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Joint-IVA for Identification of Discriminating Features in EEG:
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Abstract—We propose a new method, joint independent vector
analysis (jIVA), for obtaining discriminating features, i.e., inter-
pretable signatures from medical data that can be used to study
differences between multiple conditions or groups. The method is
especially attractive for event related studies of electroencephalo-
gram (EEG) data as it enables one to take advantage of the cross
information across multiple channels effectively while enabling
the use of information from multiple epochs. We introduce the
general model and then demonstrate its successful application
to EEG data collected during a driving experiment. As opposed
to traditional analysis techniques that only detect differences,
we identify statistically significant differences in measured band
power showing when and how the differences occur for two
experimental conditions across the same group of subjects. We
compare jIVA features to those produced from competing data-
driven approaches and demonstrate the advantages of jIVA as
it fully leverages the statistical dependencies across multiple
electrodes, and note its promise as a powerful data-driven method
of obtaining informative features of multiset data.

I. INTRODUCTION

Data driven techniques make only a few assumptions about
the nature of the data, and can produce informative fea-
tures that can be used for multiple purposes. Blind source
separation (BSS) techniques are an important class among
those, and in particular independent component analysis (ICA)
has demonstrated much success in identifying informative
features describing patterns within various types of datasets,
e.g. [1], [2], [3], [4]. These techniques are often useful when
one may reasonably assume that an observed dataset can
be described by an associated generative model, typically
a linear mixture model. In the context of datasets obtained
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from electroencephalogram (EEG) measurements, ICA and
more recently developed independent vector analysis (IVA)—
a multiset extension of ICA—have both shown success in
obtaining informative features representing task and non-task
related neurological changes, as well as identifying features
representing various artifacts [4], [5], [6], [7], [8].

As ICA and IVA have become increasingly popular for
analyzing single and multiple datasets, the strong desire to
leverage shared information between different datasets (i.e.
linking multiple sets of observations or multiple measurement
periods) has led to the development of multiple ICA- and IVA-
based data fusion models [9], [10], [11], [12], [13], [14]. These
models operate via processing of multiple sets of observations
concurrently to generate informative features, which describe
shared information or information distinct to each set of
observations—where sets of observations may be of the same
type, i.e. multi-electrode datasets for EEG data, or of different
types, such as EEG, fMRI, among others. We refer to the
former group as multi-set and the second as multi-modal. One
such successful data fusion method is joint-ICA (jICA), where
multiple sets of observations are concatenated horizontally,
assuming a common mixing matrix, thus leveraging shared
information among the observations to provide decompositions
better representative of this shared information, while also
potentially yielding more robust ICA decompositions due to
large sample properties on concatenated datasets [15]. IVA is
another successful method of data fusion, relaxing the common
mixing matrix assumption and allowing multiple datasets to
interact when providing individual decompositions per each
dataset, leveraging shared information (dependence) between
these datasets to generate more robust features describing these
dependencies [16]. While jICA can be used both for multiset
and multimodal datasets directly, IVA is developed for multiset
data and needs to be adapted to multimodal data through a
transpose operation as described in [11] .

Furthermore, data fusion techniques such as jICA and IVA
have shown to be effective ways of obtaining discriminating
features: informative features describing differences between
different datasets, such as with two or more “conditions” in
the observed data (e.g. in EEG or fMRI, eyes open vs. eyes
closed) [17], [18], [19]. These techniques are often better
than conventional methods as they are fully multivariate and
hence can account for the variability in the data, and minimize
modeling assumptions. As an example, when discriminating
between conditions in EEG datasets, averages of epochs
represented by event-related potentials (ERPs) or event related
spectral perturbations (ESRPs) across different conditions may
result in important variability being averaged out, e.g. if
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subject responses are not sufficiently synchronized in time
for averaging to be reasonably warranted [20]. As another
example for EEG, simply reporting differences in statistical
values of spectral power (e.g. mean, kurtosis, etc.) as the
discriminating features [21] might fail to describe variability
across measurement periods, and may present a less intuitive
or informative interpretation of the underlying differences.

While jICA has yielded successful results, its common
mixing matrix assumption is a strict one. Another option,
applying ICA individually to each dataset, does not allow
these datasets to “fully interact”, i.e. representing or exploit-
ing shared information across datasets through the assumed
dependence structure. In addition, when comparing ICA de-
compositions across different datasets, source alignment across
datasets (i.e., pairing sources between two datasets) is an
extra step outside of ICA which in itself may be problematic,
due to differences in each ICA decomposition. IVA, on the
other hand, can account for the dependence structure when
estimating informative features, and is able to produce results
superior to ICA alone when there is dependence among the
datasets. Many ICA and IVA algorithms usually require a large
number of samples to provide robust decompositions, thus we
propose a solution that leverages the strengths of both jICA
and IVA, and introduce a new method joint-IVA (jIVA) for
identifying discriminating features in EEG datasets.

Thus, we describe jIVA as an effective method for estimat-
ing discriminating EEG features. The method performs data
fusion in two ways, leveraging large sample properties and
shared information between multiple measurement periods,
while also leveraging the underlying dependence structure
between datasets. After jIVA is performed, discriminating
features are detected by applying a statistical test per each
jIVA feature (e.g. a paired two sample t-test). We apply
the method to a multi-electrode EEG driving study dataset
to study differences between two groups of experimental
driving conditions, and summarize the extracted discriminating
features via clustering measures. Our jIVA framework provides
results that generally agree with comparable jICA and IVA
decompositions, thus establishing confidence in jIVA results,
while additionally providing improved statistical power for
source separation, and additionally providing supplementary
information as to how variation exists across the datasets.

