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Abstract

Evidence of arterial pulse pressure variations caused by cardio-pulmonary interactions, and
their connection to volume status via the Frank-Starling relationship, are well documented in
the literature. Computation of pulse pressure variations from arterial pressure measurements
is complicated by the fact that systolic and diastolic peaks are not evenly spaced in time. A
robust, structurally uncomplicated, and computationally cheap algorithm, specifically addressing
this fact, is presented. The algorithm is based on the Lomb-Scargle spectral density estimator,
and ordinary least squares fitting. It is introduced using illustrative examples, and successfully
demonstrated on a challenging porcine data set.

Keywords— pulse pressure variation, arterial blood pressure, nonuniform sampling, frequency
estimation

Highlights

• A method for robust, fast computation of arterial pulse
pressure variations, is presented.

• The method is based on the Lomb-Scargle periodogram and
least squares regression.

• The algorithm is particularly suitable for closed-loop
control, and other time-critical applications.

• A porcine dataset with sudden hemodynamic changes is used
to demonstrate feasibility.

1 Introduction

1.1 Cardio-pulmonary variations

One of the earliest descriptions of cardio-pulmonary interaction dates back to 1854, and is due to
W. Greisinger. His discovery lay the foundation for A. Kussmaul’s 1873 description of the pulsus
paradox in his paper Über schwielge Madiastino-pericarditis und den Paradoxen Puls1 [1].

Cardio-pulmonary interactions are a consequence of changes in intrathoracic pressure over the
respiratory cycle. The schematic illustration of Figure 1, together with elementary physics, is
sufficient to explain these interactions.

A decrease2 in intrathoracic pressure (during spontaneous inspiration, or the expiratory phase
of positive pressure ventilation), results in increased venous return. This is particularly true for
the right heart, which receives systemic venous return. The returned blood originates from outside
the thorax, and the flow is consequently aided by the decreased intrathoracic pressure. Since the
lungs reside within the thorax, the pulmonary venous return, to the left heart, is not affected by

1English translation: Concerning calous mediastinopericarditis and the paradoxical pulse.
2The use of ’decrease’ and ’increase’, is with respect to other phases of the respiratory cycle. I.e., we are only

considering variations induced by respiration.
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Figure 1: Schematic drawing of the heart and lungs enclosed in the thorax, which can be viewed
as a pressure chamber, with pressure variations over the respiratory cycle. The right heart receives
systemic venous return from outside the thorax, and ejects the returned blood into the pulmonary
circulatory system, residing inside the thorax. The left heart receives pulmonary venous return,
from inside the thorax, and ejects the returned blood into the systemic circulatory system, outside
the thorax.

this pressure gradient. However, the increased systemic venous return associated with decreased
intrathoracic pressure, results in increased pulmonary blood flow, and consequently an increased
filling (preload) of the left ventricle. The decreased intrathoracic pressure, increases the load on
the left heart, as it is ejecting blood out of the thorax via the aorta. As long as the left heart can
cope with this relative increase in afterload, there is an increase in left ventricular stroke volume.

To conclude, the intrathoracic pressure variation over the respiratory cycle results in a left
ventricular stroke volume variation, via the cardio-pulmonary interactions described above. While
present to some extent during spontaneous breathing, the variation increases notably in patients
under positive pressure ventilation. A comprehensive summary of the subject is provided in [2].

The left ventricular stroke volume (SV) is related to arterial pulse pressure (PP), being the
difference between systolic and diastolic pressure, through Laplace law. While SV and PP cannot
be assumed to be linearly proportional [3], they exhibit a strong correlation. Consequently, stroke
volume variations (∆SV) cause pulse pressure variations (∆PP3) over the respiratory cycle [4].
This is of clinical interest, as measurement of pulse pressure variations, invasively by arterial
catetherization, or noninvasively by pulse plethysmograph (PPG) [5], is less complicated than that
of stroke volume.

