
 

 

 

 Abstract  Wireless capsule endoscopy (WCE) is an effective 
mean for diagnosis of gastrointestinal disorders. Detection of 
informative scenes in WCE video could reduce the length of 
transmitted videos and help the diagnosis procedure.  In this 
paper, we investigate the problem of simplification of neural 
networks for automatic bleeding region detection inside capsule 
endoscopy device. Suitable color channels are selected as neural 
networks inputs, and image classification is conducted using a 
multi-layer perceptron (MLP) and a convolutional neural 
network (CNN) separately. Both CNN and MLP structures are 
simplified to reduce the number of computational operations. 
Performances of two simplified networks are evaluated on a 
WCE bleeding image dataset using the DICE score. Simulation 
results show that applying simplification methods on both MLP 
and CNN structures reduces the number of computational 
operations significantly with AUC greater than 0.97. Although 
CNN performs better in comparison with simplified MLP, the 
simplified MLP segments bleeding regions with a significantly 
smaller number of computational operations. Concerning the 
importance of having a simple structure or a more accurate 
model, each of the designed structures could be selected for 
inside capsule implementation.  
Keywords: Wireless capsule endoscopy; neural network 
quantization; neural network pruning; hardware implementation. 

I. INTRODUCTION 
Wireless capsule endoscopy (WCE) is a non-invasive, painless endoscopic method employed in screening different parts of the gastrointestinal (GI) organs which is used for a variety of medical experiments [1]. WCE imaging is always used for patients suspicious of bleeding and other types of abnormalities such as C se in GI. Also, it is possible to use WCE for patients with polyposis syndrome and small bowel disorder [1]. Researchers have investigated automatic methods for detection of abnormalities since 2001, the time that WCE was first launched [1]. These methods have drastically reduced the time spent by a physician for medical diagnostic and detection [2]. 

In recent years, researchers have developed different methods for automatic detection of a variety of abnormalities such as ulcer, bleeding, polyps and other abnormalities in WCE images. In some studies such as [3] and [4], handcrafted features are employed. In [3], saliency is calculated based on color and texture information. For texture representation LOG-

Gabor filter, scale invariant feature transform (SIFT) and local binary pattern (LBP) are used. For color information, second channels of HSI and CMYK color spaces are used. All features are coded with K-means clustering, and final saliency map is obtained by max-pooling of the saliency map and coded features. Mehmood et al. used different-order of moments as a saliency analysis method to summarize WCE video frames [4]. 
Machine learning methods have gained a lot of attention in recent years due to their remarkable success in medical image processing applications. Among them, support vector machine (SVM) is used extensively for abnormality detection in different human organs. Fu et al. [5], used super pixel color features to speed up the bleeding detection process and employed SVM as a classifier. Suman et al. [6], removed noise, edges, dark, and light regions to avoid misclassification of bleeding regions. In their work, a combination of RGB channels at the block level is used as SVM input. In [7], a K-means algorithm is employed to cluster bleeding images into two clusters based on the block  statistical characteristics. Bleeding images are then detected from non-bleeding images using differential features, and finally, bleeding zones are localized using an SVM.  

