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Abstract

Otitis media is one of the most common childhood illnesses. Access to ear spe-
cialists and specialist equipment is rudimentary in many third world countries,
and general practitioners do not always have enough experience in diagnosing
the different otitis medias. In this paper a system recently proposed by three
of the authors for automated diagnosis of middle ear pathology, or otitis media,
is extended to enable the use of the system on a smartphone with an internet
connection. In addition, a neural network is also proposed in the current system
as a classifier, and compared to a decision tree similar to what was proposed
before. The system is able to diagnose with high accuracy 1) a normal tym-
panic membrane, 2) obstructing wax or foreign bodies in the external ear canal
(W/O), 3) acute otitis media (AOM), 4) otitis media with effusion (OME) and
5) chronic suppurative otitis media (CSOM). The average classification accuracy
of the proposed system is 81.58% (decision tree) and 86.84% (neural network)
for images captured with commercial video-otoscopes, using 80% of the 389
images for training, and 20% for testing and validation.

Keywords: Otitis media, image processing, feature extraction, decision tree,
neural network, otoscope, tympanic membrane

Introduction

One of the most common childhood illnesses is otitis media, also known as
middle-ear infection. Acute otitis media (AOM) is associated with inflammation
of the middle-ear and the tympanic membrane [1]. The two other forms of otitis
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media are otitis media with effusion (OME) and chronic suppurative otitis media
(CSOM) [2]. Acquired hearing impairment in children is usually caused by
CSOM, which is usually formed after recurrent AOM [3], but can also follow
after a single episode. In most developing countries limited access to medical
care increases the prevalence of otitis media [4], which could in some cases lead
to permanent hearing loss. The most common method to diagnose otitis media
is by an otologist or trained medical professional using an otoscope to examine
the tympanic membrane [3]. Because of the potential high cost involved as well
as the lack of access to these services, there exists a need for an automated
otitis media diagnosis system mainly for use in developing countries. In these
countries the children versus the adult population is much higher [5], and this
raises the expected benefit of such a system to children.

An automated otitis media classification or diagnosis algorithm for two dif-
ferent forms of otitis media, namely AOM and OME, was proposed by Kuruvilla
et al in [6]. This algorithm was validated by three general pediatricians as well
as eight classifiers. Using this method otitis media diagnosis is only possible
after the removal of obstructing wax or masses in the ear canal, in order to have
a clear view of the tympanic membrane [3]. The drawback of this algorithm is
that it does not detect wax or foreign body obstructions in order to diagnose
the possibility of AOM and OME, and it does not diagnose CSOM.

In a recent paper we have demonstrated that otitis media can be automati-
cally diagnosed using image processing and decision tree classification [7]. This
system was able to diagnose AOM, OME, CSOM, wax or foreign body ob-
struction and a normal tympanic membrane. The image analysis classification
system could load tympanic membrane images from a personal computer, run-
ning the custom developed Matlab software. The system extracted the visual
features using tailor-made feature extraction algorithms, which were then clas-
sified using a decision tree. The system also made provision for the use of a
low cost custom-made otoscope, also developed by the authors, to be used to
take pictures of the tympanic membrane. Such a low cost custom-made oto-
scope could be provided to underserved communities in to dramatically reduce
cost. Reported performance was 81.6% for video-otoscope captured tympanic
membrane images, and 78.7% for custom-made video-otoscope images captured
in an emergency room.

The smartphone revolution has resulted in unprecedented access to smart-
phones and smart mobile devices globally. Today one in five people owns a
smartphone [8], and it is estimated that in the year 2020, 6.1 billion smart-
phones with internet access will be in circulation [9]. In fact, currently the
fastest global growth of mobile subscribers is experienced in Africa, rising to an
estimated 0.5 billion in the next four years [10]. It therefore makes sense to en-
deavor to develop unique smartphone-based systems to help take health care to
underserved populations at a fraction of the cost, especially in developing coun-
tries. Mobile health, or mHealth, initiatives and applications improve access to
medical supplies, track immunisations, and unlock the potential of remote diag-
nostics to transform the entire regional healthcare landscape, resulting in higher
referrals, faster diagnoses and a dramatically improved patient experience [11].
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In this paper the image analysis classification system proposed in [7] is ex-
panded by 1) redesigning the system to be used from an Android smartphone
wherever there is an internet connection, 2) redesigning the feature extraction
algorithms and the decision tree in [7] to be more compact, and 3) designing
a neural network as an improved classification option as a replacement for the
decision tree, which results in improved diagnostic performance.

