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Adaptive Artifact Removal for Selective Multistatic
Microwave Breast Imaging Signals

M. A. Elahia,∗, M. Glavina, E. Jonesa, M. O’Hallorana

aElectrical and Electronic Engineering
National University of Ireland Galway

Abstract

Microwave imaging is one of the most promising alternative breast imaging
modalities. Early-stage artifact removal is an important signal processing com-
ponent of a microwave breast imaging system. In this paper, a monostatic
artifact removal algorithm is extended to remove the early-stage artifact from
multistatic radar signals. The multistatic radar signals exhibit greater variation
in the early-stage artifact due to varying propagation paths between transmit-
ting and receiving antennas. This variation makes it more challenging to esti-
mate and remove the artifact compared to the monostatic signals. This paper
proposes an entropy-based adaptive method to group signals with similar arti-
facts and then remove the artifact from each group separately using a hybrid
artifact removal algorithm. The efficacy of the proposed algorithm has been
demonstrated by imaging anatomically and dielectrically realistic 3D numerical
breast phantoms.

Keywords: Microwave Imaging, Ultra Wideband Radar, Breast Cancer,
Multistatic Artifact Removal, Skin Subtraction, Skin-Artifact Removal

1. Introduction

Confocal Microwave Imaging (CMI) systems for breast cancer detection re-
quire two stages of processing: early-stage artifact removal and image recon-
struction [1]. The early-stage artifact is typically composed of the incident wave,
combined with the reflection from the skin-breast interface and some residual
antenna reverberation. If artifact is not effectively removed, it could mask any
tumours present within the breast. Most artifact removal algorithms remove
the artifact from a particular channel by estimating the artifact signal from
the other channels. The variation between signals received at other channels
greatly affect the ability of algorithm to produce an accurate estimate of the
artifact. A comprehensive comparison of early-stage artifact removal algorithms
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for microwave imaging of breast has been presented in [2]. The main conclu-
sions from the study are that algorithms such as the average and the rotation
subtraction method do not work well when there is a variation between chan-
nel artifacts. Conversely, filter-based methods are more robust to the variation
in between-channel artifacts, but the window containing the artifact must be
known a-priori. The entropy-based method estimates the window containing
the artifact, but often introduces distortion into the tumour response.

A Hybrid Artifact Removal (HAR) algorithm has been proposed in [3], which
combines the entropy-based approach and the Wiener filter algorithm to effec-
tively remove the artifact while preserving the tumour response. The HAR
algorithm has shown robustness to the variation in the artifacts but it has only
been tested in monostatic scenarios. The variation in the monostatic signals
is primarily due to the variation in the skin shape and the skin thickness. In
contrast, the multistatic signals exhibit greater variation not only due to the
varying skin shape and the thickness but also due to the different propagation
distance between transmitting and receiving antenna. Most of these artifact
removal algorithms have been solely used with monostatic radar signals, with
the exception of the rotation subtraction algorithm [4]. However, the rotation
subtraction algorithm is specific to the geometry of hardware prototype for
breast cancer imaging reported in [4]. In this paper, a novel multistatic artifact
removal (MAR) algorithm is proposed. The proposed algorithm extends the
HAR algorithm used for monostatic signals [3] to the more challenging scenario
of multistatic signals. In the HAR algorithm, the artifact-dominant portion of
the signals is estimated using the entropy-based approach and the artifact is then
removed by a Wiener filter. In the multistatic artifact removal alogrithm, the
signals containing similar early-stage artifacts are adaptively grouped together
based on the entropy-based method, and each group is separately processed
through the HAR algorithm in order to remove the artifacts while preserving
the tumour response. The MAR algorithm allows inclusion of multistatic signals
in the imaging in addition to the monostatic signals. The combined monostatic
and multistatic (CMM) imaging approach improves the imaging quality com-
pared to monostatic-only imaging approach. The block diagram of the proposed