In many studies, different features such as SIFT, LBP, speed up robust feature (SURF), Gabor filter, the histogram of the gradient (HOG) and discrete wavelet transform (DWT) are  [8-14]. In [8], LBP feature is extracted from I channel of the HSI color space in 8×8 image blocks and then each block is segmented by SVM. Deeba et al. [9], presented a method based on cellular automata for clustering WCE images. For segmentation of bleeding regions, they utilized SVM to classify the cluster centroids. In [10], the histogram of pixels is assigned to each cluster in YCbCr color space, then it is used as a descriptor, and by using an SVM, WCE images are segmented. In [11], a method for detection of polyp and ulcer in WCE frames is presented where Gabor filter is applied for simulating the human visual system. Also, edges are detected using smallest univalue segment assimilating nucleus (SUSAN) edge detection method to improve the accuracy of the detection algorithm. Then, using the results from previous stages, regions containing ulcer and polyp are detected base on SVM and a decision tree. Yuan et al. [12], extracted different features around image key points including LBP, SIFT, and 
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HOG. In their work, the set of extracted features are clustered and classified using an SVM classifier. In [13], a method for detection of abnormalities in WCE images is presented where color and texture features are extracted using moments, LBP and DWT. Importance of the features is identified using a saliency map and based on this importance, WCE images are classified by SVM. In  [14], a method for automatic lesion detection in capsule endoscopy is presented. After CIE-Lab color transformation, salient points are detected via SURF detector based on the area around each pixel. Using features of salient points, SVM is employed for classification of regions to lesion and non-lesion. 
Recently, deep neural networks achieved considerable successes in the detection and segmentation of abnormalities in WCE images. Jia et al. [15], proposed a bleeding frame detection method consisting of feature extraction and classification steps. In their work, histograms of K-Means clustering are used as input features and are classified by a convolutional neural network (CNN). Also, Jia et al. [16], augmented datasets by rotation and mirroring to extend the number of training and test objects and used a CNN structure for detection of bleeding frames. In [17], bleeding images are classified into bleeding and non-bleeding using SVM and then in each classified image, bleeding regions are segmented using CNN. In [18], image patches are fed into a single CNN structure and classified as normal and abnormal. 
In WCE videos, only a few frames are informative and transmitting all the frames will increase the battery usage of WCE devices. Hence, designing a low power system for image analysis and informative frame detection is very demanding due to limited memory capacity and limited power supply [4]. Also, there is a great demand for the implementation of the diagnostic process inside the WCE device. Although in some previous works powerful tools such as CNN were utilized for segmentation, the complexity of the detection method can be problematic for inside capsule implementation. For example, the method of  [16], uses CNN with 15M parameters and method in [17], uses a fully-convolutional network with 6M parameters [19].  A large number of parameters and the use of multiply-accumulate (MAC) operations make the use of CNNs infeasible considering the size and resources of the capsule endoscopy. 
Several methods have been developed for hardware implementation of image processing algorithms inside the capsule device. In [20], a hardware architecture for WCE image assessment inside the capsule is presented. Informative frames are detected inside the capsule using mean, variance, skewness and kurtosis. Image compression inside WCE is introduced as another way to reduce the power consumption needed for transferring the video frames to outside. In [21], a hardware architecture for image compression inside WCE is proposed. To compress the images, an integer based DCT, and an efficient coefficient encoding with low complexity is applied. In [22], a hardware core including a camera interface, first in first out (FIFO) queue, controller, and image compressor is presented. In [23], an architecture for calculation of DCT transform which is employed in image compression inside WCE is designed. The applied DCT is a 1-D DCT transform which reduces the number of addition and shift operations.  

In this paper, we utilize neural networks including a CNN and an MLP as complex and simple structures respectively for bleeding region detection in WCE images. Different color spaces are analyzed to select channels containing more information about bleeding regions. To have a simple and efficient network structure, different network simplification approaches are investigated. In case of the MLP structure by quantization approach multiplications are removed, and in case of the CNN by a simultaneous quantization and pruning approach, multiplications are removed in fully connected layers (FCLs) and redundant computations in convolutional layers (CLs) are eliminated. Both network structures can segment bleeding regions with high DICE score. In both proposed network structures for bleeding region segmentation, computational complexity is reduced significantly, and this reduction provides an opportunity to implement the proposed methods inside the capsule device. The main contributions of this study are summarized as followings. 
 Selection of proper color channels based on mutual information as inputs of utilized neural networks. 
 Designing a simplified MLP structure suitable for image analysis inside the capsule endoscopy device.  
 Employing simultaneous quantization and pruning to simplify the CNN structure with a little drop of accuracy. 