Unlike simple statistical tests that only determine the pres-
ence of group difference, our method extracts temporal sig-
natures of the data that describe how differences are manifest
within measurements, how variations of these differences exist
across subject measurements, and where and when these
differences occur. From a neuroscientist’s interpretation of
jIVA features estimated from the driving study data, these jIVA
features describe how response differences between conditions
may characterize different control strategies between condi-
tions. The jIVA features we extract demonstrate that for sub-
jects with prior knowledge of impending perturbation events,
these subjects’ respective measurements are characterized by a
more prominent trend of decrease in frontal theta band power
during a perturbation event, and a more prominent trend of
decrease in parietal alpha band power immediately afterwards,
compared to subjects without prior knowledge of impending

events.
The paper is organized as follows. Section II describes

the assumptions and formulation of the ICA, jICA, and IVA
models, and demonstrates how discriminating features can
be detected. Section III describes the jIVA framework for
obtaining discriminating features. Section IV explains how we
constructed a suitable dataset structure for the jIVA model,
given EEG experimental data applicable to the model. Sec-
tion V discusses how discriminating features are interpreted
through clustering measures and averaging of epochs. Sec-
tion VI shows results from the implementation of the jIVA
framework on the EEG data, in comparison to results from
similarly based jICA and IVA-based frameworks. Section VII
concludes the paper with closing remarks on the model’s use-
fulness compared to other methods for discriminating between
conditions.

II. METHODS AND MATERIALS

A. Motivating Data-Fusion with EEG Data

Consider EEG data from an event related study, with data
measuring cortical electrical activity due to a task-related
event (e.g., pressing a button). Such studies are often de-
signed with the goal to study group differences in response
to different conditions (e.g., when subjects have eyes open,
vs eyes closed). When measurements of different conditions
are recorded across the same subjects for the given task, an
investigator may seek to generate informative features of the
data, particularly features that are useful for discriminating
between measurements of different conditions. This is useful
e.g. to understand brain function, identify biomarkers of a
disease/disorder, among other applications.

Such experiments often repeat the task and correspond-
ing measurements multiple times throughout the experiment,
defining an “epoch” as a time period of measurement start-
ing before the task and ending sometime after the task is
completed. As information useful for discriminating between
subject conditions is present in measurements across multiple
epochs, while also present across multiple electrodes, these
multiple measurements provide increased statistical power that
may be exploited to estimate more robust features: features that
are more informative and/or reliable in describing differences
between the conditions. Data fusion methods based on matrix
factorizations are able to let these multiple measurements fully
interact, thus matrix factorizations are desirable implementa-
tions for obtaining such features.

Blind source separation (BSS) techniques are well suited
for generating such informative features, as they allow fusion
of all available information from multiple subjects, epochs,
and electrodes. BSS techniques are additionally data driven,
placing minimum assumptions on the data. Thus, given EEG
measurements across multiple subjects, epochs, and electrodes,
using these multiple measurements in a fusion based BSS
model can better reveal information shared across the mul-
tiple measurements, especially information that is useful for
discriminating between different conditions.
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B. ICA

ICA is a popular matrix factorization technique for achiev-
ing BSS, and has proven especially useful for generating
informative features of observed data. The ICA model assumes
that each observation in a dataset may be modeled as a linear
mixture of underlying factors, called “sources”. ICA addition-
ally strives to estimate underlying sources with maximized
statistical independence, which is an appropriate assumption
for many applications [3].

With s(t) = [s1(t), . . . , sN (t)]> ∈ RN denoting the N
underlying sources at some time index t (t = 1, . . . , T ), ICA
assumes that these sources are mixed by an unknown invertible
matrix A ∈ RN×N , to produce observed mixtures x(t) =
[x1(t), . . . , xN (t)]> ∈ RN , t = 1, . . . , T . Thus, the relationship
between the mixtures and the sources is represented as:

x(t) = As(t), spa t = 1, . . . , T . (1)

Here, (.)> denotes the transpose. Across all observed samples
t = 1, . . . , T , the ICA formulation may also be represented
by the matrix product:

X = AS (2)

with X, S ∈ RN×T , X = [x1, . . . , xN ]> and S = [s1, . . . ,
sN ]>. To estimate the N underlying sources S, ICA estimates
a demixing matrix W ∈ RN×N that maximizes independence
between the source estimates Y, given by Y = WX, with Y ∈
RN×T . To achieve such demixing, one common approach is to
minimize the mutual information (MI) between the estimated
sources [22].

The ICA model is often used to individually analyze a given
dataset. There are also a number of ICA models designed to
jointly analyze multiple datasets, and one such model is the
joint-ICA model. Joint-ICA entails concatenating J datasets
horizontally into a single matrix X, and then performing ICA
on this matrix. Thus, jICA is formulated as

X = A.S., (3)

where X = [X1, . . . ,XJ ], and S = [S1, . . . ,SJ ]. Here, Sj ∈
RN×Tj are the source estimates of the jth concatenated dataset
Xj ∈ RN×Tj and A ∈ RN×N is the mixing matrix used for
all J concatenated datasets. As it is not required to have the
same number of samples for all concatenated datasets Xj , the
number of samples of the jth dataset is denoted by Tj . The
jICA model assumes that the underlying concatenated sources
share a common probability distribution function (PDF), and
assumes that these concatenated datasets are similarly mixed,
thus sharing A [18].