1.2 Pulse pressure variations and hydration status

Evidence linking cardio-pulmonary variations to hydration status was first presented in 1983 [6].
Since then, numerous reports have contributed to strengthen this evidence. It has also been shown
that cardio-pulmonary variations constitute a better predictor of hydration status than static
parameters, such as central venous pressure. See [7] for a comprehensive review.

The link between cardio-pulmonary variations and hydration status can be explained using the
Frank-Starling relationship, conceptually illustrated in Figure 2, and originally due to D. Maestrini
(1886–1975), rather than O. Frank and E. Starling, after whom it is named. The curve relates
end-diastolic volume to stroke volume of the left heart. As described above, end-diastolic volume
varies with intrathoracic pressure over the respiratory cycle, illustrated by vertical grey line pairs.
As seen in Figure 2, the magnitude of the corresponding ∆SV is larger at the steep section of the
curve, than at the plateau.

Due to the relation between venous return and end-diastolic pressure, the latter is increased
if a blood volume expansion is performed through intravenous fluid administration. I.e., volume
expansion corresponds to moving to the right in Figure 2, resulting in smaller ∆SV.

One of the main objectives of intravenous fluid management, in intensive care and a majority of
surgeries, is to maximize cardiac output (CO) [2], defined as the product of left ventricular stroke

3Sometimes PPV is used to denote pulse pressure variations. However, we prefer ∆PP, as PPV can be confused
with positive pressure ventilation.
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Figure 2: Conceptual illustration of the Frank-Starling relationship between left end-diastolic
volume and stroke volume. Volume expansion shifts the interval, across which intrathoracic
pressure varies over each respiratory cycle, to the right, thereby decreasing ∆SV and consequently
∆PP.

volume and heart rate. Consequently, it is motivated to perform volume expansion until the plateau
of the Frank-Starling curve of Figure 2 is reached. Once the plateau is reached, further volume
expansion only marginally increases stroke volume, and consequently cardiac output. Relatedly,
further volume expansion may lead to hyperhydration, with adverse effects, including increased
mortality in some patient groups, as described in e.g., [8]. Exploiting the previously mentioned
correlation between ∆SV and ∆PP, the rationale is therefore to perform volume expansion, as long
as it results in decreased ∆PP.

1.3 Pulse pressure variation algorithms

There exist several commercial monitors, which compute cardio-pulmonary variation indices, such
as ∆PP, with the intention to guide clinicians in the titration of intravenous fluids. Most of
these monitors, including the PiCCO (Pulsion Medical Systems, Feldkirchen, Germany) and
FlowTrac (Edwards Life Science, Irvine, CA), utilize propriety algorithm. As pointed out in
[7], the availability of open algorithms is essential for the research community. This is particularly
true for research on closed-loop controlled fluid management systems [9, 10], where dynamics of
the monitor influence the closed-loop system; its performance, robustness, and ultimately even its
stability.

While there exist a multitude of algorithms for estimation of respiratory rate from PPG in
spontaneously breathing individuals [11], there exist few published algorithms for the computation
of pulmonary variation indices in mechanically ventilated patients. A notable exception is the
algorithm published in [12], and implemented in the Philips Intelivue MP70 (Philips Medical
System, Suresnes, France). That algorithm relies on peak detection, with subsequent estimation of
enveloping functions. Unlike the algorithm to be proposed herein, it relies on uniform resampling
of data, does not impose structure (e.g., sinusoidal) on the envelopes, and does not define pulse
pressure between beats.

1.4 Robust computation of pulse pressure variations

A simple algorithm for fast online computation of arterial pulse pressure variations (∆PP) will
be introduced, demonstrated, and discussed. The algorithm has few parameters, which all have
intuitive interpretations, enabling the recommendation of sound default values. It is robust to
outliers, and provides a measure of its output confidence. Minimal example implementations in
the Matlab programming language can be downloaded from [13].