The remainder of this paper is organized as follows. In Section II, neural network simplification techniques are briefly explained. In Section III, the proposed method for the segmentation of bleeding regions in WCE images is demonstrated. Section IV is dedicated to experimental results and finally concluding remarks are presented in Section V.  
II. NEURAL NETWORK SIMPLIFICATION TECHNIQUES  

Machine learning techniques are employed for medical 
image analysis in various research projects conducted in 
recent years. Among different machine learning methods, 
artificial neural networks (ANNs) have considerable 
achievements in automatic segmentation and classification of 
a variety of abnormalities [24-26]. CNNs, as an advanced 
version of primary neural networks, can appropriately 
accomplish the classification and segmentation tasks. 
Although CNNs are usually more accurate than simple MLP 
networks and have better capabilities in automatic feature 
selection, their structures are more complex than MLP.   
When it comes to implementing CNN on devices with limited 
computational and power resources, their structural 
complexity is forbidding. Different techniques were proposed 
to alleviate the complexity of neural network structures. 
These methods are briefly explained in the following 
subsections. 
A. Neural Network quantization 

In an ANN, computational operations are mainly due to 
three categories including multiplication of weight matrices, 
addition of activation function inputs and calculation of 
activation function outputs. The number of computational 
operations can be reduced in different ways. Recently, 
binarization is used as an efficient way to reduce the 
complexity of the network  structure [27-28]. During 



 

 

 

binarization, all of the weights are affected by the 
simplification process. In the binarization process, a value is 
converted to two possible values, as an example to 0 and 1. 
Two methods were introduced in previous studies for 
binarization [27-28]. The first approach is a deterministic 
binarization illustrated in the following equation: 

 (1) 
where  is a network weight before quantization and   is 
the binarized one. The second approach for binarization is the 
stochastic method shown in the following equation: 

 (2) 
where  is defined as follows: 

 (3) 
The binarization could decrease WCE power consumption. In 
[29], the power consumption of the operations with different 
representations was roughly presented. As shown in Table I, 
the energy consumption of addition and multiplication 
operations is reduced significantly with a shorter bit width of 
the computational operations [29]. Also, concerning [29], 
binary representation consumes 32 times smaller memory size 
and 32 times fewer memory accesses in comparison with 32-
bit representation.  

Table I. Rough energy costs for various operations in 45 nm  [29] 
Operation Multiply Add 
8-bit Integer 0.2pJ 0.03pJ 
32-bit Integer 3.1pJ 0.1pJ 
16-bit Floating Point 1.1pJ 0.4pJ 
32-bit Floating Point 3.7pJ 0.9pJ 

B. Neural network pruning 
After training neural networks, there might be some 

redundant weights that can be removed or merged with other 
weights without significant degradation in network accuracy. 
By removing redundant weights, the problem of redundant 
computations is alleviated especially for complex neural 
networks. Also, network pruning can be used to address the 
over-fitting problem while training neural networks. Different 
methods have been proposed for pruning such as weight decay 
[30], and Hessian of the loss function [31]. However, their 
proposed pruning techniques are not very efficient and in 
terms of computational complexity second order derivatives 
are required. In [32], a magnitude-based pruning was 
developed which affects weights and connections individually. 
In [33], a filter pruning method is presented in which all 
coefficients of a filter are removed. Although in filter pruning 
better structural sparsity is obtained, accuracy drop due to the 
pruning of a filter can be substantial. Therefore, it cannot be 
used as a pruning method in general. Principally, all of the 
pruning methods consist of three steps. In the first step network 
variables are trained to achieve acceptable accuracy. In the 

second step, redundant weights are removed. Finally, to 
compensate for the reduction of the accuracy, caused by the 
operations of the second step, the network is retrained. In the 
primary pruning method, weights are removed during the 
training process based on a pruning rate, and finally, a pruning 
mask represents which weights are removed. Pruning mask is 
calculated using Eq. (4) in which  and  are network 
weight matrix and pruning mask matrix in layer  respectively 
and  is the pruning rate.  

(4) 

As shown in (4), a sample weight in layer  as is pruned 
if its value is less than a threshold. The threshold is equal to 
the pruning rate multiplied by the standard deviation of all 
weights in layer  (i.e. ). Pruning rate can be modified 
during the training process to get better results. Finally, 
pruning is performed during back propagation as follows: 

 (5) 

In (5), weights are updated by a learning rate  and gradients 
of the weights with small values are removed from the training 
process by multiplying the gradients matrix by . 
Network error in terms of is specified by  , 
which can be compensated by retraining [32].  