Background and Context

Tympanic Membrane

The tympanic membrane or eardrum is the structure of the ear that mirrors
most of middle ear diseases. It is approximately 0.1 mm thick and 8 mm to 10
mm in diameter [12]. This membrane separates the external ear from the middle
ear and receives sound vibrations from the air outside, which is transferred to
the middle-ear ossicles [13]. Ossicles are three small bones that transmit sound
to the cochlea (auditory portion of the inner ear). Figure 1 shows the basic
anatomy of the human ear.

Figure 1: Basic anatomy of the ear. Modified from [14].

Otitis Media Pathologies

A healthy tympanic membrane is pearly grey in colour and slightly conical,
with no bulging or retraction. The membrane has a smooth, shiny, translucent
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appearance. The malleus handle can be clearly seen as well as the umbo -
the central portion of the tympanic membrane where the malleus handle ends.
When otoscopy is performed, the light from the otoscope reflects on either the
right bottom or left bottom corner below or in front of the umbo (depending on
the left or right ear), in the shape of a cone [15], as seen in Figure 2 [16].

Figure 2: Normal tympanic membrane [16].

AOM is a middle-ear condition that is marked by the presence of infectious
material or pus and mainly a red bulging membrane, and the malleus bone is
obscured. OME is marked by middle ear fluid of variable character, but the
membrane is not bulging and the malleus bone is clearly visible [17]. Figure 3
shows the difference between AOM and OME [18].

Figure 3: Tympanic membrane with AOM (a) and OME (b) [18].

A common form of CSOM usually occurs after AOM. Its main feature is a
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chronic perforation in the tympanic membrane. Figure 4 shows with a huge dry
central perforation and visible ossicles in the middle ear [18].

Figure 4: Tympanic membrane with CSOM [18].

Wax obstructions occur when earwax accumulates to a point where it be-
comes too hard to be cleared naturally. It consists of skin, sweat, hair and
debris and its color ranges from dark brown to orange or yellow. Its presence
is usually in the outer half of the ear canal [19]. Foreign bodies can also be
present amongst the wax; they are usually insects or biological material. These
are found most commonly in children [20]. Figure 5 illustrates wax obstruction
and foreign body obstructions [21].

Figure 5: Tympanic membrane with wax obstruction (a) insect obstruction (b) and a grommet
surgically placed into the tympanic membrane [20].

Otitis Media Diagnosis using Visual Features

In order to diagnose otitis media from an image taken with a video-otoscope,
a number of visual features have to be identified for each diagnosis. Table 1
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shows the features associated with each pathology, which were used to develop
the feature extraction algorithms of the proposed system.

Table 1: The signs of the different types of diagnostic groups (y - yes, n - no, B - bulging, R -
retracted, N - normal, O - other, R - red, W - whitish). W/O designates obstructing wax or
foreign bodies in the external ear canal.

AOM OME CSOM Normal W/O
Malleus bone visible n y y/n y y/n

Tympanic membrane shape B R N/B/O R/N/B R/N/B/O
Colour R R/W W W W

Perforation n n y n n
Wax y/n y/n y/n y/n y
Fluid y/n y n n n

Reflection y/n y/n n y n

Automated Otitis Media Diagnosis

The proposed system uses a smartphone to load tympanic membrane images
captured with a video-otoscope, and preprocess the images to prepare them for
further processing. After preprocessing, the images are transmitted to a server
in the “cloud”, where feature extraction and classification are performed by
both the newly designed decision tree and the neural network for comparison.

On the macro scale the automated otitis media diagnosis system consists
of three main processes, namely preprocessing, feature extraction, and classi-
fication. Preprocessing prepares or standarizes the image, feature extraction
identifies the visual cues in the image, while classification ultimately diagnosis
the image based on the extracted features.

For the proposed system, preprocessing occurs on the Android smartphone,
while feature extraction and classification take place on the server, whereafter
the diagnosis is sent back to the phone. These processes are discussed in detail
in this section.

The video-otoscope images were acquired from a number of sources. In
total 562 high-quality images were selected for diagnosis in order to establish
ground truth to develop the proposed system from. Thereafter two specialists,
including the last author, examined the 562 tympanic membrane images inde-
pendently, and only the images for which their independent diagnoses were in
agreement were retained. This method was also used in [7], where its reliability
is explained. This resulted in 489 doubly diagnosed images. These images were
further examined, after which another 100 images were eliminated due to image
quality, blur, and color deficiencies, which yielded a final set of 389 images.

