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Literature evidences the existence of hypokinetic dysarthria in parkinsonian patients and, consequently, 
the objective characterization of the dysarthric signs associated to the articulatory aspect of speech can 
be used to detect Parkinson's Disease (PD) providing clinicians with new tools to support the clinical 
diagnosis. 

However, no work has analyzed in detail the importance of the different phonemes in the automatic 
detection of PD from the speech. 

This work proposes new approaches for this detection by using new classification schemes that allow 
to compare independently the different phonetic units of patients and controls employed during several 
speech tasks. Three different parkinsonian corpora were used allowing cross-validation and cross-corpora 
trials. 

The results of cross-validation trials (k-folds) provided accuracies between 81% and 94%, with AUC 
between 0.87 and 0.97 depending on the corpus, while cross-corpora trials yielded accuracies between 
66% and 76% with AUC between 0.76 and 0.87. 

These results suggest that PD affects to the articulatory sequence as a whole, influencing more clearly 
phonetic units requiring a higher narrowing of the vocal tract. Additionally, text-dependent utterances 
are considered as the recommended speech task for the detection of PD in this type of schemes as these 
allow to compare more precisely the phonetic units of patients and controls. Lastly, this work discusses 
the existence of a glass ceiling in the accuracy of the systems for the automatic detection of PD using 
speech, concluding that this is below 95% for most of the cases. 

1. Introduction 

The neurodegenerative processes associated to Parkinson's Dis­
ease (PD) cause multidimensional voice and speech impairments 
called dysphonia [1], dysprosody [2,3] and dysarthria in patients, 
in particular hypokinetic dysarthria [4-7] . This type of dysarthria is 
characterized by a reduction of the articulation amplitude [8,9] and 
a decrease of intelligibility mostly, among other signs. 

To this respect, several works in literature point out to an influ­
ence of PD in phoneme production in patients, especially in the 

case of some specific allophones.1 One of the earliest studies try­
ing to determine the articulatory deficits of parkinsonian patients 
from a phonetic point of view is [10] in which authors analyzed 
the dysfunctions of larynx, lips and tongue (back, tip and blades) in 
200 idiopathic and postencephalitic untreated PD patients. In that 
work, two trained listeners evaluated the speech of the patients to 
perceptually assess their quality of voice and the misarticulation of 

1 It is important to discern between two concepts: phonemes and allophones. A 
phoneme is a phonetic unit which cannot be decomposed in minor units and which 
can distinguish one word from another. The term allophone is referred to each of the 
pronunciation variants of a certain phoneme, usually, as a function of this phoneme 
in a word or syllable and depending on the adjacent phonemes. For instance, the 
phoneme /g/ has the allophone 'g' the Spanish word "gusta" and 'y' in "disgusta". 



allophones. Results show that 45% of the patients exhibited lingual 
or labial (or both) abnormalities during articulation. The authors 
reported that the errors are mainly concentrated in the consonants 
requiring the greatest narrowing or closure during articulation, 
with more errors found in velar articulations, mostly /k/ and /g/ 
phonemes, which has been confirmed in works [ 11 -14]. In the sub­
sequent work [11] using the same speech corpus, authors reported 
incomplete contact of articulators for plosive stops and partial con­
strictions for fricatives. One of the main conclusions found in this 
publication is that the intra-speaker consistency of the errors is near 
to 98%, meaning that when a patient misarticulated a phoneme, 
this error was repeated all along the session. However, this work 
did not include inter-session recordings and, thus, the longitudi­
nal intra-speaker error consistency could not be assessed. Another 
important observation found in [11 ] is that inter-speaker misartic-
ulation consistency reached 97%, meaning that the vast majority of 
the patients produced the same error substitution when a phoneme 
was misarticulated. In most of the cases, this error consisted in 
the substitution of stop phonemes by fricatives, in a phenomenon 
known as spirantization. 

In this sense, authors of a more recent work, [3], found per­
ceptual and objective deterioration of phonatory, articulatory and 
prosodic aspects of speech in 80 patients, independently of the 
stage of the disease, indicating that abnormalities on speech can 
occur in early stages. These results are in concordance of those from 
[15] in which authors characterized articulatory deficits to detect 
PD in patients from early stages. 

In the studies [16,17], authors performed an analysis of the influ­
ence of PD in vowels [16] and consonants [17] of the speech from 25 
sentences in habitual, clear, loud and slow conditions. The first work 
[16], using formant-related measurements such as Vowel Space 
Area (VSA), reports significant differences between the patients 
and controls, in concordance with the findings of other studies 
[3,18-22]. One of the conclusions of [16] as well as [18] is that the 
production of the vowel /u/ during articulation is more affected by 
PD than /a/ or /i/. The subsequent study [17], using acoustic features 
characterizing the articulatory constriction during consonants only 
found subtle differences between the same consonants produced 
by the parkisnonian and control groups. This is contradictory with 
the findings exposed in [10-14] where a strong influence of the 
disease is found in certain consonants. 

Despite all of the exposed evidences, no work performs a 
detailed study of the importance of the different phonemes in the 
automatic detection of PD from the speech, to the best of authors' 
knowledge. Consequently, this is one of the main objectives of the 
present work. 

To this respect, Figs. 1 and 2 illustrate two examples of the possi­
ble differences in articulation and phonation between patients and 
controls. In the first case, Fig. 1 shows the waveform and spectro­
gram of the syllable /pe/ within the word "petaca" in Spanish from a 
newly diagnosed patient (a) with Unified Parkinson's Disease Rat­
ing Scale (UPDRS) 9, and a control speaker (b). In the case of the 
patient, the vowel presents more irregularities, which is reflected 
in the spectrogram as an absence of well defined formants. In Fig. 2, 
both speakers pronounce the word "es" within the Spanish sen­
tence "La petaca blanca es mía". In the case of the patient (a) it is 
observed that the articulation of the phoneme /s/ becomes almost 
a continuation of the phoneme /e/ as it is reflected in the waveform 
and in the spectrogram where the /e/ formants do not disappear 
when /s/ is pronounced. This contrasts with the analogous wave­
form and spectrogram of the control speaker (b) where the two 
allophones are clearly separated. This voicing leakage effect may be 
caused due to an incoordination in the use of the glottal source 
which leads to continuous vibration of the vocal folds even during 
the articulation of the /s/ consonant, where an interruption of the 
phonation was expected. 

On the other hand, in the last decade multiple works are propos­
ing new schemes that can be used as tools to support the diagnosis 
of PD [1,24-26] helping clinicians to perform an earlier diagnosis, 
which usually can take several years [27]. The present study can be 
framed in this type of works. 

Thus, in view of these evidences this study considers the par­
ticularities of articulatory movements in parkinsonian speakers to 
distinguish between patients and controls in a binary detection sys­
tem. In the proposed methodology, the different phonemes were 
used separately to create classifiers able to discriminate between 
the two types of speakers, namely patients and controls, based on 
statistical models of the acoustic features of these phonemes. Thus, 
the purpose of this work is twofold: to propose new approaches 
to detect PD from the speech and to analyze the importance of the 
different phonetic units within the proposed schemes. 