C. IVA

IVA provides a generalization of ICA to multiple datasets.
Unlike individual ICA decompositions per each dataset, IVA
allows the datasets to interact, allowing a decomposition
that provides an improved estimation of sources exhibiting
dependencies across datasets [16], [23]. Given K datasets X[k]

∈ RN×T , where each dataset consists of N observations over
T samples, the IVA model is formulated as

X[k] = A[k]S[k], for k = 1, . . . , K. (4)

Here, S[k] ∈ RN×T and A[k] ∈ RN×N are respectively the
estimated sources and mixing matrices for the kth dataset. Like
ICA, IVA similarly seeks to estimate sources with maximal
statistical independence within a given dataset, while addition-
ally maximizing dependence between sources across datasets,
to produce improved estimates of sources dependent across
datasets. This is achieved by maximizing independence among
the N source component vectors (SCVs), which themselves
are formed as collections of dependent sources across datasets,
demonstrated by the green SCV matrix defined in Fig. 2.

D. Joint-IVA

As data-fusion can improve analysis beyond that of inde-
pendently analyzing multiple measurements, here, we propose
a method for further modeling dependencies across multiple
datasets, compared to other fusion models such as jICA and
IVA. Our method, jIVA, is based on a reasonable common
mixing assumption across concatenated datasets, seen within
the jICA model, while allowing us to simultaneously take
advantage of cross-information across datasets with source
dependence, seen within the IVA model.

Joint-IVA entails forming K data matrices X
[k]

(for k = 1,
. . . , K), with each matrix composed of J horizontally concate-
nated datasets. Fig. 1 demonstrates the jIVA construction of
each electrode data matrix of J concatenated datasets, and Fig.
2 defines the jIVA model given K electrodes and J epochs of
EEG data. Thus, the jIVA model is formulated as

X
[k]

= A
[k]
.S

[k]
, for k = 1, . . . , K, (5)

where X
[k]

= [X
[k]
1 , . . . ,X

[k]
J ], and S

[k]
= [S

[k]
1 , . . . ,S

[k]
J ].

Here, X
[k]

is the kth data matrix, S
[k]

is the source matrix
of the kth data matrix, with X

[k]
, S

[k] ∈ RN×T , and A
[k]

is
the mixing matrix of the kth data matrix, with A

[k] ∈ RN×N .
Within the kth data matrix, the jth concatenated dataset X[k]

j

is assumed to be a mixture of the corresponding sources S
[k]
j ,

with X
[k]
j , S[k]

j ∈ RN×Tj,k . The number of samples Tj,k may
vary across concatenated datasets X

[k]
j , so long as the total

number of samples across concatenated datasets sums up to the
same number T for all data matrices X

[k]
, thus T =

∑J
j=1 Tj,k

for all j, k, thus having X
[k]

, S
[k] ∈ RN×T for all k.

Like jICA, by estimating a mixing matrix A
[k]

shared across
the concatenated datasets within a given X

[k]
, jIVA estimates

a demixing matrix that can better reflect the information
shared across the concatenated datasets. Concatenation of
datasets also increases the sample size, providing more reliable
estimates of underlying sources.

By additionally modeling dependence across different X
[k]

,
jIVA can provide improved estimates of sources dependent
across the different X

[k]
. This IVA based modeling of depen-

dence provides jIVA with the ability to exploit a powerful
yet relaxable assumption of dependence across X

[k]
. In cases

where all X
[k]

are otherwise independent, jIVA becomes
equivalent to individual jICA decompositions per each X

[k]
.

This additional modeling of dependence across X
[k]

thus
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provides an extra level of diversity which can further help
to better estimate sources dependent across X

[k]
.

Fig. 1: To construct each data matrix X
[k]

for a given
electrode, measurements across epochs are concatenated hor-
izontally, and measurements across subjects are concatenated
vertically. With measurements across subjects over the two
conditions (“P” for predictive cue and “R” for random cue),
subject measurements across these conditions are also con-
catenated vertically, so that jIVA may estimate sources that
can discriminate between the two conditions.

Fig. 2: The jIVA generative model. Applied to EEG, given
K electrode datasets of each N mixtures, J epochs are
concatenated horizontally to form each data matrix. When
using jIVA to discriminate between subject conditions, subject
conditions may be concatenated vertically within each data
matrix X

[k]
(e.g. two conditions denoted by purple and red),

thus generating sources which are shared or differ between the
subject conditions.

By this formulation, jIVA simultaneously leverages depen-
dence across the J concatenated datasets X

[k]
j within a given

data matrix X
[k]

, in addition to dependence across the K data
matrices, to estimate sources that better reveal information by
leveraging use of cross information across all datasets.