Preprocessing

Before the features can be extracted from the tympanic membrane image,
the image first needs to be prepared, or preprocessed to standarize the image
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for use by the feature extraction algorithms. The two processes involved in the
preprocessing step are cropping and blur detection.

Cropping

Cropping is an essential preprocessing step; its role is to remove all unwanted
image information around the border and thereby isolate the tympanic mem-
brane in the image. The images captured with the video-otoscope have a black
border by the interior of the disposable speculum used to examine the ear canal.
After cropping the image size is 864 × 848 pixel2.

Blur detection

Once the image has been successfully cropped, blurriness of the image is
detected in order to establish if the image is well-focused. The accuracy of
image processing on the server is directly proportional to the clarity of the
image, and as such the system needs to ensure that images are in focus.

Blurriness was detected via thresholding; this is where a single value is cal-
culated to determine if the calculated ”blurriness factor” exceeds it or not. A
variation of the Laplacian [22] was used. The Laplacian is used to measure the
second derivative of an image; it highlights areas where there are rapid intensity
changes. To detect if an image is blurry, the image is converted to gray scale.
The gray scale image is then convolved with the Laplacian kernel, after which
the variance of the response is calculated; a high variance indicates that there is
a wide spread of many edges, which is evidence of a focused image. A threshold
of 4000 was calculated to determine whether an image is blurry or not. Figure
25 shows a flow diagram of the blur detection process.

Feature extraction

The feature extraction algorithms were designed and tested using a set of
video-otoscope images. There were 389 images in total with known diagnoses
and suitable image quality, of which 80% were used for training and 20% were
used for validation and testing. This ratio was chosen firstly in order to be
representative of the problem domain, ie. otitis media diagnosis using image
processing of tympanic membrane images, and second to leave enough images
for verification and testing of the feature extraction algorithms. Too few training
images would result in low diagnostic accuracy, while too many images would
leave too few images for validation. Table 2 shows the number of images per
category.

The training images were used to design the feature extraction algorithms,
in order to ensure that each algorithm can successfully identify its visual cue
or feature. These visual cues are described in Table 1. Together the feature
extraction algorithms identify the visual features, much like an otologist would,
to ensure accurate diagnosis in the final step of the proposed system, namely
classification.
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Table 2: Number of video-otoscope images used to develop the feature extraction algorithms
(training)

Categories Total number of images Training (80%) Testing (20%)
AOM 51 41 10
OME 69 55 14

CSOM 86 69 17
Normal 123 98 25
W/O 60 48 12
Total 389 311 78

Color detection

Four out of the seven features required for feature extraction use color detec-
tion; namely wax and foreign body obstructions, reflection, tympanic membrane
color and fluid presence.

Wax and foreign bodies:. To detect wax and foreign body obstructions, the
image is cropped further to remove excess black boarder pixels, resulting is a
350 × 350 pixel2 image. The image is then converted to a hue, saturation and
value (HSV) image. Using the training set of images provided, the color detected
in images for wax or foreign body obstructions falls in the color range indicated
in Figure 6.

Figure 6: Wax and foreign bodies obstruction color range.

All image pixels that fall in this color range are set to white. The number
of white pixels in the image is calculated and expressed as an percentage of the
total number of image pixels. Given all the training images, a threshold of 10%
was determined, ie. if the percentage of white pixels is above 10% it is deemed
as containing excessive wax or a foreign body. Figure 26 shows a flow diagram
describing the wax and foreign bodies obstruction color detection process.

Reflection:. To detect if the image contains a reflection from the light of the
otoscope (a sign of a normal tympanic membrane) using the training set of
images provided, the reflection appears mostly below and in front of the malleus
bone (Figure 7 (a)), and therefore the image is first cropped to a 200 × 200
pixel2 image (Figure 7 (b)). The image is converted to a gray scale (Figure 7
(c)) where after a brightness filter is applied (Figure 7 (d)). The effect is that
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the reflection will be highlighted in the form of a white patch if it is present in
the image, while the rest of the image pixels will be black. Each pixel in the
image is then evaluated and counted to determine the number of black pixels,
and expressed as a percentage of total number of pixel. Given all the relevant
training, a threshold of 0.007% was calculated, ie. when the percentage is above
0.007%, a reflection is detected. Figure 27 shows a flow diagram describing the
reflection color detection process.