With these objectives, speech recognition technologies such as 
forced alignment [28] were used in the present work in order 
to segment the speech signal, obtaining the separate allophones. 
These techniques have been used previously in other works such 
as [29] to assess the intelligibility in pathological speech, example 
which could be considered as a precedent of this work in the use of 
such techniques. Then, the obtained allophones were used to train 
separately different Gaussians, obtaining forced-Gaussian Mixture 
Models (fGMM) for PD detection. 

The document is structured as follows: Section 2 describes the 
theoretical background, introducing the concepts and techniques 
used in the experimental setup, described in Section 3. Section 4 
presents the results and Sections 5 and 6, the discussion and con­
clusions respectively. 

2. Theoretical background 

2.1. Speech forced alignment 

Speech forced alignment techniques are used to automatically 
detect allophones in an utterance knowing its transcription (and 
therefore, the sequence of phonemes of the speech signal). The 
outcome of the forced alignment is the automatic segmentation of 
the signal into separated phonetic units (allophones or phonemes, 
depending on the system) and the labeling of each of these seg­
ments with their corresponding phonetic label. This technique can 
be considered as supervised since in contrast to, for example, text 
independent automatic speech recognition techniques, the system 
knows the transcription of the analyzed utterance beforehand. An 
example of forced alignment obtained with a model trained using 
Kaldi toolkit [30] is shown in Fig. 3 where it is possible to see the 
alignment of the sentence "La petaca blanca". 

For the purposes of this work, a Forced Alignment Model (FAM) 
was obtained with Kaldi following a Gaussian Mixture Model 
(GMM) - Hidden Markov Model (HMM) architecture. In general 
lines, the training of this type of FAM follows these steps: 

1. All the speech signals are characterized, commonly using Mel 
Frequency Cepstral Coefficients (MFCC) and its associated first 
and second derivatives (+A + A A) [31 ] or other similar features. 

2. Employing these features, a GMM-based monophone model is 
trained, taking into account all the possible allophones contained 
in the training corpus.2 This first model consists in a group of 
GMM, representing each of the singular allophones or mono-
phones. It is obtained after several iterations of model training 

2 Notice that the corpus must include the transcription files of all the utterances, 
and metadata such as lexicon, dictionaries and other auxiliary files. 



(a) Idiopathic PD female speaker. Age: 59. UPDRS: 9. Span: 169 ms 

(b) Control female speaker. Age: 59. Span: 169 ms 

Fig. 1. Waveforms and spectrograms of a parkinsonian (newly diagnosed) and a control speaker pronouncing the syllable /pe/. Obtained from Neurovoz corpus, described 
in Section 3. Red dot lines mark the first four formants calculated with the software Praat [23]. 

and utterance aligning.3 In the first iteration, the utterance is 
subdivided into a number of chunks equal to the number of 
monophones of the utterance, obtained from the transcription. 
Each chunk has the same time length in the first iteration but 
after a re-aligning using HMM and Viterbi algorithms, new seg­
ments are obtained and used to train a new GMM. This process 
is repeated for a certain number of iterations or until there is not 
substantial improvement in the alignment and a convergence is 
reached. 
Using this monophone basic alignment as a basis, a new model 
is created following the same procedure but using triphones as 
phonetic units. Triphones are phonetic units that depend on 
the preceding and following phonemes. Thus, triphones help 
modelling the coarticulation effect. This new triphone GMM is 
optimized after several iterations, as in the previous step. 
Once this GMM set is obtained and all the signals are aligned 
employing triphones, all the features are transformed using 
the Linear Discriminant analysis + Maximum Likelihood Linear 

3 Alignment is referred to segmentation and labeling of the speech at the same 
time. This segmentation and labeling is used to iteratively train the new GMM more 
precisely after each iteration. 

Transform (LDA+MLLT) projection. The new features are used 
in a new sequence of training-alignment iterations considering 
triphones. 

5. Finally, MFCC features are transformed using Feature space Max­
imum Likelihood Linear Regression (fMLLR) to obtain speaker 
independent features; and the last iterations of the triphone 
training-alignment process are performed. 

Once a FAM is obtained, it can be applied to an utterance -
characterized by the same features employed in the training (i. e., 
MFCC+A + A A)- and its associated transcription to automatically 
segment and label it. It is important to remark that the MFCC char­
acterization is used only to train the FAM and to obtain the final 
labels but in this work, this feature family is not used directly to 
detect PD. The Kaldi FAM model, described previously, provides 
the phonetic labels (e. g, /p/, /a/, or /n/) for a certain utterance, 
without making any distinction between the different types of pos­
sible allophones that can be associated to a single phoneme. Only 
the plosive-fricative allophones of the phonemes /b/, /d/ and /g/ 
were considered and the use of the vowel /u/ separately and in 
diphthongs and hiatus, represented with the label /w/. Table 10 
in Appendix A includes the correspondence between the different 
allophones of Castilian Spanish and the Kaldi phonetic labels. 
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(a) Idiopathic PD female speaker. Age: 85. UPDRS: 47. Span: 331 ms 
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(b) Control female speaker. Age: 83. Span: 338 ms 

Fig. 2. Waveforms and spectrograms of a parkinsonian (in an advanced stage) and a control speaker pronouncing the word "es". Obtained from Neurovoz corpus. Red dot 
lines mark the first four formants calculated with the software Praat. 
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Fig. 3. Example of forced alignment labeling obtained with Kaldi, including waveform, spectrogram, phonemes and transcription. 

2.2. Approach 1: forced Gaussian mixture model 

One of the first techniques proposed in this work to detect PD 
from speech is the fGMM. This scheme trains GMMs where the 
Gaussian components of the mixture correspond to phonetic units 
instead of being obtained in an unsupervised procedure by maxi­

mum likelihood Expectation-Maximization (E-M) iterations [32]. 
To train the model, in the E-step, feature frames are aligned to 
phonetic units using the Kaldi FAM model and the Gaussian respon­
sibilities are computed. In the M-step the parameters of GMM are 
updated by maximizing the EM objective in the usual way. The goal 
is to obtain improved GMMs (fGMM) which allow to compare more 
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Fig. 4. fGMM general scheme. Initially, the fGMM model is trained using the training data (training fold) and then, tested with the testing data (testing fold). HC stands for 
healthy control. 

precisely the differences between the realizations of each phonetic 
unit in each one of the two classes. 