III.  SIMPLIFIED SEGMENTATION METHOD 
The proposed method includes two major parts in general. 

The first part is dedicated to simplification of the MLP, and 
the other one explains the simplification of the CNN. Before 
applying the method to a neural network, a color space 
conversion is required to reach better performance. The 
proposed method is described in the following subsections in 
more details.  
A. Color space conversion  

Input images can be represented in different color spaces 
and in each color space, some features are more 
representative. As an example, in retinal image analysis, the 
green channel is more informative than the others [25], [34]. 
Color space mapping can be considered as a preprocessing 
step applied in medical image processing techniques. HSV 
and CIE-lab color spaces are two alternatives to RGB color 
space. CIE-lab is more intuitive than RGB and is designed to 
approximate the human vision system [35].  a b" 
are components of the CIE-lab so that  lies in  to  and 
both a b  to . HSV color space 
including hue, saturation, and value is quite similar to the 

olors. In Fig. 1, a bleeding frame of 
WCE videos is shown in different color spaces. As illustrated 
in Fig. 1, some color spaces represent bleeding regions better 
than the others, and some of them have no useful meaning. 
From a visual perspective, Fig. 1 shows that the gray-scale 
domain, a  channel have 
distinctive representations of the bleeding region. Using an 



 

 

 

experiment based on information theory, it is possible to 
identify color spaces or channels which are suitable for 
representation of the bleeding regions.  
 
1) Color space and channel selection based on mutual 
information 

Mutual information is the amount of information that one 
random variable contains about another random variable and 
can be calculated using the following equation [36].  

 (6) 

In (6), X and Y are random variables and H is the entropy 
function. The mutual information between each color channel 
and the ground truth can be calculated for different color 
spaces, as a measure of the applicability of the channels. For 
55 WCE images in [37] and [38], 10 color spaces and 

, l
a , b -lab , 

RGB color space and grayscale level image are experimented. 
Experiments are conducted to detect single channels, 2-
combinations, and 3-combinations of color channels with the 
most information about ground truth. In the first experiment, 
the mutual information of each 10 transformed images and 
their corresponding ground truth is calculated using Eq. (6), 
and the results are illustrated in Fig. 2. It can be observed that 
the three most informative color channels are a   and 

 Also, to identify the most informative pair of color 
channels, all possible pairs of 10 color channels are 
considered. The latter experiment resulted in 45 states 
illustrated as a matrix in Fig. 3 where the least three 
informative 2-combinations of color channels are shown in 
red. The three most informative pairs of color channels can be 
considered as (a, B), (a, S), and (a, Gray) which are shown in 

green in Fig. 3. To identify the most informative 3-
combinations of color channels, all possible 3-combinations 
of 10 color channels are considered. This experiment resulted 
in 120 states. According to this experiment, the three least 
informative 3-combinations of color channels are (R, H, V), 
(R, V, Gray), and (l, R, V). Moreover, the three most 
informative 3-combinations of color channels are (a, l, S), (a, 
G, S), and (a, S, Gray). 
 

B. Simplified MLP neural network  
WCE devices suffer from limited computational capabilities 

and power resources and hence, simple MLP structures can 
be used more efficiently. As illustrated in Fig. 4, an MLP 
structure can be used for segmentation of the bleeding regions 
in WCE images. Three color channels containing the most 
information are extracted from a frame of WCE video. A 
patch is considered around each pixel, and extracted patches 
from the three color channels are aligned as inputs of the 
MLP. In the training phase, the class of the central pixel is 
considered as the output of the network for each patch. Two 
neurons are considered as the output of the network, and a 
sotfmax activation function indicates the final class of the 
input patch. Considering resource limitations of the WCE 
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Figure 1. Different color space in a sample WCE image 