Demonstration of the algorithm is performed using porcine arterial pressure data, sampled at
100 Hz by catetherization of the ascending aorta. The data was acquired as part of a closed-loop
hemodynamic stabilization project. Experimental conditions and compliance with ethical standards
were reported in [14]. Details concerning study ethics are additionally found at the end of this
paper, under ”Compliance with ethical standards”. Cardiovascular similarities between human
physiology and porcine models [15], support the thesis that successful demonstration of the proposed
algorithm in a porcine model indicates applicability to human arterial pressure data.
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2 Algorithm

This section presents a robust, simple, and computationally cheap algorithm for computation of
∆PP (%), defined through:

∆PP = 100 · PPmax − PPmin

PPmean
, (1)

where the max, min, and mean of the pulse pressure signal, PP, are taken over a historic window,
with a duration T , exceeding the respiratory period.

Computation of ∆PP is complicated by the fact that PP is traditionally defined as the difference
between consecutive systolic and diastolic arterial pressure peaks. Hence, it is only defined at
discrete instances, coinciding with heart beats, and consequently not periodically spaced. To
circumvent this problem, a continuous time signal ŷs(t) is fitted to the systolic and diastolic peak
signals ys(ts), and yd(td), respectively. The algorithm treats ys(ts) and yd(td) similarly, and only
ys(ts) will be considered in the presentation, except when otherwise motivated.

If the patient is under mechanic ventilation, the historic window duration, T , could be chosen
as one respiratory period, if known. Otherwise T needs to be chosen sufficiently large to be able to
resolve ∆PP, and sufficiently short to render significant hemodynamic changes (blood pressure or
heart rate) within the time window improbable. We will utilize a default T = 10 s in all examples,
and subsequently update T , based on obtained estimates of the respiratory period, as explained
later. An alternative, not explored herein, would be the use of a forgetting factor, putting larger
emphasis on recent measurements.

A first step toward obtaining ŷs is to perform peak detection on the continuous arterial pressure
signal y(t), to obtain ys, defined at time instances ts. Finding ys(ts) is readily achievable through
prominence-based peak detection, where a reasonable choice of peak prominence is given by
α(max y(t) − min y(t)), evaluated over the considered time window. The parameter α should be
chosen sufficiently large not to discard actual systolic peaks, while small enough not to capture local
minima. The most prominent local minima are typically the dicrotic waves (visible in Figure 3a),
following closure of the aortic valve, occurring approximately at mean arterial pressure [16]. The
clinically widespread rule of thumb, that the mean arterial pressure equals diastolic pressure plus
one third of the pulse pressure (PP/3), motivates our choice of α = 1/3 (used throughout all
examples), which eliminates detection of the diacrotic waves by an ample margin.

With ys(ts) at hand, yd(td) can be readily obtained, by finding the minima of y between the
time instances of ts.

The role of ŷs(t) and ŷd(t) is similar to that of the enveloping functions in [12]. However,
rather than simply enveloping the arterial blood pressure signal, we observe that both systolic and
diastolic variations follow sinusoidal patterns, as shown in Figure 3. Enforcing this structurally
in ŷs(t) enables a parametric description ŷs(t; θs), with θs being the parameter vector, and the
formulation of a parameter fit error, Js(θs) = Js(|ŷs(ts; θs) − ys(ts)|). This has two principal
benefits. Firstly, it provides a continuous signal ŷs(t), which can serve to represent ys(ts) at all

times within the window. Secondly, Js(θs) serves as a measure of reliability for the estimate θ̂s of
θs.

Prior to fitting a sinusoid to ys(ts), any affine trend kst+ms is removed (with ks and ms saved
for later use) by ordinary least squares regression, as shown in Figure 3a. Detrending is employed
to make the algorithm robust to arterial pressure trends within the considered window T , and we
denote the detrended signals with a superscript 0, e.g., y0s(ts).

Fitting of a sinusoid ŷ0s(t) = as sin(ωrt+ ϕs) to y0s(ts), as shown in Figure 3b, is conducted in
two steps. First, the respiratory angular frequency, ωr, is estimated. The use of standard power
spectral techniques such as fast Fourier transform (FFT) is limited by y0s(ts) not being uniformly
sampled. Even if it were (e.g., as a result of interpolating resampling), the short window length,
T , would not provide sufficient frequency resolution within the band of interest.