For a certain training corpus containing speakers from two 
classes, T c is the set of recordings of class c, composed of Uc utter­
ances Xu: 

,XU, H/Ci (1) 

Then, for an utterance containing N frames, the sequence of 
feature vectors, 

X u = {Xj , ,X N } (2) 

where the vectors x„ have dimension D. For any utterance, let Su 

be the sequence of labels corresponding to Xu: 

£ i , & , . . . , £ Ni (3) 

where each i¡„ is the phonetic label of feature vector x„, obtained 
by the FAM. The number of different types of labels is Q, In a general 
case, 

? n e ....,IQ) (4) 

being ig the gth phonetic label type (/h/, for instance). Then, the 
fGMM is represented by ©c = {fic

g, E
c
g}Q=l, where fic

g is the mean 

vector and Ec
g is the covariance matrix of Gaussiangin class c. In this 

work only the diagonal covariance matrices were used. To calculate 
the gth mean vector and covariance matrix, only the frames from 
the gth phonetic unit were used. For instance, to compute /¿j and 
T¡\, only the feature vectors of class c labeled with ii, (normally 
/a/), were used. The result is one Gaussian per phonetic unit, with 
distribution pc

g(xn): 

p ( x n \Hc) = pc
g{Xn) (5) 

being Hc the hypothesis of a certain utterance belonging to class c. 
In this case, there is a single g for each x„, determined by the 

phonetic label associated to this feature vector. For instance, if the 
feature vector x„ is labeled with /a/ (g= 1), then p(xn | Hc) = p\(xn). 
Note that in the fGMM, there is no soft Gaussian responsibilities 
as those used in the typical GMM models [32]. Since every sin­
gle testing feature vector is unambiguously associated to a specific 
Gaussian component pc

g(x) (characterized by its mean vector fic
g 

and covariance matrix Ec
g), there is no need to use weightings to 

balance the use of the different pc
g[x). 

For any feature vector x„ the Gaussian density pc
g[xn) is defined 

as: 

Pg(Xn) = 
exp{-l/2(xn • fig)mr\xn- X ) } 

(27T)' i > / 2 | E C | l / 2 
(6) 

Finally, the scores for each utterance Xu for the model of class c, 
containing N frames, are calculated by means of the log-likelihood 
of every frame as: 

Af, i ^ l o g p ( x n | 0 c ) 

and the global scores for each utterance are: 

A A PD A control 

(7) 

(8) 

Once the different scores are calculated for all vectors, to com­
pute the class membership of a certain feature vector x„ from the 
test set, its score is compared with a threshold, k to prove the 
hypothesis Hpo: 

Au 

> X, accept Hpo 

< k, reject Hpo 
(9) 

Fig. 4 contains a diagram of the training and testing processes 
of the fGMM scheme. 

2.3. Approach 2: gaussian mixture model -forced universal 
background model 

The GMM - forced Universal Background Model (GMM-fUBM) 
classification scheme is similar to the GMM - Universal Background 
Model (UBM) explained in [32]. However in this case, the UBM is 
created using the phonetic labels from the UBM speech corpus, 
obtaining a fUBM as explained in Section 2.2. The goal is to pro­
duce a UBM containing Gaussians directly associated to the various 
phonetic labels. Afterwards, the GMM-fUBM model for each class 
is obtained by performing Maximum a Posteriori (MAP) adaptation 
of the fUBM mean vectors to the adaptation-training utterances. In 
the adaptation step, the phonetic labels of the adaptation-training 
corpus (parkinsonian corpora, usually) are not used and frame-
Gaussian alignment is performed using the Gaussian posterior 
probabilities. 

Thus, after obtaining the fUBM model ®fuBM = 
{ic^m, li^m, Zg

BM}\j=v the GMM-fUBM model will contain the 
fUBM weights and covariance matrix and the MAP adaptation of the 

rllBIVK.Q. 
¿g ¡\g=V fUBM mean vectors, p,g, resulting in &f = {jr^BM, (L 

Fig. 5 contains a diagram of the training and testing processes 
of the GMM-fUBM scheme. 
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2.4. Approach 3: forced gaussian mixture model - forced 
Universal Background Model 

The the forced GMM - forced UBM (fGMM-fUBM) of each class 
are obtained by adapting mean vectors of the fUBM, but in this 
case force alignment with the phonetic labels of the adaptation-
training corpus must be used. The goal of this scheme is that each 
of the resulting mixture densities is obtained using exclusively seg­
ments of a certain phonetic type (/a/, /b/, /d/, etc.). In this manner 
we can compare more precisely these types between classes, as in 
the fGMM but adapting the final models from a fUBM which allows 
to generalize better. 

Similarly to the previous section, after obtaining the fUBM 
model ©n , UBM rUBM,,Q 

the fGMM-fUBM model will fUBM = {fig > -^g r i g = i ' 

be composed of the fUBM covariance matrix and the adaptation 
of the fUBM mean vectors using the adaptation-training cor­
pus and its correspondent phonetic labeling, resulting in ®/_/ = 

{ £ f - f „ g ' ~ g J ' g = r 

The adapted means are calculated as 

/ ¿ f - f , g = 

where 

S ' S ^ £ Jr^ff (10) 

(11) 

being rg the number of frames of class c in the training corpus 
labeled as ig and a, is the relevance factor, as defined in [32]. 

Again, to compute the class membership of a certain feature 
vector x„ from the testing subgroup, the procedure explained in 
Section 2.2 is applied. 

Fig. 6 contains a diagram of the training and testing processes 
of the fGMM-fUBM scheme. 

idea behind this optimization is to recursively compute the accu­
racy of each of the phonetic types of frames after obtaining the 
fGMM-fUBM classifier, using this accuracy to change the weight of 
each frame type in the computation of the class membership. Given 
the limited amount of available data, instead of using a held out set, 
the accuracy for each phonetic type was evaluated on the training 
set. Thus, if a phonetic group provides better accuracy than others 
on the training subset, the weighting vector will make the frames 
of that phonetic type more relevant in the final computation of the 
score for a new test utterance. 

Therefore, after creating the fGMM-fUBM models, the member­
ship of the training feature vectors to the two possible classes is 
computed and this information is used to create the weighting 
vector 3>c, 

4>c s {< 

where 

,<% Ao 

# 
nt rd,g 

< f 

(12) 

(13) 

being nfc
rd „ the number of frames of phonetic group g and class c 

correctly classified, and nfc
t¡g the total number of frames of phonetic 

group g and class c. 
In this case, the new scores of any feature vector xn respect to a 

certain model of class c will be 

0. 
A o p t - f - f , n = l 0 S ( P ( x n | 0 f - f ) ) X ) 0 g % , n 

g = l 

(14) 

being rjgji an index indicating if the phonetic label associated to 
x„ is ig {r}gfl = 1) or not (%„ = 0). Therefore, the global scores for a 
certain utterance of N frames are 

2.5. Approach 4: optimized forced gaussian mixture model -
forced universal background model 

Taking advantage of the phonetic labeling of the utterances 
and the unambiguous correspondence between the speech seg­
ments and the Gaussian mixtures, a modification of the previous 
scheme is proposed to optimize the models during the training: 
the optimized- forced GMM - forced UBM (opt-fGMM-fUBM). The 

A o p t - f - f : l y i A P D 
n = l 

(Am A control ^ 
' " o p t - f - f . n j (15) 

The weights 3>c are used to evaluate the performance of the 
models and the obtained results yield new weights. The process is 
repeated until reaching a maximum number of iterations or until 
the overall training accuracy does not increase more than a certain 
incremental improvement, UTmin. 