In application of jIVA to EEG data, underlying neural
processes are measurable across multiple measurement periods
(e.g. J epochs), and measurable across multiple electrodes
(e.g. K electrodes). Given epoched EEG data described in
section II. A., per each electrode, different epoch datasets
are reasonably described by some of the same underlying
sources, especially those related to the event. By concatenating
J epochs into a data matrix X

[k]
for a single electrode,

performing jIVA on these matrices will better reveal infor-
mation shared across the concatenated epochs within a given
X

[k]
, while also providing improved source extraction due

to increased sample sizes of source PDFs. Additionally, as
sources describing underlying neural processes are naturally
dependent across multiple electrodes, e.g. electrodes covering
cortical areas related to these processes, jIVA can be used
to simultaneously leverage the dependence of measurements
across the K relevant electrodes X

[k]
, further improving

estimates of sources dependent across electrodes.
While the concatenation of epochs in the jIVA model

provides additional statistical power to exploit over the con-
ventional IVA model, concatenation would not be warranted
if epoch datasets do not have dependence to exploit. In these
situations, decompositions would best be separated on a per-
epoch basis as fusion across epochs would be inappropriate.
However, as epochs are often repetitions of the same tasks
and corresponding measurements, these epochs are well de-
scribed by the same processes and are thus highly dependent,
justifying our model for the application.

E. Discriminating Source Detection after jIVA

Given data recorded across different experimental condi-
tions (e.g. subject condition 1, condition 2, etc.), matrix
decompositions such as jIVA can be used to reveal under-
lying information which aids in discriminating between the
conditions. This information may be uncovered by detecting
sources which demonstrate statistically significant variability
between different conditions in the observed mixtures, and
then by interpreting the variability and informative features
described by these sources.

Provided with a jIVA decomposition, each row within each
source matrix S

[k]
is a source to be tested for group difference.

For the kth data matrix X
[k]

, the ith row of the respective
source matrix S

[k]
is the source which is associated with the ith

column of the kth mixing matrix A
[k]

(i = 1, . . . , N ), with this
column representing that particular source’s contribution to
each of the N mixtures of that data matrix X

[k]
. When forming

these data matrices, by vertically concatenating each condi-
tions’ respective measurements across the same subjects, jIVA
may be used to estimate sources that discriminate between
the conditions. Discriminatory sources are identifiable when
contribution weights (mixing matrix column coefficients) show
group difference between conditions. Thus, one may use a
statistical test (e.g. paired two-sample t-test) to determine
sources with significant difference within a given threshold,
e.g., p = 0.05. Refer to Fig. 2 to visualize how mixing matrix
columns may be used to test for group difference per each
respective source row.

In cases when dimension reduction was performed on the
data, the demixing matrices estimated by jIVA do not reflect
contributions of sources to group-labeled mixtures, and must
be “back reconstructed” to reflect these labels. To thus ob-
tain the back-reconstructed mixing matrices in the generative
model A

[k]
, we obtain this matrix by multiplying a jIVA

estimated mixing matrix A[k] by the pseudoinverse of the
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dimension reduction projection matrix, R[k] , thus giving the
generative model mixing matrix A

[k]
= pinv(R[k])A[k] .

III. SIMULATION STUDY

li Testing the performance of jIVA, we simulated data ap-
plicable to the jIVA model, and then compared the inter-
symbol interference (ISI) performance of the jIVA estimated
solution to that of other data-fusion methods similar to jIVA.
ISI is a standard metric for measuring the degree of BSS
algorithm performance, measuring the net distortion of a
system after estimating the demixing operation W, implying
that the mixing operation A is known. The measured ISI is
given by:

ISI(G)l = l
1

2N(N − 1)

[
N∑

n=1

(
N∑

m=1

|gn,m|
maxp|gn,p|

− 1

)

+
N∑

m=1

(
N∑

n=1

|gn,m|
maxp|gp,m|

− 1

)] (6)

s
Here G = WA with elements gm,n , which in the perfect

demixing case is an arbitrarily permuted and scaled identity
matrix, corresponding to an ISI value of 0, thus smaller ISI
values indicate superior demixing performance. For multiple
datasets, ISI can be averaged across the K dataset demixing
matrices W[k] to indicate the separation performance of the
entire decomposition [24]. This metric is particularly useful
for grading ICA demixing performance when the true mixing
is known, such as for simulated studies.

In considering alternative BSS methods comparable to jIVA,
such alternatives include performing individual ICAs on each
concatenated data matrix X

[k]
, which we refer to here as

“joint-ICA” (jICA), or to first average the concatenated epochs
within the data matrices X

[k]
and then perform IVA on these

averages (conventional IVA).
The data was generated with 6 datasets and 10 sources per

dataset (10 SCVs, 6 sources assigned to each SCV). Across the
10 SCVs, 9 of the SCVs were multivariate Gaussian distributed
sources with a random covariance structure, so that these
sources featured some level of dependence across the datasets.
Within the 10th SCV, we generated 3 of these sources (3
datasets) to be of the same type of sources generated from
the other 9 SCVs, while the last 3 datasets’ sources of the
10th SCV were generated to resemble EEG signals with an
event related signal perturbation. These particular sources were
generated as a concatenation of multiple epochs, where each
epoch’s perturbation event occurred either at the beginning of
the epoch or the end of the epoch, so that these sources would
be described by 2 clusters of epochs. These perturbation events
were aligned for these EEG sources, thus making the sources
highly dependent across these last 3 datasets. We chose this
last SCV to have 3 of these highly dependent EEG sources to
better represent real world situations where dependent sources
are not always present across datasets. Source were then mixed
by a random mixing matrix per each dataset, with mixing
matrix coefficients from the standard normal distribution.

Constructing each epoch to consist of 80 samples, we varied
the number of epochs in the data from 10 epochs to 200 epochs
(thus also varying the number of samples), and recorded the
ISI performance of each method averaged across 100 different
simulations with a given number of epochs. Our simulated data
is thus the tensor X[k] ∈ R10×(80∗T ), k = 1, . . . , 6, where T is
equal to 1 for conventional IVA on epoch averages, and equal
to the number of total epochs for jICA and jIVA. Fig. 3 plots
the mean and standard deviation of ISI values for each method
at each number of epochs.