Both above problems can be resolved by employing the Lomb-Scargle spectral estimator [17].
The underlying method is also known as least-squares spectral analysis (LSSA). It is closely related
to the FFT, but has the advantages of not relying on uniformly sampled data, and being able to
compute spectral power density (PSD) estimates at isolated frequencies, rather than over frequency
intervals. Its PSD estimate, at the angular frequency ω, for a zero-mean signal x(t), e.g., y0s(ts),
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indexed by k, is provided by

PLS(ω) =
(
∑

k x[k] cos(ωt[k]− τ))
2∑

k cos2(ωt[k]− τ)
+

(
∑

k x[k] sin(ωt[k]− τ))
2∑

k sin2(ωt[k])− τ
,

τ =
1

2ω
tan−1

∑
k sin(2ωt[k])∑
k cos(2ωt[k])

,

(2)

where σ2 is the variance of x, which we can disregard, as we are only interested in finding
arg maxω PLS(ω).

The PSD estimate PLS is evaluated over a frequency range ωmin ≤ ω ≤ ωmax. In order to
avoid folding effects, we enforce a Nyquist frequency corresponding to half the median heart rate
during the considered window, ωmax = π ·median(1/∆ts)/2. The minimum considered frequency
is chosen, assuming T is at least half of the respiratory period: ωmin = π/T .

For our purposes we deem it sufficient to evaluate (2) at N = 64 = 26 uniformly spaced
frequencies between ωmin and ωmax, limits included. The resulting Lomb-Scargle periodogram
thus generated by y0s(t) of Figure 3b is show in Figure 3c. It has a clear maximum at ω = ωs.
Similarly, computation of the Lomb-Scargle periodogram for yd(td) yields an angular frequency ωd.
The mean of these is chosen as estimate of the respiratory angular frequency, ω̂r = (ωs + ωd)/2.

If the respiratory period is a priorily known to the algorithm, ω̂r = ωr, the use of the
Lomb-Scargle PSD estimator becomes superfluous. On the other hand, if ωr is not known a
priory, the estimate ω̂r can be additionally used to update the window duration, T . We have
utilized the update T := 1.5 · 2π/ω̂r, where the factor 1.5 is in place to ensure a sufficiently long
window for the Lomb-Scargle estimator to robustly determine ω̂r in the next iteration.

With ω̂r at hand, it is straightforward to fit the amplitude, as and phase ϕs of the systolic
variation ŷ0s(t) = as sin(ω̂rt+ ϕs), by solving

min
as,ϕs

‖y0s − ŷ0s‖22 =
∑
k

∣∣y0s(ts[k])− as sin(ω̂rts[k] + ϕs)
∣∣2 . (3)

The problem (3) can be reformulated as

min
x1,x2

‖x1 cos(ω̂rts) + x2 sin(ω̂rts)− y0s(ts)‖22, (4)

which is an ordinary least squares problem in x =
[
x1 x2

]T
, relating to (3) through

as = ‖x‖2,
ϕs = atan2(x1, x2).

(5)

The estimated pulse pressure signal, ŷPP(t), defined over the window 0 ≤ t ≤ T , is the difference
between the fitted signals,

ŷ(t) = ŷs(t)− ŷd(t). (6)

It can be expressed as the sum of a sinusoid and an affine function

ŷ(t) = a sin(ω̂rt+ ϕ) + kt+m, (7)

where

a =
√

(as cosϕs − ad cosϕd)2 + (as sinϕs − ad sinϕd)2,

ϕ = tan−1
(
as sin(ϕs)− ad sin(ϕd)

as cos(ϕs)− ad cos(ϕd)

)
,

k = ks − kd,
m = ms −md.