training data 

testing data 
Forced 

alignment 

Parkinsonian 
speech corpus 

(PD + Ctrl) 
Can be: 
-G1TA 

-Neurovoz 
-Czech 

Paramete­
rization: 

Rasta-PLP 
+A+AA 

Forced 
alignment 

Aux. corpus 
Albayzin 

Paramete­
rization: 

Rasta-PLP 
+A+AA 

JUL 
group 1 

group 2 

group Q 

X Gaussian Density 1 {Vf-f,\, ^ í ™ } 

% Gaussian Density 2 {£/-/ ,2. ^ 2 ™ ) 

5 Gaussian Density Q {Á*/-/,Q > ^ G P Í 

ÍGMM-fUBM model 

-PD 

-HC 

' 

& 
3 S 
DO 

%% 
d re 

g 
g 

group 1 

group 2 

; 

group Q 

Gaussian Density 1 

Gaussian Density 2 

Gaussian Density Q 

{/i™" 

{Air/BM 

; 

iffUBM 

fUBM model 

,SfSM} 

jUBM] 

1 

1 

Fig. 6. fGMM-fUBM general scheme. Initially, the model is trained using the training data (training fold) and then, tested with the testing data (testing fold). 

3. Experimental setup 

3.1. Materials: speech corpora 

In this work, five corpora were employed: Neurovoz, GITA, 
CzechPD, Albayzin and FisherSP. The first three contain differ­
ent speech tasks from PD patients and control speakers. These 
were used to train, adapt and test the different classification mod­
els depending on the proposed approaches. On the other hand, 
Albayzin and FisherSP are two auxiliary corpora in Spanish lan­
guage used to train the UBM and FAM respectively. 

Table 1 i d u i e i 
Demographic statistics of Neurovoz corpus. Ages are expressed in years. 

Female Male 

#Subjects 
Age, average 
Age range 
UPDRS, average 
H&Y, average 
Years since diagnosis 

PD 

18 
70.9 
59-86 
18.2 
2.3 
6.6 

HC 

18 
68.4 
58-83 

-
-
-

PD 

29 
71.9 
41-88 
7.4 
2.3 
7.4 

HC 

14 
66.6 
55-77 

-
-
-

3.1.1. Neurovoz 
Neurovoz is a new corpus containing 47 parkinsonian and 32 

control speakers whose mother tongue is Castilian Spanish. This 
corpus was recorded in collaboration with the otorhinoaringology 
and neurology services of the Gregorio Marañón hospital in Madrid, 
Spain. The recruitment of patients and the recording of the corpus 
was approved by the Ethics Committee of the hospital. The sub-set 
employed in this work contains a Diadochokinetik (DDK) task (rep­
etitions of the syllable sequence /pa-ta-ka/), six fixed sentences and 
running speech from the description of a picture. All of these tasks 
were produced at a comfortable speech Sound Pressure Level (SPL). 
Regarding the fixed sentences or text-dependent utterances, these 
were first listened by the subjects from a recording of a standard 
speaker and then repeated, instead of read from a text document. 
This procedure diminishes the noise of paper during recording, the 
reading mistakes caused by vision problems common in elderly and 
the cognitive load of the process. 

Table 1 shows the age, sex and severity statistics of subjects in 
the corpus while Table 2 includes the six fixed sentences, its pho­
netic transcription and its translation to English. The UPDRS, Hoehn 
& Yahr rating scale (H&Y) and years since diagnosis distributions of 
the PD patients are portrayed in Fig. 7. 

All of the patients were under pharmacological treatment and 
took the medication between 2 and 5 h before the speech and 

voice recording. Their neurological state was assessed by a neurol­
ogist right before the recording session. After this first examination, 
an otolaryngologist and a speech therapist evaluated perceptually 
and objectively the patients' voice. An assessment of the phona-
tory system through anamnesis and visual examination of the vocal 
folds with a fiber-laryngoscope was carried out to discard organic 
pathologies.4 A survey was conducted with the control group to 
assess their neurological state. A speech therapist assessed their 
voice perceptually and by means of a survey. Speakers with organic 
or neurological pathologies (other than PD) were discarded, as well 
as smokers and subjects with alcoholic addictions. Recordings of 
both groups were performed in the same room with controlled 
acoustic characteristics. 

The transducer used to record this corpus is an AKG C420 head­
set microphone which was coupled to a preamplifier with phantom 
power. The signal from the preamplifier was routed to a Sound-
blaster Live 24 bits sound card connected to a personal computer 
equipped with the software Medivoz [33]. The sampling rate was 
44.100 Hz, and the quantization, 16 bits. 

4 11 patients refused to do the fiber-laryngoscope exploration and were assessed 
only perceptually and through anamnesis. 



Table 2 
Spanish transcription of the six Neurovoz fixed sentences and its translation to English. 

Sentence # Spanish transcription/Phonetic transcription/Eng/ish translation 

Cuando las barbas de tu vecino veas pelar, pon las tuyas a remojar /'kwaijdo laz' P a r P a z 8 e tu P e ' 0 ino 'Peas 

pe' lar 'pon las ' tuías a remo 'xar / When the heard of your neighbor you see peel, put yours to soak 

De la calle vendrá quien de tu casa te echará / de la 'ka/C e P eij'd r a 'kjeij de tu 'kasa te etJ a' r a / From outside will 
come who from your house will kick you out 

Cuando el diablo no sabe qué hacer, con el rabo mata moscas / 'kwaijdo el 'djaP lo no ' saP e 'ke a'G e r 'kon el ' raP o 
'mata 'moskas / When the devil does not know what to do, kills flies with the tail 

La petaca blanca es mía/ la pe ' taca 'P laijkaez'mia/ The white flask is mine 

No pidas a quien pidió, ni sirvas a quien sirvió / no 'pi3asa 'kjem pi'3jo ni 'si r bas a 'kjen si r 'bjo / Do not beg the one 
who begged, nor serve the person who served 

El que a buen árbol se arrima, buena sombra le cobija / el ke a ' P wen ' a r Po l se a'rima 'bwena 'somb r a le ko' P ixa / 
To the one that comes to a good tree, good shade covers him 
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Fig. 7. UPDRS, H&Y and years since diagnosis histograms for the PD patients within the Neurovoz corpus. 

Table 3 
Demographic statistics of GITA database. Ages are expressed in years. 

#Subjects 
Age,average 
Age range 
UPDRS, average 
H-Y, average 
Years since diagnosis 

Female 

PD HC 

25 
60.7 
49-75 
37.6 
2.2 
12.6 

25 
61.4 
49-76 

Male 

PD 

25 
61.6 
33-81 
37.7 
2.3 
8.9 

HC 

25 
60.5 
31-86 

Table 4 
Demographic statistics of CzechPD database. Ages are expressed in years. 