Figure 7: Reflection detection process. a) Original image showing the malleus bone and
the reflection. b) The cropped image. c) The gray scale image. d) Gray scale image after
brightness filtering.

Tympanic membrane color:. The tympanic membrane color is either pearly
white (normal) or a dark shade of red (inflamed). To determine the tympanic
membrane color the image was firstly cropped further to remove any excess
black boarder pixels thus forming a 350 × 350 pixel2 image. The image is an-
alyzed for excessive red in an image, which is done by extracting only the red
channel of image. Using the training set of images provided, the color detected
in images for a red tympanic membrane ranges in the color range as shown in
Figure 8.

Figure 8: Tympanic membrane color range.

All image pixels that fall in this color range will be marked as white. The
white pixels in the image are then counted and expressed as a percentage of
total image pixels. Given all training data, a threshold of 50% is calculated,
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ie. if the white pixel percentage is above 50%, the membrane is noted to have
an excessive amount of red. Figure 28 shows a flow diagram describing the
tympanic membrane color detection process.

Fluid presence:. Fluid behind the translucent tympanic membrane in the tym-
panic membrane is usually clear, and white to yellow in color as seen in Figure 9
(a). To detect fluid, therefore, the image is cropped further to remove any ac-
cess black boarder pixels thus forming a 350 × 350 pixel2 image (Figure 9 (b)).
The image is then converted to an HSV image (Figure 9 (c)) from which the
saturation channel is extracted, where white areas in the RGB image will be
black in this channel (Figure 9 (d)). There could also be other white areas
such as reflection or transparent membrane, but they are of a different lighter
shade than the fluid. By thus applying a brightness filter the less black areas are
faded out leaving only the fluid and mass (Figure 9 (e)). The average number of
black pixels among all image pixels is then calculated. After evaluating all the
training images, a threshold of 60, 000 pixels or 49% was calculated, ie. if the
percentage of pixels is above 49% fluid or a white mass is detected. Figure 29
shows a flow diagram describing the fluid color detection process.

Figure 9: Fluid detection process. a) Original image showing the fluid. b) The cropped image.
c) The HSV image. d) Saturation band image. e) Saturation band image after brightness
filtering.
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Edge detection

Edge detection for feature extraction involves detecting circular sharp edges
to identify perforation of the tympanic membrane. Figure 10 (a) shows the
original image. The image is firstly cropped further to remove any excess black
boarder pixels as before (Figure 10 (b)). The image is then converted to an
HSV image (Figure 10 (c)), and the saturation channel is used as edges are
more prominent in that channel (Figure 10 (d)). Hough circles are used to
mark the identified perforation (Figure 10 (e)).

Canny edge detection was performed to detect the edges caused by perfora-
tion [23]. Canny edge detection achieves low error rate, good localization and
minimal response. A 3 × 3 Sobel kernel was set to find the intensity gradi-
ents of the image. A lower pixel gradient threshold was set to 20 and upper
pixel gradient threshold was set to 60; therefore if the pixel is above the upper
threshold, the pixel is accepted as an edge, if the pixel gradient is below the
lower threshold then it is rejected. Moreover, if the pixel gradient is in between
the two thresholds, then it will be accepted as an edge if it is connected to a
pixel that is above the upper threshold [24].

This results in an image that outlines the circular edges of the image. Since
there can be other circular images due to smaller particles or reflections, the
Hough transform is applied. This enables the algorithm to detect circular edges
in the image and marks the circle it detects with a prominent color. The canny
edge image is first converted to gray scale as Hough circles detects circles in gray
scale images, the minimum radius of the circles detected is set to 20 and the
maximum is set to 130 [25]. The image is then converted back to a BGR image
to be able to see the colored circle indicators. From the training set of images
provided, there is usually only one perforation in the tympanic membrane. Thus
the algorithm will count the number of circles present, if it detects one circle it
is a true positive that there is a perforation in the image. Figure 30 shows a
flow diagram describing the edge detection process.

Blob detection

One of the malleus bone’s most prominent features is that the handle at
its top has a circular or ball-shaped component with a minimum of 100 pixels
wide. It also appears on the first one third of the image from the top. However,
there are many other circular features that can be present on the image such as
reflection and small perforations. Therefore the image is cropped to a 486x190
image, observing the first third of the image as shown in Figure 11 (a). The
image is then converted to a HSV image (Figure 11 (b)), and saturation band
is used (Figure 11 (c)). A brightness filter is applied to allow other dark areas
to either fade out or be darker, leaving the malleus bone area to be of a certain
shade (Figure 11 (d)). Simple blob detection is then applied, which allows circles
to be detected using color, area, circularity, inertia and convexity (Figure 11 (e)).