Figure 1: Block diagram of the proposed method
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Figure 2: Early-time part of time-domain backscattered radar signals (first 50 time samples
shown). b(i,j) is the backscattered signal recorded at antenna j, where i is the index of the
transmitting antenna, j is the index of the receiving antenna.

method is shown in Fig. 1. The algorithm is evaluated using anatomically and
dielectrically accurate 3-D Finite-Difference Time-Domain (FDTD) breast mod-
els and a range of appropriate performance metrics.
The remainder of the paper is organised as follows: Section 2 describes exten-
sion of the hybrid algorithm to multistatic artifact removal; Section 3 describes
experimental setup and 3D numerical breast phantoms; Section 4 details various
tests applied to the artifact removal algorithm and corresponding results; finally,
conclusions and suggestions for possible future work are discussed in Section 5.

2. Multistatic Artifact Removal

The general assumption about the musltistatic signal acquisition approach
is that an increased number of radar signals provide more information about
strong scatterers present within the breast. However, the improvement in the
multistatic images may not be incremental as each additional multistatic signal
is added [5, 6]. The selection of good quality multistatic signals for multistatic
imaging can significantly improve the overall imaging provided the early-stage
artifacts can be effectively removed.

The HAR algorithm has shown promising results when applied to monostatic
signals due to the similarity of the monostatic artifact in all channels (Fig. 2 (a)).
However, it cannot be directly applied to the multistatic signals due to greater
variation in the artifact (Fig. 2 (b)). The channel to channel variation in artifact
depends upon the propagation path of the signal between the transmitting and
the receiving antennas, which makes it more challenging to estimate and remove
the artifact. However, it is possible to identify and group the multistatic signals
having similar artifacts so that the HAR algorithm can be separately applied to
each group.
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The performance of HAR is dependent on the degree of similarity between
the signals in each group, which may vary across all signal groups. This is due
to the fact that the Wiener filter estimates the artifact in a particular channel
based on the artifact present in all other channels. If there is greater variation in
the artifacts in the other channels, the estimated artifact will be less accurate.
The greater variation in the artifacts also affects the artifact-dominant time-
window estimation. Therefore it may not be possible to effectively remove the
artifact from each signal group and it is important to adaptively select only
those signal groups where the artifact can be effectively removed in order to
achieve better quality images.

2.1. Signal Grouping Method
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Figure 3: Early-time part of time-domain backscattered radar signals (first 50 time samples
shown): (a) the monostatic siginals; (b) the signals of the form b(i,i+1); (c) the signals of the
form b(i,i+2); (d) and the signals of the form b(i,i+3)

The signal grouping is based on the spacing between the transmitting and
receiving antenna pair. The initial signal grouping is similar to the grouping
described in [6]. Let b(i,j) be the backscattered signal recorded at antenna j,
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where i is the index of the transmitting antenna, j is the index of the receiving
antenna, i = 1, ..., N , j = 1, ..., N and N is the total number of antennas in
the array. The signals of the form b(i,i) are the monostatic signals with similar
early-time artifacts, and therefore can be combined into one group. The early-
time artifact is expected to be also similar for the signals of the form b(i,i+k)
and b(i+k,i) where i + k ≤ N and i is the index of the transmitting antenna,
hence a total number of L groups can be formed [6].

The similarity between signals in each group is dependent on the spacing
between transmitting and the receiving antenna pair and the distance from
the skin. For example, the transmitting-receiving antenna pair (1, 2) and (6, 7)
have identical spacing and a common distance from the skin. Therefore the
skin-artifact in the signals b(1,2) and b(6,7) is similar, as shown in Fig. 3b. It can
be seen that the degree of similarity between signals of the form b(i,i+1) is not
identical but very similar to the monostatic signals whereas it decreases with
increasing k, as shown in Fig. 3c (where k = 2) and Fig. 3d (where k = 3).
This decrease in similarity can be attributed to increased spacing between the
transmitting-receiving antenna pairs and the varying shape of the breast with
increasing k. The decrease in similarity directly effects the performance of the
HAR algorithm which is independently applied to each signal group.