Male 

PD HC 

#Subjects 
Age, average 
Age range 
UPDRS, average 
H-Y, average 
Years since diagnosis 

20 
61.0 
34-83 
17.9 
2.1 
2.38333 

16 
61.8 
36-80 

3.1.2. GITA 
GITA is a Colombian corpus presented in [34], containing a vari­

ety of speech tasks from 50 patients with PD and 50 age- and 
sex-matched control speakers whose native language is Colombian 
Spanish. 

Three types of speech tasks from the GITA corpus were used in 
this work, comprising a DDK task (/pa-ta-ka/), a monologue and six 
text-dependent tasks (read sentences). 

Table 3 shows the demographic statistics of GITA while Fig. 8 
portrays the UPDRS, H-Y and years since diagnosis distributions of 
the PD patients. 

A more detailed description of GITA can be found in [34]. 

3.1.3. CzechPD 
The CzechPD corpus employed in this work contains a DDK 

task /pa-ta-ka/ from 20 newly diagnosed and untreated parkin­

sonian speakers and 14 control speakers whose mother tongue is 
Czech. This dataset is described in detail in [18]. Unlike the other 
two parkinsonian corpora, none of the patients from CzechPD was 
under treatment. 

Table 4 shows the age, sex and severity statistics of subjects in 
the corpus while the UPDRS, H&Y and years since diagnosis distri­
butions of the PD patients are portrayed in Fig. 9. 

3.2.4. Auxiliary corpora 
The Albayzin corpus [35] is a phonetically balanced dataset, 

sampled at 16 kHz and quantized with 16 bits, composed by a large 
amount of utterances in Spanish language and their transcriptions. 
For this work purposes, only the first subset from the five provided 
in the corpus is used to obtain the UBM. 

On the other hand, the FisherSP (Fisher Spanish) corpus has 
been created by the Linguistic Data Consortium to develop auto-
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Fig. 8. UPDRS, H-Y and years since diagnosis histograms for the PD patients within the GITA database. 
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Fig. 9. UPDRS, H-Y and Years since diagnosis histograms for the PD patients within the CzechPD database. 

matic speech recognizers in Spanish language. It contains around 
163 hours of telephonic speech from 136 native Spanish language 
speakers from at least 20 countries but mostly from the USA, along 
with their transcriptions.5 This database is sampled at 8 kHz and 
16 bits. In this work, it is used to train the FAM. 

3.2. Methodology 

The purpose of the methodology of this experimental set is to 
analyze the four classification approaches exposed in Section 2, for 
the automatic detection of PD from speech. To carry out these tests, 
it is necessary to perform beforehand the forced alignment of GITA, 
Neurovoz and Albayzin corpora. 

3.2.2. Forced alignment 
The FisherSP corpus was used to train a FAM employing Kaldi. 

This corpus, sampled at 8 kHz is normalized and divided into 
frames of 25 ms with a frame shift of 10 ms. A vector contain­
ing 20 MFCC+A + A A features was processed from each frame.6 

To carry out the initial monophone training-alignment, a sub­
set of 10,000 utterances was randomly selected, producing the 
monophone model (40 iterations). After this, an alignment was per­
formed in a subset of 30,000 utterances to obtain new segments for 
the second round of training-alignment. Afterwards, two rounds of 
30 iterations were performed to train a triphone model using 30, 
000 utterances followed by the correspondent alignments. Then, 
a round of 35 iterations employing a LDA+MLLT transformation of 
the acoustic features as input was performed using 100, 000 utter­
ances. Finally, 30 iterations of the training-aligning sequence using 
fMLLR transformation of the features produced the final FAM. 

This FAM was used to segment and label all the 6 text-dependent 
tasks of the GITA corpus, 6 text-dependent tasks from Neurovoz 
corpus and all the recordings of the training subset of the cor­
pus 1 from Albayzin (4.801 fixed sentences), employing in all the 
cases their correspondent transcriptions within the process. For 
these purposes, all of these corpora were normalized, filtered and 
downsampled to 8 kHz and characterized with 20 MFCC+A + A A 
features per frame (25 ms, 10 ms frame shift), as the corpus utilized 
to train the FAM. 

https://catalog.ldc.upenn.edu/ldc2010t04 —-— .-. — o .-.„ ... . . .^ ^„ 
6 These parameter values and set-up are employed following the recommenda- The four approaches described in Section 2 were assessed for the 

tions of the used Kaldi recipe available at the platform repository. detection of PD employing mainly GITA and Neurovoz separately to 

https://catalog.ldc.upenn.edu/ldc2010t04


Table 5 
fGMM results. 

Corpus 

GITA 
Neurovoz 

Speech task 

Text-dependent utterances 
Text-dependent utterances 

Accuracy ± CI (%) 

79 ± 8 
71 ±10 

AUC 

0.88 
0.86 

Sens. 

0.76 
0.67 

Spec. 

0.82 
0.77 

JV 

10 
14 

UPDRS p 

0.46 
0.47 

p-Val. 

0.001 
0.004 

H&Yp 

0.27 
0.32 

p-Val. 

0.067 
0.049 

train or adapt the models and Albayzin to generate the UBM. As no 
FAM was generated for Czech language, only the second approach 
(GMM-fUBM) was evaluated with CzechPD. The validation of the 
models was carried out using a fc-fold cross-validation scheme, with 
fe = 11. Finally, several cross-corpora trials were performed using 
the three parkinsonian corpora. 

Thus, a first round of trials was carried out to train and test 
fGMM models (approach 1) with GITA and Neurovoz corpora sepa­
rately. In the second round, GMM-fUBM models (approach 2) were 
trained and tested separately for GITA, Neurovoz and CzechPD, 
using Albayzin for the UBM. In the third and fourth rounds, fGMM-
fUBM (approach 3) and opt-fGMM-fUBM (approach 4) models 
respectively, were trained and tested separately using in this case 
GITA and Neurovoz corpora, employing Albayzin to create the 
UBM. For the opt-fGMM-fUBM, the maximum number of iterations 
was limited to 20 and urmin = 0.5%. In all the cases, the record­
ings were parameterized using Rasta-Perceptual Linear Predictive 
(Rasta-PLP) +A + AA with a number of PLP coefficients, F, vary­
ing in the range {10 . . . 20} with steps of 2. All the signals from 
the parkinsonian databases were filtered and downsampled to 16 
kHz when necessary, to match the sampling frequency of Albayzin. 
The used frame length was 15 ms and the number of coefficients in 
the Finite Impulse Response (FIR) filter, 5. This set-up was selected 
on the basis of the results obtained in a previous work employing 
speaker recognition technologies to detect PD [36]. 

Respecting the speech tasks, all the available text-dependent 
utterances were employed jointly to train the respective GITA and 
Neurovoz models in all the trials. Additionally, in the second round 
of trials, the DDK task and monologues were utilized too. There­
fore, for each round of trials 11 models were trained and tested per 
corpus, speech task and F. It is important to remark that the Rasta-
PLP +A + A A coefficients were calculated for the whole utterance 
and, after obtaining the feature vectors, these are distributed into 
the correspondent phonetic bins for training or testing, attending 
to their forced alignment labeling. In the k-folds trials, none of the 
speakers used for training or adaptation were used for testing. 

