (CSR) [12].

For performance assessment of the predictor, the confusion matrix has been used. Table 2 

shows the result of applying the L2, the L2-Regulator, and PCA/LDA (Q5) algorithms for 

classification. The data set was divided with 60% (143 samples) of the data as a training set 

and the remaining data used for testing. Furthermore, to make sure that the algorithm 

performance is not dependent on a specific set, the results are obtained from the average of 

10- fold cross-validation. For L2-Regularization, we let  and put 0 ≤ η ≤ 1 as a 

condition to select those parameters. The regularization parameters (λ1, λ2) are selected 

randomly 150, 0.5 (η = 0.003322) respectively.

Overall Success Rate (OSR), sensitivity (Sen.), Positive Predictive Value (PPV), Negative 

Predictive Value (NPV) and Specificity (Spec.) have been calculated for all simulations. The 

results are listed in Table 3.
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To assess the performance of L2 with regularization under a very small features selection or 

measurements for underdetermined matrix, the same number of features (M = 140) has been 

selected for L1, Q5, L2-norm and L2-regularization. Table 4 shows that the L1-algorithm 

has a better performance than Q5 and L2 without regularization terms; however, overall, the 

L2-regularization has the best performance. The average accuracies (OSR) are 0.9321, 

0.5106, 0.9149 and 0.9621. Of critical importance, PPV is significantly higher when L2-

regularization is applied, as it is of particular clinical importance to identify patients with 

high risk of prostate cancer.

A training data set is determined in order to make sure that the L2-norm algorithm is robust 

under a variety of conditions such as the size of training samples. Table 5 shows the L2-

regulation is still able to achieve a high performance in all assessment parameters.

To show the validity of L2-regularization, we implemented the algorithm using different 

values of η based on λ1 and λ2 for the range of 0 ≤ η ≤ 1. For η = 0, the L2 penalty term 

will be removed while the L1 term is null for η = 1. Fig. 4 shows the effect of the regulation 

algorithms L1 and L2 in the all assessed performance parameters. All parameters have been 

affected by L1 regulator term with different values of λ2. However, the best performance for 

the all parameters based on parameter λ1 was in the range 140 ≤ λ1 ≤ 180. Improved 

algorithm performance, as indicated by increased measures of OSR, Spec, and PPV, will 

allow for higher data throughput and accurate measurements in applications such as disease 

biomarker detection in a laboratory or clinical setting.

Overall, results imply that the proposed method has more practicability than Q5. One can 

conclude from the results that by adding the regularization terms, the recognition MS data 

performance are improved for classification analysis.

4.2. Recovery procedure

The features used for recognition will also be used to reconstruct the original MS data if it 

has been classified as a sample from a diseased patient by taking advantage of the MS 

sensing data that was used to recover the signal fingerprint. We use block-sparse model by 

dividing the signal difference (SD) into groups/blocks where just a few have non-zero 

elements. For evaluation purposes, the recovery error has been calculated as ||x − xR||2 where 

x is the original data and xR is the reconstruction data. The BSBL-BO (the Bound-

Optimization Method) package [25] was applied to recover the data fingerprint. For 

simplicity, the size of all blocks was selected to be b1 = b2 = …bg = 100. To evaluate the 

effect of the pruning threshold (δ), we show in Table 6 the Normalized Mean Square Error’s 

(NMSE) which have been calculated using  where x and xR are original and 

recovered signals with respect to change δ values respectively.

We chose δ = 10−3 as a pruning threshold, and the number of measurements ratio M/N 
varies from 0.01 to 0.5. The reconstruction performance of xFP has compared with 

performance of spectral projected gradient (SPGL1) [26,27]. Fig. 5 shows that the BSBL-

BO algorithm has a lower recovery error in all ranges of compressing ratios. Fig. 6 provides 

an example of recovering data using L1-minimization and BSBL-BO using the same number 

of measurements and sensing matrix. As clearly demonstrated in these figures, the BSBL-
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BO algorithm offers superior data recovery over L1-minimization, a currently preferred 

algorithm of choice for sparse signal recovery [25].

5. Conclusion

The high dimensionality of Mass Spectrometry (MS) data is the main challenge facing high 

accuracy sample classification, including clinical application. In this work, a new method 

has been presented for accurate classification by employing compressive sensing (CS). Not 

only can CS significantly reduce MS data dimensionality, but also will allow for the full 

reconstruction of original data. The classification framework is capable of solving an 

overdetermined system with significantly reduced dimensionality, and without any loss of 

accuracy. Classification is established using the dimensionally reduced MS data using L2-

norm and mixed L2–L1-norms regularization.

A prostate cancer database has been used to validate the proposed method. Results 

demonstrate that L2-algorithm with regularization performed better than both the L1-

algorithm and Q5 under all applicable conditions. Regularization terms were used as design 

parameters, and by selecting 0 ≤ η ≤ 1, the algorithm performance was improved. In 

addition, a signal difference was used to sparsify the MS signals and implement a 

reconstruction scheme for any disease signal. Specifically, L1-minimization and BSBL 

algorithms were used to reconstruct MS data, and we have found that BSBL outperforms L1. 

Using this method, all patients with prostate cancer were predicted as high risk patients. 

These results demonstrate an improvement in algorithm performance for the analysis of 

complex MS data, very important in eventual utilization of MS data in determining patient 

risk for diseases, including prostate cancer.
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Fig. 1. 
An overview of the proposed framework for MS data classification.
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Fig. 2. 
The difference between two diseased samples and a diseased sample with a healthy sample 

in prostate cancer MS dataset.
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Fig. 3. 
Histogram showing residuals ri(y) of the test sample with respect to the projection of sparse 

representation computed δri by L2-norm.
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Fig. 4. 
The regulation parameters versus the performance parameters (a) accuracy, (b) Specificity, 

(c) PPV and (d) Sensitivity.
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Fig. 5. 
The average recovery error of L1-minimization and BSBL-BO under different measurement 

rates.
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Fig. 6. 
An example of recovering an MS data sample using two scenarios: (a) BSBL-BO technique 

and (b) L1-minminization.
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Table 1

The Database of Prostate Cancer According to PSA Level.

Disease status N

No evidence of disease and PSA level < 1 ng/mL [CLASS A] 60

Prostate cancer with PSA level > 10 ng/mL [CLASS B] 34

Benign and PSA level > [CLASS C] 120

Prostate cancer with PSA level 4–10 ng/mL [CLASS D] 23

Total 237
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Table 2

The Confusion Matrix for Four Classes in L2, L2-Regulation and Q5 Algorithms.
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