Fig. 3: average ISI performance of three data-fusion methods:
jIVA, ICA on each data-matrix (”joint-ICA”), and IVA on
averages on epochs (”IVA”). The simulation results show jIVA
always outperforming the other two methods, with estimation
performance also being more consistent for jIVA.

The ISI performance of jICA is poor relative to the other two
methods, as jICA is unable to exploit the source dependence
across datasets, which here is particularly needed to separate
the Gaussian sources. While IVA and jIVA are able to exploit
this dependence, the performance of IVA on the epoch av-
erages is inferior to jIVA because averaging epochs reduces
the number of samples within each dataset to the number of
samples within an epoch. As the data used 80 samples per
epoch, IVA was restricted to estimating source pdfs from only
80 samples, whereas jICA and jIVA estimated source pdfs
from 80*(number of epochs) samples per source.

Additionally, the estimated sources of jIVA were able to
preserve the per-epoch information better than the other two
methods. Instead of averaging the estimated sources’ epochs to
summarize the epochs, we clustered the epochs and reported
cluster centroids, as clustering better reflects the locational
variability of the perturbation event, and also produces cen-
troids of estimated sources that can be compared to centroids
of the true sources. Thus we divided each source into epochs
and clustered a source’s epochs using k-means clustering,
using silhouette criterion for determining the optimal number
of clusters. We reported the cluster centroids as features
summarizing the sources, and then compared these centroids
of the estimated sources with the centroids of the original
sources. Clustering on the jIVA EEG sources resulted in 2
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clusters with centroids in agreement with centroids of the
original signal’s clustering. In comparison, the estimation of
the EEG sources were slightly worse for jICA, reflected
by poorer quality centroids of the clustered EEG sources.
While the performance of conventional IVA was much better
than jICA, conventional IVA does not preserve the per-epoch
structure of the sources, and thus the source estimated was an
average feature that combined features of both clusters, thus
yielding a decomposition unable to preserve information on a
per-epoch basis.

Having demonstrated the efficacy of jIVA with our simu-
lated data, in the next section we show application to real
world EEG data.

IV. DATA

A. ARL-BCIT Data

We applied the jIVA model to EEG data obtained from
a BCIT study (Brain Computer Interface Technologies) con-
ducted by the Army Research Laboratory in Aberdeen, MD
[25], [26]. In the study, 16 male drivers were each fitted
with a 64 electrode Biosemi EEG cap, with measurements
obtained over a 45-minute simulated driving experiment. The
experiment consisted of instances where an audio tone would
occur before a perturbation in driving conditions (e.g. sim-
ulating wind gusts changing the direction of the car), and
drivers were required to adjust their steering in order to correct
for changes caused by these perturbations. These instances
of tones prior to perturbations were further distinguished
between two conditions of tones: tones occurring 1–2 seconds
prior to perturbations (“predictive cues”), vs. tones occurring
within a random time before, during, or after the perturbations
(“random cues”). Using these measurements, we sought to
determine whether the jlVA model could generate interpretable
features that discriminate measurements over the two condi-
tions.

B. Pre-processing

Recognizing the emerging interest of oscillatory patterns in
EEG data (such as theta-band waves and alpha-band waves),
for the purpose of characterizing these patterns we pre-process
the EEG time-series data to obtain data of EEG band power
over time. These oscillatory patterns are researched in previous
studies, providing an established benchmark to compare our
jIVA results against [25] [26] [27]. Thus prior to jIVA,
we first pre-process the time-series data into a band power
representation revealing the magnitude as well as the temporal
behavior of these patterns.

To pre-process the initial time series data, measurements
were first re-referenced to mastoid electrodes, and band pass
filtered in the window 0.5 Hz to 50 Hz, for referencing and
de-noising of signals. Epochs over each perturbation were then
extracted from measurements occurring between 2 seconds
before and 4 seconds after the perturbation. Epochs were then
down sampled by a factor of 8 (1024 Hz to 128 Hz) and
normalized. With each epoch having 768 time series samples,
we then generated 640 short-time Fourier transform (STFT)

spectrograms of window length 128, spanning all samples of
the epoch (i.e. spectrogram n spans samples n to n+128, for
1 ≤ n ≤ 640). This STFT implementation provides a balance
between yielding a high resolution of frequency information
and retaining a high number of samples. Within each of these
spectrograms, band power measurements were then obtained
by summing the bins respective of each band’s designated
frequency range. Thus, for each epoch, we obtained 640 time
series samples of band power measurement for theta band
(4-7 Hz), alpha band (8-12 Hz), beta band (13-30 Hz), and
gamma band (30-50 Hz). These band power epochs were then
separated into predictively cued or randomly cued epochs,
based on what type of cue occurred prior to a given epoch.