 Figure 2. Mutual information corresponding to single color channels 
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a 0.37 0.40 0.48 0.48 0.49 0.50 0.40 0.49 0.48 0.49 
b 0.40 0.25 0.40 0.37 0.46 0.44 0.39 0.45 0.37 0.42 
l 0.48 0.40 0.25 0.33 0.45 0.42 0.31 0.45 0.33 0.45 
R 0.48 0.37 0.33 0.22 0.40 0.43 0.30 0.45 0.22 0.36 
G 0.49 0.46 0.45 0.40 0.29 0.39 0.36 0.45 0.40 0.43 
B 0.50 0.44 0.42 0.43 0.39 0.26 0.39 0.42 0.43 0.41 
H 0.40 0.39 0.31 0.30 0.36 0.39 0.25 0.47 0.30 0.33 
S 0.49 0.45 0.45 0.45 0.45 0.42 0.47 0.40 0.45 0.45 
V 0.48 0.37 0.33 0.22 0.40 0.43 0.30 0.45 0.22 0.36 

Gray 0.49 0.42 0.45 0.36 0.43 0.41 0.33 0.45 0.36  0.27 
 

Figure. 3. Mutual information corresponding to 2-combinations of 
color channels 



 

 

 

device, no further feature extraction and preprocessing have 
been applied.  
Quantization and pruning are effective methods to reduce the 
number of computational operations required by neural 
networks. Quantization reduces the width of computational 
operations, and pruning reduces the number of computational 
operations. 
For further simplification and preparation of the overall 
system for being embedded inside the capsule device, the 
network weights are quantized. In this paper, deterministic 
binary quantization of the weights is considered as follows:  
 

 (7) 
 
in which  and  are original and quantized network 
weights respectively.  
Using this quantization, all multiplications are removed, and 
the heavy parts of the computations required for conducting 
segmentation are eliminated. Quantization algorithm is 
presented as the pseudo code in Fig. 5. In Fig. 5, N is the 
number of epochs, L is the number of network layers,  is 
the weights matrix in layer l,  is its corresponding 
quantized weight matrix which is in form of binary values,  

is the cost function, and is the learning rate. As illustrated in 
the first line of Fig. 5, to achieve better performance, in the 
first epochs of training, variables are not quantized. After that, 
variables are quantized during training and loss is calculated 
using  . After each quantization step, the network is 
retrained to recover its accuracy drop and finally, weights 
with real values are updated using gradients resulted from the 
back propagation step.    
 
C. CNN Quantization and Pruning 

In most of the cases, problems arise during both pruning and 
quantization. While quantizing, bit length of variables reduces 
extensively which may result in problems in sections of the 
network with a small number of parameters. For example in 
convolutional layers, small numbers of coefficients are 
employed in each filter, and a major variation in filter 
coefficients due to the quantization leads to an undesirable 
effect on the network performance. Also, pruning has some 
problems due to the utilization of full precision operations. 
Although in pruning some connections are removed, the 
remaining multiplications consume a lot of computational 
units from a hardware perspective due to the use of weights 
with full bit length. Our proposed method addressed the 
problems above by employing the quantization and pruning 
of the CNN simultaneously. In Fig. 6, a CNN architecture for 
segmentation of bleeding regions is illustrated. This structure 
is employed for simultaneous pruning and quantization. 
Image patches are selected from three color channels and are 
used as inputs of the convolutional layers (CLs) which are 
followed by the fully connected layers (FCLs). The weights 
of the FCLs are quantized and to avoid the severe drop of 
accuracy due to the simplification of CLs, their weights are 
pruned. After each simplification phase to compensate for the 
drop in accuracy resulted from the simplification, network 
parameters are retrained. Details of the training algorithm 
using simultaneous quantization and pruning techniques are 
illustrated in Fig. 7. In this pseudo code N is the number of 
epochs, L is the number of network layers and  is network 

Layer weights 

Segmented Bleeding 
Region

Gray Scale

S channel 
in (HSI)

a channel 
in (CIE Lab)

WCE Image

 Figure 4. Overview of the MLP architecture  

Train network parameters for a few epochs 
For Epoch 1 to N 
        For =1 to L 
                 
        END 
        Forward and backward path using  
        For =1 to L 
                  
        END 
  END 

Figure. 5. Quantization algorithm for MLP 



 

 

 

weights matrix in layer l ,  is its corresponding quantized 
weight matrix,  is pruning mask in layer l,  is learning 
rate, C is cost function and  is the Hadamard production 
operation. At first, network parameters are trained in the 
conventional way and the pruning mask is obtained using Eq. 
(4). Convolutional layers are pruned based on the obtained 
pruning mask, and fully connected layers are binarized based 
on Eq. (7). The quantization and pruning steps cause an 
accuracy drop which may be alleviated during retraining.  