2.2. Adaptive Signal Selection

The authors propose an entropy-based method to adaptively select the useful
signal groups from a total of L groups and signals within each group, in order
to achieve better Signal-to-Clutter (S/C) ratio in the resultant multistatic im-
ages compared to a monostatic image formation approach. In the proposed
algorithm, entropy is used to measure the degree of similarity between signals
within each group, and compared with other groups in order to select useful
multistatic signals. The similar artifacts in the early portion of the radar sig-
nals result in a larger value of entropy, whereas much lower entropy values are
obtained from the tumour reflections. The α−order Renyi entropy [7] is defined
as:

Hα[n] =
1

1− α
log

{
Q∑
i=1

(pi[n])
α

}
(1)

where α is a real-positive, pi[n] is the normalized probability density function
created by normalizing each radar signal within each group and Q is the total
number of signals within the group. The entropy changes from log Q (for
similar early-time signals) to zero (for variations in late-time signals). Third-
order entropy is typically defined for a broad class of signals [8], therefore α = 3
is used in this study. Theoretical dimension of [b1[n], b2[n], ..., bQ[n]] is defined
as:

D[n] = eH
s
α[n] (2)

where Hs
α[n] is the smoothed entropy, obtained by applying a smoothing window

to (1).
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Figure 4: 3D FDTD model showing the breast and the antenna array. Each color represents
a tissue type.

D[n] provides the degree of similarity between signals within a group of
signals [9]. As expected, the highest degree of similarity is exhibited by the
monostatic signals. Therefore, computed D[n] for monostatic signals is used as
a benchmark to decide if the degree of similarity between signals in each group
is sufficient to effectively remove the artifact from each group. The D[n] for each
subsequent signal group is then computed and correlated with the D[n] of the
monostatic signals group. The signal groups with correlation coefficient above a
specific threshold are selected (with the threshold chosen empirically), whereas
the remaining groups are ignored. The signals included within each group of the
form b(i,i+k) and b(i+k,i) is also decided on the basis of the correlation coefficient.
Any signal negatively affecting the correlation coefficient of that specific group is
excluded from the group, and hence only a subgroup of the multistatic signals is
selected for use in the image formation process. Once the signal groups and the
signals within each group have been selected, each group is separately processed
through the HAR algorithm to remove the artifact. Finally the artifact removed
signals are processed through the beamforming algorithm to produce the final
breast image.

3. Experimental Setup and Performance Metrics

The breast models and the antennas used are simulated using the FDTD
method. The numerical breast models used in this study are based on the MRI-
derived breast phantoms available from UWCEM MRI breast cancer repos-
itory [10]. These MRI-derived breast models are anatomically realistic and
provide realistic heterogeneity as well as realistic distribution of various tissues
within the breast. The dielectric properties of normal and malignant breast
tissues are incorporated using Debye models and are based on the studies by
Lazebnik et. al. [11].

An antenna array consisting of two rings of Hertizian dipole antennas is
positioned around the breast. Each antenna ring contains 25 antenna elements
and each antenna is placed at approximately constant distance from the skin
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as shown in Fig. 4. Each antenna transmits a 6.0 GHz differentiated Gaussian
pulse with a -3dB bandwidth of 5 GHz and a backscattered waveform is recorded
at each of the antenna in the array.

Four breast models with different degree of radiographic density have been
considered. A 15mm tumour model is placed at different locations within each
breast model. Table 1 describes the radiographic density of each breast model
and corresponding tumour locations.