Finally, a round of cross-corpora trials is performed using the 
GMM-fUBM scheme only with DDK tasks from GITA, Neurovoz 
and CzechPD. These trials consist in the combination of two of 
the parkinsonian corpora to train a model which is tested with the 
remaining corpus. This process is repeated for all the possible com­
binations. DDK tasks are employed since these are the only common 
speech tasks in the three corpora. 

ROCCH-DET curves - GITA: text-dependent utterances 
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Fig. 10. Convex hull around receiver operating characteristic - detection error 
trade-off (ROCCH-DET) curves obtained employing testing scores from GITA in 
the classification schemes: fGMM, GMM-fUBM, fGMM-fUBM and opt-fGMM-fUBM. 
Text-dependent utterances are used as speech task. 

ROCCH-DET curves - Neurovoz: text-dependent utterances 
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Fig. 11. ROCCH-DET curves obtained employing testing scores from Neurovoz in 
the classification schemes: fGMM, GMM-fUBM, fGMM-fUBM and opt-fGMM-fUBM. 
Text-dependent utterances are used as speech task. 

4. Results 

In this section, the results from all the rounds of trials are 
detailed. All of the tables and figures are referred to the k-folds 
cross-validation unless specified. 

Table 5 shows the results from the analysis of the fGMM scheme, 
Table 6 shows the results related to the GMM-fUBM models, while 
Tables 7 and 8 include the results referred to the fGMM-fUBM and 
opt-fGMM-fUBM classification schemes, respectively. All of these 
tables include the classification accuracy ± Confidence Interval (CI), 
Area Under the ROC Curve (AUC), sensitivity, specificity, N, and the 
Spearman's correlation (p) of the scores with the UPDRS and H&Y 
scales with their respective p-values. In all the cases, the CI was 
calculated as indicated in [37]. Best results for each corpus are in 
bold. 

Figs. 10 and 11 plot the ROCCH-DET curves for the GITA and Neu­
rovoz corpora respectively, using the four proposed classification 
schemes. 

Figs. 12 and 13 show the accuracy per frame phonetic group 
in GITA and Neurovoz corpora respectively, employing text-
dependent utterances in an opt-fGMM-fUBM scheme. In these 
figures, the phonetic labels B and D are referred to fricative allo-
phones while b and d are plosives. R is multiple vibrant and r is 
simple vibrant. 

Table 9 includes the results of the cross-corpora tests using GITA, 
Neurovoz and CzechPD as testing corpora separately. For each case, 
the other two parkinsonian corpora are used to train the model. 
Lastly, Fig. 14 plots the ROCCH-DET curves in the cross-corpora 
trials using the DDK task in a GMM-fUBM classification scheme. 



Table 6 
GMM-fUBM results. 

Corpus Speech task Accuracy ± CI (%) AUC Sens. Spec. UPDRS p p-Val. H&Yp p-Val. 

GITA 

Neurovoz 

Text-dependent utterances 
DDK 
Monol. 

Text-dependent utterances 
DDK 
Monol. 

78 ±8 
79 ±8 
78 ±8 

81 ± 9 
81 ± 9 
66 ±14 

0.88 
0.86 
0.84 

0.87 
0.85 
0.67 

0.78 
0.86 
0.73 

0.83 
0.83 
0.35 

0.78 
0.72 
0.82 

0.78 
0.77 
0.83 

12 
12 
10 

14 
20 
10 

0.18 
0.20 
0.43 

0.21 
0.31 
0.47 

0.238 
0.188 
0.002 

0.232 
0.070 
0.109 

0.10 
0.19 
0.28 

-0.05 
0.13 
0.17 

0.423 
0.196 
0.054 

0.762 
0.422 
0.586 

CzechPD DDK 9 4 ± 6 0.97 0.9 1 20 0.06 0.808 -0.05 0.838 

Table 7 
fGMM-fUBM results. 

Corpus Speech task 

GITA Text-dependent utterances 
Neurovoz Text-dependent utterances 

Accuracy ± CI (%) 

81 ± 8 
75 ±10 

AUC 

0.88 
0.86 

Sens. 

0.84 
0.76 

Spec. 

0.78 
0.74 

JV 

10 
14 

UPDRS p 

0.40 
0.36 

p-Val. 

0.006 
0.033 

H&Yp 

0.31 
0.31 

p-Val. 

0.038 
0.056 

Table 8 
Opt-fGMM-fUBM results. 

Corpus 

GITA 
Neurovoz 

Speech task 

Text-dependent utterances 
Text-dependent utterances 

Accuracy ± CI (%) 

81 ± 8 
79±9 

AUC 

0.88 
0.87 

Sens. 

0.84 
0.8 

Spec. 

0.78 
0.77 

JV 

10 
12 

UPDRS p 

0.40 
0.36 

p-Val. 

0.005 
0.034 

H&Yp 

0.30 
0.34 

p-Val. 

0.041 
0.032 

0.75 

0.7 

&0.65 
i— 

y o.6 
CO 

| 0.55 
CO 

5 0.5 
CL 

0.45 

0.4 

Mean per frame accuracy - GITA: training 

>. 
Ü 
CO 
i— 
Z5 
O 
o 
ce CD 

E 
CC 

*4— 

CD 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.4 

a b B C d D e f g h i k I m n o p r R s t u w y 
Kaldi labels 

a) Accuracy per frame phonetic group in GITA using training scores. 

Mean per frame accuracy - GITA: testing 

a b B C d D e f g h i k I m n o p r R s t u w y 
Kaldi labels 

(b) Accuracy per frame phonetic group in GITA using testing scores. 

Fig. 12. Per frame accuracy in GITA corpus using text-dependent utterances in an opt-fGMM-fUBM scheme. The horizontal line at the 0.5 of accuracy represents a random 
decision. 



Mean per frame accuracy - Neurovoz: training 

(a) Accuracy per frame phonetic group in Neurovoz using training scores. 
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Fig. 13. Per frame accuracy in Neurovoz corpus using text-dependent utterances in an opt-fGMM-fUBM scheme. The horizontal line at the 0.5 of accuracy represents a 
random decision. 

Table 9 
Cross-corpora GMM-fUBM results using DDK task. For each test corpus, the remaining two parkinsonian corpora are used to train the model. 

Test corpus 

GITA 
Neurovoz 
CzechPD 

Speech task 

DDK 
DDK 
DDK 

Accuracy ± CI (%) 

6 6 ± 9 
74±10 
76±14 

AUC 

0.76 
0.78 
0.87 

Sens. 

0.9 
0.87 
0.95 

Spec. 

0.42 
0.5 
0.5 

JV 

18 
10 
16 

UPDRS p 

0.22 
0.2 
0.12 

p-val. 

0.1316 
0.2557 
0.6066 

H&Yp 

0.11 
0.09 
0.07 

p-val. 