IV. EXPERIMENTAL RESULTS 
For the evaluation of the proposed method, experiments are performed using the TensorFlow framework. WCE bleeding images from publicly available databases are used [37-38]. Five bleeding images from [37], and 50 images from [38] are used for training and testing. To study the performance of the proposed method, we use two metrics. The first metric is DICE score defined as: 

 (8) 
where TP and TN are the numbers of pixels that are correctly classified as bleeding and non-bleeding, respectively. FP and 

FN are the numbers of pixels that are incorrectly classified as bleeding and non-bleeding, respectively. The second metric is area under the curve of ROC (AUC of ROC) which is used for classification performance. Patch size is selected to be 9×9 experimentally. Experiments are performed mainly on two neural network structures including MLP and CNN as followings. 
A.  Imbalance data problem 

Experiments on our WCE bleeding image dataset show that 
only 0.2% of the pixels belong to the bleeding class and the 
rest are non-bleedings. This problem is known as imbalance 
data. Imbalance data problem can be solved in the training 
phase by selecting the proper ratio of bleeding and non-
bleeding patches. As most of the pixels are non-bleeding, 
training the neural network with the original dataset would 
result in a tendency toward the non-bleeding class and the 
network would not be able to classify the bleeding regions 
correctly. In what follows, for each network structure, the 
ratio of bleeding and non-bleeding pixels is selected in a way 
that non-bleeding pixels do not overwhelm the bleeding 
pixels. 
B. Simplified MLP configuration 
Different MLP network configurations are tested, and the best 
architecture is selected. An MLP structure with three hidden 
layers consisted of 40, 20, and 8 neurons, respectively is 
applied as a simple structure for bleeding region 
segmentation. The sigmoid function is used as activation 
function, cross-entropy as loss function and Adam optimizer 
is used for optimization of the loss function. 500,000 patches 
are randomly selected in which the number of bleeding and 
the number of non-bleeding patches are equal. 
C. Simplified CNN configuration 

To evaluate the simplification method for CNN, a patch based CNN structure with 64 and 32 convolutional filters in each convolutional layer and fully connected layers of size 60 and 40 are used. The RELU activation function and pooling follow convolutional layers. Adam optimization method is used as an optimizer and cross-entropy as the loss function. The aforementioned configurations of the applied CNN are chosen by conducting numerous experiments using the same dataset as the MLP experiment to obtain the best results. Batch normalization and dropout are utilized for efficient training 

Gray Scale

S channel 
in (HSI)

a channel 
in (CIE Lab)

Segmented Bleeding 
RegionWCE Image

Convolutional Layer Fully Connected Layer
 Fig. 6. Overview of the CNN architecture 

Train network parameters for a few epochs 
Calculate pruning mask ( ) 
 For Epoch 1 to N 
        For l=1 to L 
              IF  
                     
              ELSE  
                     
        END 
        Forward and backward path using   and for           
convolutional filters and FCLs, respectively 
        For l=1 to L 
              IF  
                     
              Else  
                     
        END 
  END 

Figure. 7. Simplification algorithm for CNN 



 

and dataset are balanced for better training.  600,000 patches are selected such that the bleeding patches are one-third of the normal patches. 
D. Quantitative results  