(8)

Note that the algorithm allows for ϕs − ϕd 6= 0, to cater for the possibility that the phase of the
cardio-pulmonary interaction signals is not identical in systole (y0s) and diastole (y0d). The mean
pulse pressure can now be computed as

PPmean =
1

T

∫ T

0

ŷ(t)dt =
a

T ω̂r
(cos(ϕ)− cos(ϕ+ T ω̂r)) +

kT

2
+m. (9)
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The extrema of the pulse pressure variation signal fulfill

d

dt
ŷ(t) = 0⇔ t = t0 +

2πm

ω̂r
,

t0 =
± cos−1

(
− k

aω̂r

)
− ϕ

ω̂r
, : m ∈ Z.

(10)

Consequently, PPmin and PPmax are found at either of the two smallest or largest t solving (10)
withing the considered window 0 ≤ t ≤ T , or at the endpoints t ∈ {0, T}. The mentioned
solutions are given by any 0 ≤ t ≤ T fulfilling t = mod (t0, 2π/ω̂r) := t0 and t = t0 + bω̂r(T −
t0)/(2π)c2π/ω̂r, respectively. (Here, ’mod’ is the real modulo function mapping R2 → R.)

2.1 Quality of fit

We use the relative mean square (RMS) error to quantify fit error:

Js = RMS(
ŷs − ys
as

) =

∥∥∥∥ ŷs − ysas#ys

∥∥∥∥
2

=

√
1

as#ys
(ŷs − ys)>(ŷs − ys), (11)

where #ys denotes the number of points in ys, and Jd is defined analogously. The fit error of
(11) is proportional to the L2 error of the ordinary least squares problem used to obtain the fit.
Scaling by the fit amplitude and number of data points are in place, in order to enable comparison
between fits for data sets of unequal size, and with varying degree of underlying cardio-pulmonary
interaction, respectively.

2.2 Computational efficiency

The proposed algorithm is computationally cheap, as it relies solely on evaluation of trigonometric
functions, and the numeric linear algebra necessary to perform ordinary least squares regression.
A non-optimized Matlab implementation [13] computes ∆PP within 0.01 s4. Due to its short
execution time, the algorithm is suitable for real-time implementation in a desktop computer, and
in most modern embedded platforms. Furthermore, the algorithm exhibits moderate dimensional
complexity. Peak detection, periodogram computation and maxima location are all O(n2), n being
the input data dimension. Least squares regression is also O(n2), making the entire algorithm
O(n2).

3 Evaluation

To investigate feasibility of the proposed algorithm, it was evaluated on data collected during the
first of two experiments, reported in [14]. Diastolic, yd, and systolic, ys, values of a one hour
section of arterial blood pressure data, sampled at 100 Hz, is shown in Figure 4a. The particular
data segment was chosen, due to the presence of several rapid arterial pressure changes, which
potentially pose a challenge for the proposed algorithm. The pulse pressure variation signal, ∆PP,
is shown in Figure 4b (grey). Clearly, high frequency components of the signal– corresponding
to time constants in the minute or sub-minute range – do not reflect changes in volume statue.
This motivates low-pass filtering, prior to using the signal for volume assessment purposes. For
demonstration purposes, a filtered version of the raw ∆PP signal, utilizing the zero-order-hold
sampled equivalent of the continuous time low-pass filter low-pass filter 1/(sT+1)2 with T = 5 min
time constant, has been added to Figure 4b (black).

Figure 4c shows the relative angular frequency estimation error, (ω̂r − ωr)/ωr, with mean and
standard deviation of 0.06 and 2.5 %, respectively.