We then used these band power epochs to form our data
matrices for jIVA. With measurements from a given band,
measurements across all perturbation epochs (135 epochs)
were concatenated together into a single observation, for a
given electrode, subject, and cue type. This was under the
reasonable assumption that individual epochs are expected to
share a common PDF between all other epochs of the same
band, electrode, subject, and cue type, and that these epochs
were similarly mixed and are thus describable by a common
mixing profile. Under these assumptions, concatenation of
epochs is justified to leverage the statistical power of jIVA.
For jIVA to then be able to estimate sources that discriminate
between the different cues, each electrode’s data matrix was
constructed such that across all subjects, measurements of pre-
dictive cues and measurements of random cues were vertically
concatenated together, such that the top half and bottom half
of a matrix were respectively the predictive cue observations
and random cue observations. Thus for a given electrode, a
single jIVA data matrix is formed as X

[k] ∈ R32×86400, where
each of the 32 observations represents either predictive cue or
random cue epochs measured from 1 of 16 subjects, and 86400
samples represent 640 samples per epoch across 135 epochs.
Fig. 2 explains this construction of an electrode’s data matrix
from the band power epochs.

C. Dimension reduction and order selection

Real world data often includes measurement noise that
may compromise effective source separation, and in general
we have an overdetermined problem where there are more
observations than informative signals (sources). Thus, for
the electrode data matrices X

[k]
, we performed dimension

reduction using principal component analysis (PCA) prior to
jIVA. As jIVA requires each data matrix X

[k]
to have the same

number of mixtures, we sought an effective common order P̃
to use across the jIVA grouped electrodes.

We used several techniques for estimating the source order
P̃ , including AIC, MDL, and methods to take dependent
samples into account in the likelihood formulation [28] [29]
[30], these techniques varied considerably in estimated order
accuracy for a given data matrix X

[k]
, and varied considerably

in orders chosen across different X
[k]

. When such order
estimation techniques fail to converge upon a commonly
agreed upon order, it is justified to examine decompositions
across a range of order candidates, and then use an order
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that gives the best performance (in terms of e.g. stability
of results, and ability to identify electrodes with sources
that discriminate between cues). Thus, we ultimately used
the order P̃ that revealed the highest number of electrodes
with a source discriminating between the cues. This entailed
performing PCA dimension reduction on each electrode data
matrix X

[k]
, using a given order candidate, then performing

individual jICA decompositions on each dimension reduced
data matrix, and then determining if a given electrode’s sources
are discriminatory using the paired two sample t-test explained
in section II. part E. For all bands analyzed, the highest number
of electrodes with discriminating sources was found with an
order of 10, and thus we chose this order for dimension
reduction of each X

[k]
prior to jIVA. We gained further

confidence in this order by determining that jICA and jIVA
sources were consistently estimated across multiple runs, thus
ensuring the stability of results.

D. Electrode groupings for jIVA

In order for jIVA to effectively leverage cross information
across data matrices X

[k]
, we then sought sensible groupings

of electrodes that share discriminatory information. Using
our chosen dimension reduction order, we determined which
jlCA-sourced electrodes individually discriminated between
conditions. Then, using a map of individual-discriminating
electrodes, a neuroscientist selected anatomic areas of interest
related to the task. Using groups of electrodes within those
anatomic areas, we tested jIVA for its ability to generate
discriminatory sources. Fig. 4 shows the map of individual-
discriminating electrodes from jICA, and the selected electrode
groupings for jIVA.

Fig. 4: Solid circles denote electrodes with 1 or more jICA
sources showing group difference (p < 0.05), using PCA
dimension reduction order 10. With this mapping, 4 regions
for jIVA (indicated above) were chosen from the electrodes,
grouping 6 electrodes per each region (“theta-left”, “theta-
right”, “alpha-left”, “alpha-right”).

As interest has been given to alpha activity in the visual
cortex resulting from task related events, we chose two regions
of six electrodes each for alpha band, symmetric across the
cortex (“alpha-left”, “alpha-right”). Similarly for theta band,
as the majority of discriminatory source activity appeared to be
prefrontal, we chose two regions of six electrodes each in the
prefrontal region (“theta-left”, “theta-right”). While beta band
and gamma band also demonstrated jICA-sourced electrodes

that discriminated between the conditions, the discriminating
electrodes for these bands were much fewer in number and
were not localized to specific regions. As we primarily expect
to see differences in states within theta and alpha band, we
constructed jIVA groupings only for the theta and alpha bands.
We supported our decision to only use theta and alpha bands
from further analysis showing that discriminatory activity in
beta and gamma bands was not present.

Our full electrode-grouping structure for jIVA is thus given
by X

[k] ∈ R32×86400, for k = 1, . . . , 6, for each selected region
of 6 electrodes.

E. jIVA using IVA-GGD

Having electrode groupings ready for our jIVA model, we
use IVA-GGD as our implementation of jIVA. IVA-GGD
assumes a multivariate generalized Gaussian PDF model [31],
which is appropriate for this data, as this is a sufficiently
general model covering the sub-Gaussian and super-Gaussian
source marginals. We thus applied jIVA to the data using IVA-
GGD, and then determined the jIVA sources discriminating
between conditions by using a paired two sample t-test (p <
0.05) on each source’s respective mixing matrix column. To
acquire informative features from these discriminating sources
(with each source being 135 epochs of each 640 samples),
we then processed information across epochs, via grouping of
epochs using clustering.

Fig. 5: Summary of steps used to obtain discriminating fea-
tures with jIVA, given the original EEG data.

V. SUMMARIZING SOURCES VIA CLUSTERING

li Within each significant discriminating source estimated
from jIVA, epochs exhibited considerable variability. Since
averaging would cause loss of information given the variability
in source estimates corresponding to each epoch, clustering the
epochs and reporting cluster centroids as informative features
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instead provides an effective means to summarize the epochs
while also adequately reflecting their variability.