Different network structures and simplification methods are 
quantitatively compared in Table II. Also, results of other 

related works on the segmentation of the bleeding regions in 
WCE images are reported in Table II. Other works are based 
on different feature extraction methods and SVM for the 
classification. Since the number of normal pixels is much 
larger than the abnormal pixels, DICE score is used as the 
performance metric  For better comparison AUC of ROC 
metric is also included in Table II. It can be observed that our 
full precision CNN have DICE score equal to 0.89. Selection 
of proper image color channels, using a balanced dataset, and 
configuration of an efficient CNN are the main advantages of 
the proposed full-precision CNN structure. As illustrated in 
Table II, the simplified (quantized) MLP has about %3 drop 
in DICE score in comparison with the full precision MLP. 
Simplified MLP does not require any multiplications and has 
a simple structure in comparison with the CNN. If a more 
accurate model is demanded, it is possible to use a simplified 
CNN. From Table II, it can be observed that quantizing all of 
the CNN parameters leads to about %4.5 drop in DICE score 
which can be reduced to about %2.2 with pruned-quantized 
CNN. Pruned-quantized CNN and full precision MLP have 
nearly similar results; however their structural complexities 
are very different. For better insight into the complexity of 
different network structures, structural complexities of the 
employed networks are analyzed in subsection IV.F. Also, the 
AUC illustrated in Table II shows that both pruned-quantized 
and full-precision CNNs have better segmentation results than 
the other methods. 

Table II. Segmentation performance in term of DICE score 
 Method DICE AUC of 

ROC 
[8]  SVM 0.84 -- 
[9]  SVM 0.81 -- 
[10] SVM 0.748 -- 
[14] SVM -- 0.835 
[7] SVM 0.862 -- 

Our MLP 
(Quantized) MLP-ANN 0.831 0.974 
Our MLP 

(Full Precision) MLP-ANN 0.861 0.983 
Our CNN 

 (Quantized) CNN 0.846 0.978 
CNN (Pruned -

Quantized) CNN 0.869 0.985 
Our CNN 

( Full Precision) CNN 0.890 0.984 
 

                                                                                                                                                                                                                                                          
Row 1 

Original Image       
Row 2  
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(Simplified) 
     

Row 3 
MLP  

(Full Precision) 
      

Row 4 
CNN  
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Row 5 
CNN 

 (Pruned-Quantized) 
     

Row 6 
CNN 

 (Full-Precision) 
      

Row 7 
Ground Truth 

     Figure 8. Visual results of different networks for bleeding segmentation 



 

 

 

E. Qualitative results 
In order to evaluate the proposed method visually, 

qualitative results of the full-precision and simplified MLP 
and the full-precision, quantized, and pruned-quantized CNN 
related to six sample images of the utilized dataset are 
provided in Fig. 8. Segmentation results are in the form of a 
binary mask, and the ground truth of this mask is shown in 
row 7 of Fig. 8. Visual results of the simplified and full 
precision MLP are illustrated in the second and third rows of 
Fig. 8, respectively. Both MLP networks have acceptable 
visual results, and simplified MLP has no significant 
degradation of the visual quality in comparison with its full 
precision version. Also, the visual results of quantized, 
pruned-quantized, and full precision of CNN are illustrated in 
rows 4, 5 and 6 of Fig. 8, respectively. CNN with full 
precision parameters have the best visual results comparing 
with results of other networks. It can be observed in row 4 of 
Fig. 9, that CNN with only quantization has created some 
visible artifact due to the quantization error. As an example, 
there are some small regions in the ground truth resulted from 
the fully quantized CNN that are wrongly predicted as 
bleeding regions but the original CNN predicted them 
correctly. This error is alleviated in the visual result of the 
pruned-quantized network due to the efficient simplification 
method. Generally, two simplified network structures are 
considered including simplified MLP and pruned-quantized 
CNN with visual results illustrated in row 2 and 5 of Figure 
8. Pruned-quantized CNN network has better visual results, 
but the complexity of the simplified MLP network makes it 
suitable for implementation inside the capsule endoscopy 
device. 