From the results obtained from the training images there is usually a malleus
bone with a height ranging between 10-15 pixels and a smaller circle. If one circle
is detected, the image is classified as having a visible malleus bone, and if none
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Figure 10: Perforation detection process. a) Original image showing the perforation. b) The
cropped image. c) The HSV image. d) Saturation band image with canny edge detection. e)
Hough circles indicating the perforation.

is detected the image is classified as not having a visible malleus bone. Figure 31
shows a flow diagram describing the blob detection process.

Figure 11: Malleus bone detection process.
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Shape detection

In order to detect the shape of the tympanic membrane, the image is cropped
to remove any excess black boarder pixels, yielding a 350 × 350 pixel2 image.
The image is then converted to gray scale so that the gradient of each pixel
can be calculated. This is done by subtracting the neighboring pixel values;
subtracting each pixel value from the one to the right of it. The average of
the all the differences is then calculated to determine the average gradient,
which indicates whether the tympanic membrane is bulging, normal or retracted.
Figure 32 shows a flow diagram describing the shape detection process.

Classification

The feature detection algorithms are used to extract visual information in
Table 1 from the tympanic membrane images. This information is then pre-
sented in the form of a feature vector - a vector containing all the visual features
identified during feature extraction. This feature vector is the provided as input
to the classification algorithms to diagnose the image in question.

In this study two classification algorithms are presented - a decision tree and
a neural network - and their respective classification/diagnostic accuracies are
compared.

Decision tree

One of the artificial intelligent algorithms used to classify the feature vectors
is a decision tree. It identifies the minimum distance between the input vector
and the decision tree branches encoded in the decision tree structure using
feature vectors obtained from the training images. It does this by comparing the
features contained in the feature vectors iteratively with the features encoded in
the decision tree, and with each iteration traverses down the decision tree until
it reaches the end of a branch, which constitutes classification. We refer the
reader to [7] for a thorough discussion on decision tree construction, training
and classification.

There were 389 video-otoscope images in total, 80% (311 images) of those
images were used to construct the decision tree and 20% (78 images) were used
for testing each category. In order to construct the tree training images were
preprocessed and then processed by the feature extraction algorithms, and fea-
ture vectors of each image were obtained. A total of 108 vectors were obtained
by excluding duplicates. The entropies and information gains were subsequently
calculated, and the feature with the highest information gain was selected to be
divided first. This sequence was repeated until the feature vector subsets were
empty. The resulting decision tree had seven levels. The labels used for features
are presented table 3. Figures 12 to 18 show the resulting decision tree.
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Figure 12: First two levels of the decision tree.

Figure 13: Branching out of 1A from figure 12 (acute otitis media (AOM), otitis media with
effusion (OME), chronic suppurative otitis media (CSOM), obstructing wax or foreign bodies
(W/O)).

Neural network

Apart from the decision tree, an artificial neural network was also used to
classify or diagnose the tympanic membrane images. Like the decision tree,
the neural network receives the feature vectors as the input, and produces a
classification at the output. But before it can be used as a classifier to diagnose
the tympanic membrane images’ feature vectors, it must first be trained using
training images of known diagnoses, and validated and tested with images of
unknown diagnoses.

As mentioned, the feature vectors are provided as input to the neural net-
work. However, the various features have to be provided in the ranges [−1, 1]
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Figure 14: Branching out of 1B from figure 12 (acute otitis media (AOM), otitis media with
effusion (OME) or secretory otitis media (SOM), chronic suppurative otitis media (CSOM),
obstructing wax or foreign bodies (W/O)).

Figure 15: Branching out of 2A from figure 12 (acute otitis media (AOM), otitis media with
effusion (OME) or secretory otitis media (SOM), chronic suppurative otitis media (CSOM),
obstructing wax or foreign bodies (W/O)).

or [0, 1]. Therefore the values representing the various features in the feature
vectors calculated from the tympanic membrane images used to train, validate
and test the system, have to be normalized.

The design of the neural network architecture used to classify the feature
vectors of the tympanic membrane images is as follows (shown in Figure 19):
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Figure 16: Branching out of 2B from figure 12 (acute otitis media (AOM), otitis media with
effusion (OME) or secretory otitis media (SOM), chronic suppurative otitis media (CSOM),
obstructing wax or foreign bodies (W/O)).