0.4767 
0.5822 
0.7792 

5. Discussion 

In this experimental set, several approaches were proposed to 
create GMMs in such a manner that, after obtaining the final model, 
each Gaussian only represents a phonetic unit (for instance, the unit 
/a/). To obtain the Gaussian densities within the GMM, the different 
phonetic segments of the available speech corpora were employed, 
obtained with speech forced alignment techniques. 

The approaches described in this experimental set are based on 
the use of GMM and GMM-UBM techniques but with differences 
in the material and in the iterative processes used to train or adapt 
the different models. Thus, the proposed classification schemes are: 
fGMM, GMM-fUBM, fGMM-fUBM and opt-fGMM-fUBM, described 
in Section 2. 

5.1. The glass ceiling in the automatic detection of PD from speech 

Although the minimum error found in all the analysed detec­
tors in this work ranges from 6% to 19%, depending on the database 

under study, the theoretical limit of false rejection for this type of 
works is not clearly delimited and does not have to be 0% neces­
sarily, like in other applications such as speaker recognition. To 
this respect, some specialists suggest that a 90% of PD patients 
suffer from dysarthria after a median latency period of 7 years 
since diagnosis [38,39]. These considerations would set the false 
rejection in automatic detectors employing speech to 10%. Recent 
works like [40] have studied the presence of signs in the voice of PD 
patients and have quantified the percentage of affected patients to 
100% using the Robertson dysarthria profile [41] in a cohort of 48 
patients in several stages. However, this work is focused in percep­
tual estimations or preliminary quality of voice analysis. No work 
has studied in detail the prevalence of the perturbations in voice 
and speech during the early stages of PD neither the differences 
between the dysphonia and dysarthria caused by PD and by aging. 
Thus, the minimum theoretical limit for false rejection in any study 
trying to detect PD from voice or speech could be higher than 0%. 
This value depends on the percentage of the patients included in the 
speech corpus with signs in voice or speech caused by PD and this 
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Fig. 14. ROCCH-DET curves obtained employing testing scores GITA, Neurovoz and 
CzechPD in the GMM-fUBM classification scheme. DDKsequence (/pa-ta-ka/) is used 
as speech task. 

is dependent on the severity and stage of each patient. In the same 
manner, the percentage of patients without perceived dysarthria 
(most of them in early stages) but with true deviations in articula­
tion is unknown. In the same manner, some studies point out that 
between 2% and 4% of patients diagnosed with idiopathic PD are 
really suffering from other type of pathology, as autopsies reveal 
[42,27]. Also, these values are obtained post-mortem and since the 
diagnosis is more precise as the disease progresses, these error rates 
will be higher for populations with patients in the early stages [43]. 
This means that some of the patients included in a parkinsonian 
speech corpus could not be really affected by PD, being this more 
likely in the newly diagnosed ones. 

These two considerations would impose a minimum false rejec­
tion percentage to values which could be close to 10%. 

Also, the use of non parkinsonian or non-dysarthric patients in 
the parkinsonian class within the training process can provide less 
accurate models to represent that specific class. 

In the same manner, PD affects to 1 % of population older than 60 
and to 3% older than 80 according to recent studies [44]. That means 
that in works using 100 control speakers over 60 years, between 1 
and 3 could be suffering from PD without being diagnosed, which 
will impose a minimum false acceptance rate around 2%. 

All of these considerations limit the maximum achievable 
accuracy of the automatic detection systems in studies like the 
present work that, depending on the particularities of the corpora 
employed for a certain study, could be less than 95%. 

5.2. Forced gaussians 

All of the proposed schemes were analyzed employing sepa­
rately GITA and Neurovoz, performing a k-folds cross-validation. 
Additionaly, the GMM-fUBM scheme was analyzed employ­
ing CzechPD too. Finally, the three parkinsonian corpora were 
employed in a cross-corpora validation round of trials. 

For GITA, the opt-fGMM-fUBM approach provides the best 
results (accuracy equals to 81% and AUC equals to 0.88) while for 
Neurovoz the GMM-fUBM scheme is the one yielding the highest 
accuracies and AUC (accuracy equals to 81 % and AUC equals to 0.87). 
For this last scheme, the accuracy with CzechPD is 94% and AUC, 
0.97. In general, the CI intervals for the best results of GITA and 
Neurovoz are over ±9%, which produces an overlapping among the 
final result ranges. Therefore, the analysis of the results is focused 
on the observed trends. 

It can be considered that the GMM-fUBM approach provides, in 
general lines, the best results since, for GITA and Neurovoz produces 
the best AUC and similar accuracies. In addition, this last scheme 
does not require to use forced alignment in the parkinsonian cor­
pus, allowing the possibility to create supervised or unsupervised 
schemes, depending on the speech material used (text-dependent 
utterances and DDK will produce supervised approaches while 
monologues, unsupervised approaches). 

Regarding the UPDRS correlation with the scores, the first 
approach, employing fGMM provides higher values for GITA and 
Neurovoz. It is important to observe that only the global UPDRS val­
ues were available but the study of the correlation with the motor 
part of UPDRS (part III) would have been more advisable. In all the 
cases, correlation with H&Y scale is lower. This can be caused by 
the fact that Spearman's correlation was employed instead of other 
type of methods that are more adequate to calculate correlation 
between continuous (scores) and discrete (ratings) values. 

The cross-corpora results found in Table 9 demonstrate a 
reduced accuracy compared with the k-folds cross validations 
shown in Tables 5, 6-8. 

5.3. Phonetic units 

Observing Figs. 12 and 13 it is possible to deduce that the pho­
netic units leading to better accuracies using GITA are /D/, /g/, /h/ 
(aspirated h), /l/, /R/, /w/ and /y/ while /B/, /d/, /k/, /m/ and /r/ pro­
vide the lowest accuracies. Regarding Neurovoz, /C/, /D/, /i/, /l/, /p/ 
and /w/7 produce the highest accuracies while /a/, / j / and /m/, the 
lowest. In both corpora, phonetic units requiring a higher narrow­
ing of the vocal tract but without a burst, such as the units /C/, /D/, 
/g/ and /R/ tend to be more decisive in the detection while others 
such as /B/ or /m/ are less influential. The impact of PD in frica­
tives has already been observed in other works such as [11-14]). 
Regarding vowels, /u/ and /w/ produce good results in both corpora, 
supporting the findings of [16] and [18]. 

The differences in the results of the GITA and Neurovoz tri­
als are caused by the dialectal divergences between Castilian and 
Colombian Spanish and by the different position of the phonetic 
units within the sentences, which conditions its articulation (the 
text-dependent utterances are different in the two corpora). In gen­
eral terms, Figs. 12 and 13 suggest that the differences in accuracy 
between the distinct specific phonetic units is variable and there 
is not a phonetic unit or groups of units that can clearly be used 
separately to detect PD. Also, this suggest that PD may affect to the 
articulatory sequence as a whole with a higher influence on pho­
netic units requiring a narrowing of the vocal tract but without a 
burst and with a lower influence in nasals. However, more general 
categories of articulatory movements related with the type of nar­
rowing of the vocal tract or the use of the glottal source must be 
performed. 