To cluster the epochs of a single source, we used k-
means clustering, with Pearson correlation as the distance
metric. We used silhouette criterion to determine the optimal
number of clusters [32], after determining that between vari-
ous clustering evaluation criteria (silhouette, Davies-Bouldin,
Calinski-Harabasz. and gap), all criteria on average agreed the
most with silhouette. In addition to using k-means, we also
compared k-means results to those of hierarchical clustering
and affinity propagation clustering. For all clustering algo-
rithms, we used silhouette criterion across multiple clustering
solutions to determine the optimal number of clusters, and
used correlation as the distance metric. Results from the other
two clustering methods consistently compared very similarly
to results of k-means (via number of clusters, cluster sizes, and
centroid epoch shapes), thus all clustering methods closely
agreed with each other. For the following results, we used
k-means to cluster the discriminating sources, and report the
centroids of these sources as features useful for discrimination
between conditions.

VI. RESULTS AND DISCUSSION

li Across the four electrode groupings we applied the jIVA
method on (“theta-left”, “theta-right”, “alpha-left”, “alpha-
right”), all groupings produce discriminating sources across
multiple electrodes, all aligned within the same SCV. Thus,
by detecting the discriminating information dependent across
the electrodes, jIVA is able to exploit this dependency to better
estimate sources describing the discriminating information.

To evaluate the efficacy of jIVA for obtaining discriminating
features, we compare jIVA features to features obtained from
two similar BSS methods: jICA applied on individual electrode
data matrices (“jICA”, X ∈ R32×86400), and IVA performed
on the averages of concatenated epochs (“IVA on epoch
averages,” or simply “IVA”, X[k] ∈ R32×640, k = 1, . . . ,
6). As IVA models dependence across electrodes without
modeling dependence across epochs, and as jICA models de-
pendence across epochs without modeling dependency across
electrodes, comparing jIVA to these two methods demonstrates
the additional statistical power of jIVA by modeling both
dependencies.

For ease of jointly interpreting the discriminating sources
produced across the different BSS methods (“IVA,” “jICA,”
“jIVA”), we orient all sources such that the displayed features
represent a greater activation for predictive cues. This entails
flipping the orientation of sources (multiplication by −1), if
the source shows greater average activation for random cues
(i.e., if the mean of mixing matrix coefficients for random cues
is greater than the respective mean for predictive). We then
cluster these sources and report centroids as the discriminating
features (for jICA and jIVA), or report the source itself as the
discriminating feature (for IVA).

The common pattern consistent across all methods is an
event related decrease in band power, characterized by a
decrease in theta/alpha power near the perturbation, followed

(a) alpha-left, P3.
spl IVAs (p = 0.002).
spl jICA (p = 0.023; 88).
spl jIVA (p = 0.010; 87).

(b) alpha-right, P4.
spl IVAs (p = 0.014).
spl jICA (p = 0.030; 79).
spl jIVA (p = 0.010; 80).

(c) alpha-left, P5.
spl IVAs (p = 0.011).
spl jICA (p = 0.013; 62).
spl jIVA (p = 0.022; 94).

(d) alpha-right, P6.
spl IVAs (p = 0.004).
spl jICA (p = 0.030; 76).
spl jIVA (p = 0.011; 67).

(e) theta-left, F1.
spl IVAs (p = 0.104).
spl jICA (p = 0.012; 75).
spl jIVA (p = 0.024; 60).

(f) theta-right, F2.
spl IVAs (p = 0.070).
spl jICA (p = 0.010; 82).
spl jIVA (p = 0.021; 73).

(g) theta-left, F3.
spl IVAs (p = 0.140).
spl jICA (p = 0.010; 53).
spl jIVA (p = 0.015; 55).

(h) theta-right, F4.
spl IVAs (p = 0.065).
spl jICA (p = 0.005; 71).
spl jIVA (p = 0.011; 68).

Fig. 6: Comparison of features from three BSS methods (”IVA
on averages, i.e. “IVA”, “jICA”, “jIVA”). With the perturbation
at time-series sample 256, and as the FFT window length is
128 samples, the perturbation is thus observed between FFT
window 128 and 256, denoted by vertical bars. p-values for
group difference significance are given for each feature, and
cluster centroid features (jICA and jIVA) have reported the
number of epochs assigned to that centroid’s cluster, out of
135 total epochs. (e.g. p = 0.022; 94 epochs). The p-values
are uncorrected for multiple comparisons.
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by an increase in theta/alpha power immediately after pertur-
bation. When interpreting results of epoch clustering, we put
the emphasis on cluster centroids that show the characteristic
theta/alpha decrease near perturbation, regardless of the size of
clusters (all clusters with centroids having this shape contain at
least 50 epochs assigned to that cluster). For all discriminating
sources post-processed by clustering, silhouette criteria for
clustering evaluation determines that the optimal number of
clusters is most often 2 clusters.

A. Comparing jIVA to jICA and IVA

Fig. 6 compares the jIVA features to respective features
from jICA and IVA, for various electrodes across our jIVA
designated electrode groupings.