The dataset of Figure 4 was obtained from a ventilator dependent pig under positive pressure
mechanical ventilation (Servo Ventilator 300; Siemens AB, Solna Sweden). The ventilator was
operated in volume-controlled pressure regulated mode, with a minute volume of 100-150 ml/(kg

4Matlab R2016b (9.0.0.341369) on 1.2 GHz Intel core m5 wit 8 Gb RAM.
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(a) Arterial pressure signal, y(t), detected systolic peaks, ys(ts), and affine trend kst+ms. Vertical
lines indicate by how much the prominence threshold α(max(y) − min(y)) was exceeded.
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(b) Detrended systolic peak signal y0s(ts), and least equares fit ŷ0s(t) = as sin(ω̂rt+ ϕs).
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(c) Lomb-Scargle periodogram for y0s(ts), with maximum at ωs.
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(d) Fitted systolic and diastolic signals ŷs(t) and ŷd(t).
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(e) Resulting pulse pressure variation signal ŷ(t) = ŷs(t) − ŷd(t).

Figure 3: Graphical illustration of the proposed algorithm, using a representative arterial pressure
signal y(t), and the proposed window length of T = 10 s. Upon detection of systolic peaks (marked
with circles), and linear detrending, an estimate of the respiratory angular frequency ω̂r is obtained
using the Lomb-Scargle spectral estimator. The corresponding amplitude and phase of the systolic
pressure variations due to respiration, are determined using ordinary least squares. The same
procedure is undertaken for diastolic peaks to arrive at the pulse pressure variation signal.
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(a) Diastolic, yd(td) (lower), and systolic, ys(ts) (upper), arterial blood pressure signals.
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(b) Pulse pressure variation signal, ∆PP (grey), and low-pass filtered version (black).
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(c) Positive pressure ventilation angular angular frequency, ωr (black), and estimate, ω̂r (grey).

Figure 4: Evaluation of the proposed algorithm on 1 h of arterial pressure data (a), sampled at
100 Hz, and containing several rapid pressure changes. The respiratory frequency is correctly
estimated throughout the experiment, as indicated in (c).

body mass) and a positive end-expiratory pressure (PEEP) of 5 cmH2O. The respiratory cycle was
set to 4.5 s, corresponding to the thus known respiratory angular frequency, ωr. Arterial pressure
was measured invasively (DTXPlus; Argon Medical, Plano, TX), and sampled at 100 Hz.

The particular 10 s sequence of Figure 3 was chosen for plotting, based on the fact that the
corresponding fit error, Js, was the one lying closest to the mean of the entire 1 h data set of
Figure 4, making it representative of the data set. The worst case Js was attained for the sequence
shown in Figure 5b, resulting in the systolic fit of Figure 5a. The relatively poor fit in this
case is caused by the outlier marked ‘×’. Figure 5 additionally serves to illustrate robustness of
the proposed algorithm, which produces a sound fit for all data points except the single outlier.
Focusing on Js, rather than Jd, in this context, is explained by larger respiratory variations in ys
than in yd, as seen in for example Figure 3 and Figure 5. This renders ∆PP more sensitive to
systolic fit errors.

Histograms of the normalized systolic (Js) and diastolic (Jd) fit errors are shown in Figure 6a,
and Figure 6b, respectively. The fits corresponding to the representative sub-sequence shown in
Figure 3 are marked with solid vertical line, while the worst-case of Figure 5 is marked with dashed
vertical lines.

4 Discussion

The dataset of Figure 4a, used to evaluate the algorithm, was chosen due to its several fast
and large arterial pressure changes5, which pose a challenge to obtainment of the pulse pressure
variation signal ∆PP. The good worst-case fit of Figure 5 shows that the algorithm indeed succeeds
in robustly and correctly determining ∆PP throughout the dataset of Figure 4a. A secondary
indicator of this, confirming the robust performance of the algorithm, is the small (0.06 ± 2.5 %)
relative respiratory frequency estimation error.

The interpolative nature of the algorithm can be used to compute both systolic (diastolic)

5The changes were drug induced, as explained in [14].
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(a) Detrended systolic peak signal y0s(ts), and least squares fit ŷ0s(t) = as sin(ω̂rt+ ϕs), with outlier
marked ‘×’.
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(b) Fitted systolic and diastolic signals ŷs(t) and ŷd(t).