Table 1: Description of Breast Models

Label Breast Density Tumour Location

1 M0 Homogeneous fat (60mm, 55mm, 80mm)

2

M1
mostly fat

(<25% glandular tissue )

(55mm, 60mm, 65mm)

M2 (85mm, 105mm, 70mm)

M3 (60mm, 55mm, 90mm)

3
M4 scattered fibroglandular

(25-50% glandular tissue)

(45mm, 50mm, 105mm)

M5 (88mm, 70mm, 105mm)

4 M6
heterogeneously dense

(51-75% glandular tissue)
(60mm, 110mm, 70mm)

The performance of the artifact removal and the imaging process has been
evaluated using three performance metrics. The Peak-to-Peak Response Ratio
(PPRR) is defined as the ratio of the peak-to-peak magnitude of the artifact
prior to the application of the artifact removal and following the artifact removal.
The PPRR is applied to the raw signals and it quantifies the artifact removal
from a particular channel. The PPRR independently evaluates the performance
of the artifact removal algorithm. The Signal-to-Mean Ratio (S/M) and Signal-
to-Clutter ratio (S/C) are computed from the reconstructed breast images. The
S/C is defined as the ratio of the tumour energy to the strongest clutter energy
in the image and it measures the quality of the reconstructed breast image.
Finally, the S/M is defined as the ratio of peak tumour energy to the average
energy within the reconstructed breast image.

4. Results

In order to demonstrate performance of the multistatic artifact removal al-
gorithm and to compare the imaging results with the monostatic approach,
both monostatic and multistatic backscattered signals are first obtained from
the breast model M0 with tumour located at position (60 mm, 55 mm, 80 mm).

Fig. 5 shows the third-order entropy based function, D[n], and the esti-
mated artifact-dominant time-window for each of the signal groups containing
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Figure 5: Theoretical dimension D[n] and estimated artifact dominant time-window functions
obtained from: (a) the monostatic signals group; (b) the multistatic group containing signals
of the form b(i,i+1); (c) the multistatic group containing signals of the form b(i,i+2); (d) and
the multistatic group containing signals of the form b(i,i+3)

all signals of the form b(i,i+k) where k = 0, 1, 2, 3 and k = 0 is the monos-
tatic group. The artifact-dominant time-window for each group is estimated
using the maxima-minima approach [3]. The early-time artifact is present in
the early-time part of the signal before any reflections from the interior of the
breast. Therefore, the early-time part of the function D[n] is used to estimate
the artifact-dominant time window. Firstly, the maximum of the function D[n]
is computed. Next, the artifact-dominant time window is defined from the start
of the signal to the location of the local minimum that: (a) is adjacent to the
maximum; (b) follows the maximum; (c) and that is significantly lower than
the maximum. It can be observed from Fig. 5a that there is a significant differ-
ence between the first maxima and the adjacent minima of D[n] computed from
the monostatic signals. However variation in D[n] increases in the multistatic
signals group with an increase in k (Fig.5b-5d).

The increased variation in D[n] is indicative of a corresponding variance in
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Algorithm 1 Pseudocode to estimate the artifact-dominant time window

n← 1 : M/2
maximum ← maximum of D[n]
minima ← minima of D[n]

for each: minimum ∈ minima
if minimum is adjacent to the maximum and
minimum follows the maximum and
minimum is significantly lower than the maximum then
m0 ← location of the minimum
window ← 1 : m0

end if

multistaic signals. It becomes difficult to estimate the correct artifact-dominant
time window based on the maxima-minima approach. The difficulty is obvious
from a closely located maxima-minima in Fig. 5d. In order to obtain artifact free
signals, each group of signals is separately processed through the Wiener filter,
after the artifact-dominant time-window has been estimated for each group.

Time-domain signals obtained after artifact removal have been plotted in
Fig. 6 (one from each signal group i.e for k = 0, 1, 2, 3). The corresponding ideal
tumour signals are also shown for the comparison. The ideal tumour signals are
produced by subtraction of the radar signals acquired from with-tumour and
tumour-free homogeneous breast models. It can be observed from Fig. 6a- 6c
that the early-stage artifact has been significantly reduced while the tumour
response is preserved in the monostatic signals and multistatic signals of the
form s(i+k,i), where k = 1. There is still some residual artifact that can be
compensated for by incoherent addition at the beamforming stage. However,
the residual artifact in the multistatic signals of the form s(i,i+k), where k = 2
is slightly greater compared to the monostatic group and the multistatic group
with k = 1, and it is worst in the case of multistatic signals of the form s(i,i+k),
where k = 3 (Fig. 6d).