Figure 17: Branching out of 2B.1 from figure 16 (acute otitis media (AOM), otitis media with
effusion (OME)or secretory otitis media (SOM), chronic suppurative otitis media (CSOM),
obstructing wax or foreign bodies (W/O)) .

• 7 neurons in the input layers; one for each feature.

• 10 neurons in a single hidden layer.

• 5 neurons in the output layer; one for each pathology/diagnosis option.

Table 4 shows the encoding of the outputs of the neurons in the output layer
to represent each diagnosis. The hyperbolic tangent function was used as the
activation function. Figure 20 shows the hyperbolic tangent function [26] and
is expressed as

f(x) =
1 − e−2x

1 + e2x
. (1)
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Figure 18: Branching out of 2B.2 from figure 16 (acute otitis media (AOM), otitis media with
effusion (OME) or secretory otitis media (SOM), chronic suppurative otitis media (CSOM),
obstructing wax or foreign bodies (W/O)) .

Table 3: Decision tree labels
Label Definition
W/O Wax and foreign body obstructions

R Reflection
C Color
S Shape

MB Malleus Bone
P Perforation
F Fluid

Max Maximum information gain
PN Perforation No
PY Perforation Yes
FY Fluid Yes
FN Fluid No
CW Color White
CR Color Red

W/OY Wax/Obstructions Yes
W/ON Wax/Obstructions No
MBY Malleus Bone Yes
MBN Malleus Bone No

Training:. Before the neural network can be used to classify the feature vectors
of undiagnosed tympanic membrane images, it first has to be trained using fea-
ture vectors of images with known diagnoses. Back-propagation learning is a
well-known and efficient neural network training algorithm [27] [50], where ex-
ample feature vectors are used to adjust the network’s weights in order to achieve
a realistic mapping between the input features and the output diagnosis. By
providing the neural network with input feature vectors with known diagnoses,
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Figure 19: The neural network used for classification of the feature vectors, with 7 inputs, 10
neurons in the hidden layer, and 5 output neurons.

the weights are iteratively adjusted by comparing the output of the network to
the known output/diagnosis, and feeding the output error back into the net-
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Figure 20: The hyperpolic tangent function used as the decision function of the neurons.

Table 4: Neural network output encoding for five neuron outputs. For each diagnosis only
one of the neurons’ outputs have a value of 1, while the other neurons’ output values are −1.

Diagnosis Neural network output
AOM −1,−1,−1,−1, 1
OME −1,−1,−1, 1,−1

CSOM −1,−1, 1,−1,−1
W/O −1, 1,−1,−1,−1

Normal 1,−1,−1,−1,−1

work. By performing this process on sufficient amounts of training data, the
output error decreases to the point where the network’s output closely matches
the known output/diagnosis.

Back propagation is ideal for pattern recognition and mapping tasks. Train-
ing is halted when the error reaches an arbitrary sufficiently low value. This
ensures that the classification/diagnoses of unseen tympanic membrane image
feature vectors will have a good chance of being accurate. To increase the learn-
ing tempo of the neural network, a constant (α) called the learning rate is used.
If selected too low, the convergence time (time to reach a low error) will be long.
If selected too high, it will result in the weight adjustment increments to be too
large, leading to an increase in the output error [28].

As was the case for the decision tree, 311 images were used for training, while
87 images were used for validation and testing respectively. To train the neural
network, the training images were processed using the preprocessing and feature
extraction algorithms. The resulting feature vectors were normalized to the
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range of [−1, 1] and were applied to the input of the neural network, after which
the inputs were processed and an output was produced. Because the diagnosis
of each image was known, the difference or error between the neural network
output and the known output (see table 4) was calculated, and fed back into
the system according to the back-propagation learning algorithm. Therefore,
for each example or training image, the neural network weights were adjusted
to reduce the output error. After the 311 training images were processed once,
the validation images were used to calculate the output error separately. If the
error threshold had not been reached, the 311 training images would once again
be processed. This repetitive training process of all the training images is called
an epoch. Training was halted once the error was sufficiently low or if 10 epochs
where completed.

Various learning rates and amounts of epochs were experimented with to
obtain a minimal error. The final learning rate was selected to be 0.035 and
the number of epochs 10. Figure 21 shows the error achieved over 10 epochs
using the training, validation and test data. Figures 33 and 34 show the back-
propagation learning process as well as the classification process of the neural
network respectively.

Figure 21: Neural network training errors over 10 epochs using training, validation and test
data.