For further evaluation of the proposed method, ROC curves 
and AUC of ROC based on classification results of both MLP 
networks and all three versions of the CNN are presented in 
Fig. 9 and Fig. 10, respectively. MLP with original parameters 

(full-precision) and simplified MLP network have similar 
ROC curve in Fig. 9. Also in Fig. 10, the ROC curve of all 
CNN networks is similar to an AUC of about 0.98. Figure 10 
shows that a CNN has an appropriate segmentation capability. 
It is worth mentioning that MLP with a very simple structure 
has an acceptable AUC of ROC. 
F. Complexity analysis 

Suppose that the designed networks are going to be 
implemented on a device with limited hardware resource such 
as the capsule device. In devices such as WCE, implementing 
an algorithm which requires a small number of computational 
operations is very beneficial. For both of the proposed 
simplified networks, the computational complexity is 
considered as the number of multiplications and their bit-
length and is reported in Table III and Table IV, respectively. 
The number of parameters contained in each layer of both 
original and simplified MLP neural network is presented in 
Table III and also the number of parameters contained in each 
FCL and CL of all three versions of the utilized CNN is 
presented in Table IV. 
The number of network biases is negligible and has no 
significant effect on the total computational complexity; 
hence biases are ignored in Table III and Table IV. In Table 

 Figure 9. ROC of MLP segmentation networks 

Table IV. Summary of parameters in original and simplified CNN 
structure  

Layer Type Maps and 
Neurons 

Filter 
Size 

Original 
Weights 

Simplified 
Weights 

1 Input 1M × 9×9  - 
2 Convolution 64M × 9×9 3×3 1728 979 
3 Max Pooling 64M × 5×5 2×2  - 
4 Convolution 32M × 5×5 3×3 18432 9163 
5 Max Pooling 32M × 3×3 2×2  - 
6 FC 60 1×1 17280 Quantized 
7 FC 40 1×1 2400 Quantized 
8 FC 2 1×1 80 Quantized Figure 10. ROC of CNN segmentation networks 

Table III. Summary of parameters in original and simplified MLP 
structure 

Layer Type Neurons Original 
Weights Simplified 

Weights 
1 FC 40 9720 Quantized 
2 FC 20 800 Quantized 
3 FC 8 160 Quantized 
4 FC 2 16 Quantized 



 

 

 

III, for the MLP structure, all 32-bit multiplication operations 
are converted to 1-bit operations using quantization. 1-bit 
operations can be realized by addition without any 
multiplications that simplifies the computations needed by the 
network.  
Also, the types of layers in the utilized CNN are illustrated in 
Table IV. The number of parameters in full precision and 
simplified (pruned-quantized) CNN are compared. It is 
observed that the number of 32-bit length weights in full-
precision CNN is reduced from 1728 to 979 in the first CL 
and from 18432 to 9163 in the second CL. Also, all of the 
weights in the FCLs are binarized.  
Finally, both of the designed networks are compared with 
each other concerning their complexity in Table V. In Table 
V the total number of employed parameters in term of 32-bit, 
and 1-bit length operations are reported. Simplified CNN 
(pruned-quantized CNN) have 10142 thirty-two-bit and 
19760 1-bit weights. Although CNN has better DICE score, 
the simplified MLP uses only 10696 1-bit weights. Binary 
operations reduce the complexity of hardware 
implementation of segmentation significantly and make 
segmentation process suitable for implementing inside the 
capsule device.  

V. CONCLUSION  
In this paper, simplification methods for reducing the 

structural complexity of the neural networks for automatic 
detection of bleeding regions in WCE images were 
investigated. Two neural networks including MLP and CNN 
were applied for segmentation as different variations of neural 

 The detection system was designed 
concerning limitation of the hardware resources in the WCE 
device. Hence, the MLP with quantized weights was utilized, 
and a new method based on pruning and quantization was 
employed for the CNN. In comparison with the original CNN, 
the pruned-quantized CNN needed almost 50% fewer 
parameters in CL, and also each of the 19760 weights in FCL 
was quantized. Furthermore, simulation results showed that 
the quantized MLP with 10696 weights has comparable 
results with the simplified CNN.  However, it needed much 
fewer parameters than the simplified CNN. Quantized neural 
networks without any multiplication could be considered as 
an automatic diagnostic approach inside the WCE device. 
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