The poor performance of artifact removal for the signals of the form s(i,i+k)
where k = 3, can be attributed to the ambiguity in the artifact-dominant window
estimation. Another factor is the poor artifact estimation by the Wiener filter
due to greater variation among signals within this group. Therefore, the group
containing signals of the form b(i,i+k) where k ≥ 3 must be excluded from the
image formation process. Inclusion of such groups will contribute negatively
towards the S/C ratio in the final image. This information is not known prior
to application of the artifact removal. However it can be predicted based on the
entropy-correlation method proposed in Section 2. Fig. 7a shows the correlation
coefficient (r) computed by the correlation of D[n] of each multistatic signal
group (for k = 1, 2, 3) with the D[n] of the monostatic signals group. It can
be seen that the highest correlation coefficient is obtained from signal groups
containing signals of the form b(i,i+k) where k = 1, 2 and it significantly drops
for k > 2. This correlates with the results shown in Fig. 5.

Hence the correlation coefficient can be used to limit the number of signal
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Figure 6: Time domain signals after artifact removal: (a) the monostatic signal s(16,16); (b)
the multistatic signal s(16,15); (c) the multistatic signal s(9,11); (d) and the multistatic signal
s(3,6).

groups that should be included in an image formation process in order to improve
the S/C ratio. The Modified Delay-and-Sum beamformer (MDAS) is used to
obtain the monostatic and the CMM images following the proposed artifact
removal algorithm [12]. However, the artifact removal algorithm can be used
with any beamformer.

The CMM images are generated by varying the threshold of the correlation
coefficient shown in Fig. 7a and the image quality metrics (S/C and S/M) are
computed from the resultant images. The S/C is plotted in Fig. 7b as a func-
tion of the total signals used to obtain the CMM images. Different threshold
values of the correlation coefficient allow a different number of multistatic radar
signals to be included in the image formation process. It can be observed from
Fig. 7b that the minimum value of S/C is produced by using only monostatic
signals in the imaging process whereas S/C is greatly improved by including a
number of multistatic signals. A threshold value of 0.91 allows inclusion of 48
multistatic signals of the form b(i,i+k) and b(i+k,i) (where k = 1). The addition
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(a)

(b)

Figure 7: (a) Correlation coefficient r obtained by correlating D[n] of monostatic signals group
with D[n] of multistatic signal groups ( b(i,i+k) where k = 1, 2, 3, 4), (b) S/C as a function of
the number of signals selected for the imaging process and the value of correlation coefficient
r used as threshold for signal selection.

of 48 multistatic to the 25 monostatic signals (total 73 signals) results in the
improvement of S/C ratio from approximately 44dB to 54dB.

Further relaxing the threshold value allows more multistatic signals to be
used in the imaging process which further improves the S/C ratio. Peak S/C is
achieved at a threshold value of 0.88 allowing 119 multistatic signals to be used
in the image formation process. There is no advantage in using any additional
multistatic signals. These additional signals may reduce the image quality as
shown in the Fig. 7b at a threshold value of 0.82. It should also be noted that a
significant improvement in S/C is achieved compared to the monostatic signals
with a threshold value as high as 0.90. Therefore, using a higher value for the
threshold would still improve the S/C compared to using monostatic signals
alone.
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Figure 8: Coronal view of FDTD breast models (a,d,g) showing permitivity of the breast
tissues computed at the center frequency of the pulse, corresponding monostatic beamformed
images (b,e,h), and corresponding CMM images (c,f,i).

The algorithm is then applied to the heterogeneous breast models in order
to evaluate the robustness and the effectiveness of the algorithm in presence of
realistic heterogeneity and fibroglandular tissues.