Smartphone application user interface

The systems user interface was designed using Android studio. The appli-
cation designed is user friendly and simple to use. The application allows a
camera view so that the tympanic membrane can be observed. Buttons, status
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bars and pop up signs were used to guide and alert the user of any changes or
statuses. Users with little technical knowledge can easily use the application.

The user can launch the Android application from the application list. Once
the user has launched the application it opens as seen in Figure 22.

Figure 22: Smartphone application home screen.

Upon tapping on the ”LOAD” text, the screen in Figure 23 (a) opens, but
only after a tympanic membrane image has been place in the correct folder on
the phone. When the user clicks the CROP button the image is cropped to
an 866x848 image (Figure 23 (b)), which is ready for upload. If the user clicks
the UPLOAD button, the image is uploaded to the server where it will undergo
feature extraction and classification or diagnosis. After classification the server
sends back the result to the phone as shown in Figure 24.

Results

Decision Tree

The decision tree was designed as explained before using 80% of the video-
otoscope image with known diagnoses. The remaining 20% of images, 78 in
total, were used to test its diagnostic accuracy.

Table 5 shows the confusion table or classification accuracy table of the
decision tree. A confusion table shows the labels of the true diagnoses in the
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Figure 23: Smartphone application a) loaded image and b) cropped image.

Figure 24: Smartphone application result page.

leftmost column, while the first row shows the decision tree’s diagnoses labels.
The diagonal shows the number of correct diagnoses, while the rest of the matrix
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shows the misdiagnoses. The overall weighted diagnosis accuracy of the decision
tree was 81.58%.

Table 5: Classification accuracy table using the decision tree for classification/diagnosis. The
leftmost column shows the actual diagnoses, with the number of images in each category, while
the topmost row shows the predicted diagnoses, with the percentage classifications/diagnoses
for each category in its respective column. The diagonal shows the percentage correct diagnose

Normal CSOM AOM OME W/O
Normal (25) 83.33 4.17 4.17 8.33 0.00
CSOM (17) 11.76 82.35 0.00 0.00 5.88
AOM (10) 0.00 0.00 80.00 20.00 0.00
OME (14) 7.69 0.00 7.69 84.62 0.00
W/O (12) 0.00 0.00 16.67 8.33 75.00

Table 6 shows the sensitivity, specificity, positive prediction value (PPV)
and negative predictive value (NPV) of the system for all the diagnostic groups.
The sensitivity ranged between 0.75 and 0.85 for all diagnostic groups. CSOM
had the highest specificity (0.99) while AOM had the lowest (0.92). This highest
PPV was that of CSOM (0.95), while OME had the lowest (0.70). The NPV
ranged between 0.93 and 0.95.

Table 6: Sensitivity, specificity, PPV and NPV using the decision tree for classifica-
tion/diagnosis.

Normal CSOM AOM OME W/O
Sensitivity 0.83 0.82 0.80 0.85 0.75
Specificity 0.94 0.99 0.92 0.90 0.98

PPV 0.81 0.95 0.74 0.70 0.93
NPV 0.95 0.95 0.94 0.95 0.93

Neural Network

The neural network was designed as explained before, and different amounts
of training images were used to evaluate its performance, while 80% of training
images were still used to develop the feature extraction algorithms. The neural
network was trained using 40% (155), 60% (233) and 80% (311) of the 389
prediagnosed tympanic membrane images respectively.

Table 7 to table 9 show the confusion tables of the neural network using
40%, 60% and 80% of the images respectively for training. For 40% training
data, the combined weighted diagnostic accuracy is 49.79%. For 60% training
data, the diagnostic accuracy is 62.66%. For 80% training data, the diagnostic
accuracy is 86.84t%. It is clear that the neural network performs better with
an increase in training data, which was expected.

Table 10 shows the sensitivity, specificity, PPV and NPV of the system for
80% training data. AOM had the highest sensitivity (0.90) while W/O had the
lowest (0.83). Also, W/O had the highest specificity (1) while AOM had the
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Table 7: Classification accuracy table using the neural network for classification/diagnosis
with 40% training data. The leftmost column shows the actual diagnoses, with the number
of images in each category, while the topmost row shows the predicted diagnoses, with the
percentage classifications/diagnoses for each category in its respective column. The diagonal
shows the percentage correct diagnoses.