5.4. Other considerations 

The proposed methodologies can be considered novel although 
previous works such as [45] used a similar approach for speaker 
recognition employing DNN posteriors instead of labels from 
speech forced alignment to create the UBM in an i-Vectors classifi­
cation scheme. However, on spite of the similarities, it is the first 
time that this type of approach is used for the detection of PD. 

The results obtained in this work are not higher than those 
obtained with GITA in [36] although promising results are obtained 
in the CzechPD trials where a 94% of accuracy is reached. One of the 

7 /w/ label refers to the use of vowel /u/ during dipthong. 



reasons for these values is that CzechPD only includes males, and 
the resulting classification systems can model the speech of these 
parkinsonian speakers better than in the other corpora in which 
there are males and females. This suggest that gender-dependent 
models will provide better results. Likewise, the Czech corpus only 
includes untreated patients and therefore results suggest that the 
detection is more efficient in these cases in spite of the fact that 
most of the patients are in an early stage. 

Nevertheless, the main advantage of this work is that it allows 
to observe the influence of PD in each of the individual phonetic 
units. 

On the other hand, the cross-corpora results suggest that the 
accuracy of the proposed systems is lower when using a different 
database for testing than for training, limiting the generalization 
properties of these systems. However, the sensibility shown in 
Table 9 is always over 0.87 and the AUC values range from 0.76 
and 0.87 depending on the testing corpus. The worst results are 
obtained when training the models with Neurovoz and CzechPD 
and testing with GIT A. This can be explained by the fact that Neu­
rovoz contains more male speakers than female and CzechPD only 
includes males. The obtained models are more likely to be adapted 
to male speakers and GITA is balanced and contains the same num­
ber of male and female speakers. Lastly, and summarizing the global 
results, cross-validation trials (k-folds) provide accuracies between 
81% and 94%, with AUC between 0.87 and 0.97 depending on the 
corpus, while cross-corpora trials provide accuracies between 66% 
and 76% with AUC between 0.76 and 0.87. 

further works. Regarding the cross-corpora results, compensation 
techniques to eliminate the effect of the channel must be included 
to produce more robust models. In the same sense, new score nor­
malization techniques for two-class cases like the studied in this 
work must be explored. 

The accuracies obtained with the proposed approaches suggest 
that these systems can be used in the clinical practice to support the 
diagnosis of PD, being part of a multimodal system or in addition 
to other clinical observations and tests. To this respect, the study 
of new multimodal systems combining speech with other inputs to 
support the diagnosis must be addressed. 

Additionally, one further step is to clinically test this and other 
similar systems to prove its usefulness in true clinical environments 
as there are not published thorough clinical trials of this type. 

Lastly, results suggest that PD affects to the articulatory 
sequence as a whole, influencing more clearly phonetic units 
requiring a higher narrowing of the vocal tract. For this reason, the 
analysis of phonetically balanced speech tasks allows to evaluate 
the presence of PD from speech by using automatic detectors. Addi­
tionally, when employing text-dependent utterances as speech 
tasks, the obtained classification models allow to compare more 
precisely the acoustic characteristics of the articulation of patients 
and controls since all the speakers repeat the same sequence of 
allophones. This is specially relevant in studies and applications 
containing small corpora for model training and adapting. Con­
sequently, phonetically balanced text-dependent utterances are 
recommended for automatic detection systems in the clinical prac­
tice. 

6. Future work and conclusions 

In this experimental set several approaches, namely fGMM, 
GMM-fUBM fGMM-fUBM and opt-fGMM-fUBM are proposed for 
the automatic detection of PD. The obtained models contain Gaus­
sian densities created or adapted employing only specific phonetic 
units, allowing to compare independently the features of each pho­
netic unit between patients and controls for detection purposes. 

For the future work in the automatic detection of PD from 
speech, a comparison of the different segments depending on the 
manner of articulation or narrowing of the vocal tract must be 
addressed. In the same manner, and attending to the higher accura­
cies obtained with CzechPD, the use of gender-dependent models 
for the detection of PD from speech must be studied. But for these 
purposes, larger corpora must be employed in order to ensure gen­
eralization. 

On the other hand, the use of cross-corpora trials is almost non­
existent in PD detection from speech and, thus, its use in this work 
can be considered a contribution by itself. This type of trials is essen­
tial since these demonstrate the generalization capabilities of the 
proposed approaches. Therefore, this practice must be extended to 
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Appendix 

Table 10 includes a list of the International Phonetic Alphabet 
(IPA) symbols for Castilian Spanish and some examples of the use 
of the correspondent allophones in Spanish and equivalences in 
English as well as the associated Kaldi labels in the forced align­
ment. 

Table 10 
IPA symbols for the different allophones in Spanish, English equivalent and Kaldi labels. 

IPA 

b 

'P 
d 

a f 

g 
h 

•y 

i 
j j 
k 
1 
Á. 

Examples 

balón, vacío, envidia 

bebé, obtener, vivir 
dedal, comiendo, aldea 
dársena, arder, admiración 
fase 
gato, lengua, guerra 
Sahara, hall 
trigo, amargo, significado 

ayuno 

cónyuge 
caña, kilo 
luz 
llave, pollo 

English approximation 

Best 

Between baby and bevy 
Dead, (putting the tip of the tongue against the upper teeth) 
This 
Face 
Got 
Hot 
Go, (without completely blocking airflow on the g) 

You 

Job 
Scan 
Lean 
Million 

Type of sound 

Voiced bilabial plosive 

Voiced bilabial approximant 
Voiced dental plosive 
Voiced dental approximant 
Voiceless labiodental fricative 
Voiced velar plosive 
Voiceless glottal fricative 
Voiced velar fricative 

Voiced palatal fricative 

Voiced palatal affricate 
Voiceless velar plosive 
Voiced alveolar lateral 
Voiced palatal lateral 

Kaldi label 

b 

B 
cl 

D 
f 

g 
h 
G 

y 

y 
k 
i 

y 



Table 10 (Continued) 

IPA 

m 
n 
P 

c 
p 
r 
c 
s 

e t 

J 
V 

X 

z 
a 
e 
i 
0 

u 

j 
w 

Examples 

madre, campana, anfiteatro 
nido, sin, álbum 
España, enyesar 
cinco, venga 
pozo 
rumbo, carro, subrayar 
caro, bravo, partir 
saco, espita, xenón 
cereal, encima, zorro 
tamiz 

chubasco 
afgano 
jamón, general, hamster 
isla, mismo 
azahar 
vehemente 
dimitir, mío, y 
boscoso 
cucurucho, dúo 
ligar 
cuadro 

English approximation 

Mother 
Need 
Canyon 
Sing 
Spouse 
Not present 
Batter (American English) 
Sack 
Thing 
Stand, (putting the tip of the tongue 

Choose 
Van 
Scottish loch 
Ciuiz 
Father 
Set 
See 
More 
Food 
Yet 
Wine 
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