Fig. 8-10 show the coronal view of all FDTD breast models and the corre-
sponding beamformed images following the application of the proposed artifact
removal algorithm. The improvement in image quality can be observed by com-
paring the monostatic and the CMM beamformed images in each figure. In
particular, the advantage of the CMM imaging is illustrated in images of the
breast model M5. The monostatic imaging fails to localize the tumour due to
limited monostatic data as shown in Fig. 9e. However, the tumour can be de-
tected with small localization error in the CMM image when multistatic data is
also used in addition to the monostatic signals (Fig. 9f).

The localization error in the images with higher density of fibroglandular tis-
sues can be largely attributed to the imaging algorithm that uses the assumed
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(f)

Figure 9: Coronal view of FDTD breast models (a,d) showing permitivity of the breast tissues
computed at the center frequency of the pulse, corresponding monostatic beamformed images
(b,e), and corresponding CMM images (c,f).
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Figure 10: (a) Coronal view of FDTD breast model (M6) showing permitivity of the breast tis-
sues computed at the center frequency of the pulse, (b) corresponding monostatic beamformed
image, (c) and corresponding CMM image.

constant propagation velocity of the microwave signals during image reconstruc-
tion process. The tumour localization can be improved by estimating the av-
erage relative permitivity of the breast using time of flight measurements [13],
transmission measurement system [14] or by integrating the 3D permitivity
model of the breast as a-priori information into the imaging algorithm [15].

Table 2 illustrates performance of the CMM imaging in terms of PPRR, S/M
and S/C. The images are obtained using the proposed artifact removal algorithm
and a GPU accelerated version of MDAS beamforming algorithm [16]. The
metrics are computed for each individual heterogeneous breast phantom and
tumour location used to evaluate the algorithm. Similar metrics have also been
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computed for monostatic images.

Table 2: Performance metrics for the raw signals and the beamformed images

Breast Model Signal Type Selected Signals S/C (dB) S/M (dB) PPRR (dB)

M1
Monostatic 25 1.48 23.54 -169.45

Multistatic 73 3.72 28.62 -152.48

M2
Monostatic 25 5.63 34.46 -213.98

Multistatic 109 12.71 48.29 -203.00

M3
Monostatic 25 5.57 26.52 -172.65

Multistatic 83 10.02 38.51 -160.13

M4
Monostatic 40 1.78 21.95 -173.16

Multistatic 116 6.78 29.50 -154.23

M5
Monostatic 50 -13.90 14.48 -212.37

Multistatic 289 2.95 33.90 -198.36

M6
Monostatic 50 0.87 27.17 -215.63

Multistatic 278 4.16 37.28 -210.16

Average
Monostatic 3.06 24.69 -192.87

Multistatic 6.74 32.21 -179.73

Analyzing Table 2, the multistatic artifact removal followed by the CMM
image formation process has shown an average improvement of over 50% in
S/C and 23% in S/M, when compared to monostatic images. However, the
PPRR value of the proposed alogrithm is slightly poorer than the monostatic
HAR algorithm, as would be expected due to the greater variation in early-
stage artifacts in multistatic radar signals. However, improvements in S/C and
S/M values clearly indicate that residual artifacts have a negligible effect on the
beamformed images. Overall, the CMM imaging supported by the proposed
artifact removal algorithm consistently outperforms monostatic imaging.

5. Conclusions and Future Work

In this study, a novel adaptive multistatic artifact removal algorithm for
microwave breast imaging applications is presented, which extends the monos-
tatic HAR algorithm. Multistatic signals with similar early-stage artifacts are
grouped together and an entropy-based method is used to adaptively select use-
ful signal groups that will improve the imaging quality. The selected multistatic
signal groups are then separately processed through the HAR algorithm in or-
der to remove the artifact from the multistatic signals. The artifact-free signals
are then used in beamforming to produce improved breast images compared to
their monostatic equivalent.

The CMM images obtained after application of multistatic artifact removal
are compared with the monostatic images. Results indicate that higher quality

14



multistatic images can be obtained after application of the proposed artifact
removal algorithm, from simple homogeneous to more realistic dielectrically
heterogeneous scenarios.
Future work will focus on the evaluation of the proposed alogrithm with other
data-independent beamformers.
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