Normal CSOM AOM OME W/O
Normal (74) 51.35 27.03 9.46 6.76 5.41
CSOM (52) 17.31 57.69 3.85 7.69 13.46
AOM (31) 6.45 3.23 61.29 22.58 6.45
OME (42) 7.14 30.95 9.52 45.24 7.14
W/O (36) 19.44 16.67 11.11 22.22 30.56

Table 8: Classification accuracy table using the neural network for classification/diagnosis
with 60% training data. The leftmost column shows the actual diagnoses, with the number
of images in each category, while the topmost row shows the predicted diagnoses, with the
percentage classifications/diagnoses for each category in its respective column. The diagonal
shows the percentage correct diagnoses.

Normal CSOM AOM OME W/O
Normal (50) 60.00 14.00 4.00 10.00 12.00
CSOM (35) 11.43 68.57 5.71 5.71 8.57
AOM (21) 4.76 0.00 71.43 19.05 4.76
OME (28) 3.57 10.71 17.86 60.71 7.14
W/O (24) 12.50 4.17 8.33 20.83 54.17

Table 9: Classification accuracy table using the neural network for classification/diagnosis
with 80% training data. The leftmost column shows the actual diagnoses, with the number
of images in each category, while the topmost row shows the predicted diagnoses, with the
percentage classifications/diagnoses for each category in its respective column. The diagonal
shows the percentage correct diagnoses.

Normal CSOM AOM OME W/O
Normal (24) 87.50 0.00 4.17 8.33 0.00
CSOM (17) 11.76 88.24 0.00 0.00 0.00
AOM (10) 0.00 0.00 90.00 10.00 0.00
OME (13) 7.69 0.00 7.69 84.62 0.00
W/O (12) 0.00 8.33 8.33 0.00 83.33

lowest (0.94). The PPV and NPV ranged between 0.82 and 1, and 0.95 and
0.97 respectively.

Discussion and Conclusions

In this paper a smartphone- and cloud-based automated otitis media diag-
nosis system was proposed, using image processing and feature vector classifi-
cation. This system is an improvement on a similar system recently developed
in [7], but with the addition of a neural network used for classification of the
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Table 10: Sensitivity, specificity, PPV and NPV using the neural network for classifica-
tion/diagnosis.

Normal CSOM AOM OME W/O
Sensitivity 0.88 0.88 0.90 0.85 0.83
Specificity 0.95 0.98 0.94 0.95 1.00

PPV 0.82 0.91 0.82 0.82 1.00
NPV 0.97 0.97 0.97 0.96 0.95

feature vectors. The proposed system can be operated from an Android smart-
phone using open source software, whereas the previous system could only be
executed on a notebook computer under the Windows operating system using
the Matlab software, which increased costs and hindered mobility. The proposed
system allows the user to load a video-otoscope captured tympanic membrane
image in an Android application, and preprocess the image on the smartphone,
after which the preprocessed image is sent to a server, where feature extraction
and classification/diagnosis is performed. The diagnosis is then returned to the
phone and displays it to the user.

The performance of the automated otitis media diagnosis system is compa-
rable to, if not better than, the diagnostic accuracy of medical specialists or
otologists using handheld otoscopes. The average diagnostic accuracy of pedia-
tricians is around 80% [6], that of GP’s is 64% − 75% [29], and that of ENT’s
73% [30]. The decision tree classification performance using 80% of the image
for training was 81.58, while it was 86.84% when the neural network was used.
Although only 311 tympanic membrane images were used for training - 80% of
all available images, a fairly low number for these kinds of problems - the per-
formance was still good. It is in principle possible then to use many hundreds
or even thousands of images to improve the diagnostic accuracy further.

Although the proposed system is not complete in the sense that the smart-
phone completely replaces the need for a video-otoscope, it is a major step
forward in creating a complete smartphone-based automated otitis media di-
agnosis system. Future developments will include a low cost extension, which
would enable the smartphone to be used to capture high quality tympanic mem-
brane images using either the smartphone camera or an external low cost custom
made USB otoscope, after which the proposed system can be used to diagnose
the otitis media contained in the images.
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Figure 25: Blur detection process flow diagram.
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Figure 26: Wax and foreign bodies obstruction color detection process flow diagram.
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Figure 27: Reflection color detection process flow diagram.
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Figure 28: Tympanic membrane color detection process flow diagram.
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Figure 29: Fluid color detection process flow diagram.
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Figure 30: Edge detection process flow diagram.
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Figure 31: Blob detection process flow diagram.
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Figure 32: Shape detection process flow diagram.
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Figure 33: Neural network training process flow chart.
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Figure 34: Neural network classification process flow diagram.
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