Figure 5: The 10 s window producing the worst systolic variation fit within the 1 h data set of
Figure 4. The relatively poor fit is due to the outlier marked ‘×’. (The corresponding diastolic fit
lacks such outlier.)
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(a) Normalized fit error (Js − min Js)/(max Js).
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(b) Normalized fit error (Jd − min Jd)/(max Jd).

Figure 6: Histograms of the fit errors, as defined by (11). Solid lines correspond to Figure 3
(representative), dashed lines to Figure 5 (worst in data set).
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pressure at any time instance t, by evaluating ŷs(t) (ŷd(t)). Without this feature, the computed
∆PP would depend on the phase between the heart rate and cardiopulmonary interaction signal
components, which is obviously undesirable. Relatedly, the interpolation enables displaying or
recording the systolic (diastolic) pressure at a uniform sampling rate, rather than at time instances
corresponding to the non-uniformly spaced systolic (diastolic) peaks. Furthermore, the algorithm
provides the possibility to compensate for the cardiopulmonary interaction when displaying or
recording the systolic (diastolic) pressure signals – by subtracting the estimated sinusoid. This
feature can easily be implemented also for the mean arterial pressure (MAP).

Alternatively to using ω̂r = (ωs + ωd)/2, it would be possible to fit the amplitude and phase
using ωs for the systolic data in (4)–(5) and ωd for the diastolic. While this could serve to slightly
decrease the fit errors Js and Jd, defined through (11), it would make less physiological sense, as
there is de facto one true respiratory angular frequency ωr. It might, however, be that the mean is
not the best convex combination of ωs and ωd to represent ωr, depending on what cost J(Js, Jd)
one wishes to minimize. The typically accurate estimation of the respiratory frequency using the
mean (see Figure 4c) does, however, not motivate the additional computational cost of finding a
θ ∈ [0, 1] that minimizes the function J over the convex combination ω̂r = θωs + (1− θ)ωd.

In addition to computing ∆PP, the computed fit errors Js and Jd could be used to provide
a signal quality index (SQI). In a monitoring or closed-loop control scenario, the ∆PP signal
could for instance be discarded whenever some function of Js and Jd (e.g., max(Js, Jd)) is larger
than a certain threshold. Assuming fixed frequency mechanical ventilation, sudden changes in the
estimated respiratory angular frequency ω̂r could also be used to lower the SQI.

The low computational cost, together with herein suggested default parameter values, enables
straightforward real-time implementation of the algorithm in any desktop computer, and in most
embedded systems. Its structural simplicity, makes it readily implementable in virtually any
programming language. Furthermore, the low phase lag, determined by the window duration,
T , makes the algorithm particularly suitable for providing the input to closed-loop controllers.

The visually observable correlation between the arterial pressures in Figure 4a and the computed
pulse pressure variations, ∆PP in Figure 4b, suggest that assessment of volume status based on
pulse pressure variations is only reliable if the arterial pressure does not change significantly during
the observation period. Relatedly, the observable correlation suggests that ∆PP could be adjusted
based on the (mean) arterial pressure, to make ∆PP a more reliable predictor of volume status,
in the presence of other hemodynamic changes. In this context, it should be clarified that the
purpose of this work was to present a robust algorithm for the computation of ∆PP, rather than
to investigate the suitability of pulse pressure variations as a volume status predictor. (The latter
has been done by others, as explained in Section 1).

5 Conclusions

An algorithm for computation of the pulse pressure variation signal, ∆PP, based on continuous
measurement of arterial pressure, has been proposed. Capability of the algorithm to robustly
compute ∆PP, as well as good estimate of respiratory frequency, has been demonstrated on a
challenging porcine data set. In addition to ∆PP, the algorithm outputs two fit error signals,
which could be used as a signal quality index.

The relevance of ∆PP in the determining of patient volume status, combined with few published
algorithms for its computation, suggest usefulness within the research community. The simplicity
(example code provided at [13]), high execution speed, and low phase lag, make the algorithm
particularly suitable for closed-loop controlled volume expansion.
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