IVA on epoch averages (labeled as “IVA on aves.”) entails
performing IVA on the jIVA electrode groupings, but instead of
horizontally concatenating the epochs, the epochs are averaged
together for each concatenated row and IVA is performed
on these epoch averages (X[k] ∈ R32×640, k = 1, . . . , 6).
IVA on epoch averages also delivers discriminating sources
with statistical significance, and like jIVA, these discriminating
sources across electrodes are all assigned to the same SCV.
As this method averages the concatenated epochs together
prior to IVA, the method has fewer samples to use for
estimating source PDFs and is thus expected to suffer over
methods leveraging larger numbers of samples. In addition,
because the estimated sources of this method are averages over
epochs, whereas jICA and jIVA sources are concatenations
of epochs, jICA and jIVA sources provide the advantage of
preserving information on a per epoch basis. While IVA on
epoch averages provides discriminating features for alpha band
that are interpretable, the discriminating features that IVA on
epoch averages estimates for theta are hard to interpret due to
their noisy nature. Additionally, while IVA on epoch averages
does estimate interpretable theta band components with the
characteristic shape of band power decrease at perturbation,
none of these components discriminate under the threshold p
< 0.05 (as shown in Fig. 6).

Joint-ICA applied on individual electrode data matrices
(X ∈ R32×86400) entails individual jICA decompositions per
each electrode’s data matrix from a jIVA electrode grouping.
Compared to IVA on epoch averages, jICA is able to obtain
interpretable discriminating features for theta band, which IVA
on epoch averages is unable to do. However, compared to
our jIVA method, jICA tends to yield fewer electrodes with
disciminating sources (e.g. jICA of “alpha-left” yields 2 group
discriminating-sourced electrodes, while jIVA of “alpha-left”
yields 4; jICA of “alpha-right” yields 2, while jIVA of “alpha-
right” yields 6). This demonstrates that jICA suffers by not
using cross-information between electrodes to aid in extracting
discriminating information, as jIVA is instead able to identify
more discriminating sources from additional electrodes.

Joint-IVA demonstrates the previously noted advantages
seen in both IVA and jICA. Like jICA, jIVA can obtain
interpretable discriminating features for the theta band, and
can provide sources that preserve variability on a per epoch
basis (as opposed to IVA sources). Like IVA, jIVA can

leverage dependence across electrodes to better estimate dis-
criminating processes dependent across electrodes, providing
a decomposition where the discriminatory processes can be
linked across electrodes (via source alignment), and providing
a decomposition identifying additional electrodes that show
discrimination between the cues (as opposed to jICA). While
the jICA type data definition provides a good model match
across epoch measurements of a given electrode, this type of
modeling imposes a strong assumption on the data, and thus
is a more constrained model on the data. By the additional
modeling of dependence across electrodes via IVA, jIVA
allows a relaxation on the strong assumptions imposed through
jICA, thus providing an appropriate balance between flexibility
and robustness on the resulting decomposition.

B. Interpreting the jIVA features

To understand the interpretive value of the jIVA features,
it is first necessary to understand the structure of the data
within the jIVA model. For the given bands analyzed, theta
and alpha, both of these bands are markers of a number of
processes including executive control, action planning, sensory
gating, visual attention allocation, spatial processing, among
several others depending on location of the activity and of the
task [33], [34]. In this task, as a perturbation occurs within
an observed epoch, subject disinhibition in reaction to the
perturbation generally entails a localized drop in theta/alpha
band power as the subject responds to the perturbation, and a
subsequent increase in theta/alpha band power once the subject
response completes. Within a given jIVA data matrix X

[k]
, any

observed epoch demonstrates some variation of this explained
decrease/increase in band power. Thus, jIVA sources can be
understood as providing a basis encompassing patterns of band
power change over the observed epoch measurements, provid-
ing a means to explain the structural variation of the observed
epochs. In this work, significant differences in neural activity
based on predictive versus random cuing were observed both
in the frontal theta and parietal alpha frequency bands.

The jIVA discriminating features may be interpreted as
summarizing a form of band power change pattern that differs
between the two cue types. An understanding of the difference
between cues may help to explain the shape/structure of these
features. As these discriminating features have higher activa-
tion in the predictive cued, the shape of the discriminating
features may be tied to how the predictively cued have prior
knowledge of the perturbation, and may reflect the brain
efficiently operating on that prior knowledge (e.g. an earlier
timing of local minimum may reflect an earlier and perhaps
more efficient correction in response to perturbation).

An improved understanding of these features may be de-
veloped by additionally comparing the discriminating features
with those that do not discriminate, within a given jIVA data
matrix decomposition. In our analysis, sources that did not
discriminate (usually 9 out of 10 sources per data matrix) had
noisy characteristics and generally do not follow a prominent
trend in band power change with respect to the perturbation
event. In contrast, the discriminating features show a relatively
“noise-free” and prominent trend of band power increase prior
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to the perturbation, and decrease immediately after. Hence
the statistically significant components demonstrate a more
consistent and prominent trend of increase or decrease in band
power relative to the timing of the perturbation.

Across the discriminating features, some notable observa-
tions can be made. Generally across theta and alpha bands,
the components that were significantly more prominent in the
predictively cued show a decrease in band power within the
perturbation window (theta) and just after the perturbation win-
dow (alpha). Theta activity has been linked to well-established
role in executive control functions [35], [36] and is frequently
related to response inhibition [37]. In this context, it appears as
the jIVA theta features potentially reflect differences in control
strategies in the predictive vs random cue conditions.

With respect to the alpha related activity, there is a clear
desynchronization that occurs peri-perturbation which may
reflect modulation in sensory and/or motor processing. One
rhythm that shows similar activity is the well-studied “mu”
rhythm that has been related to sensorimotor transformations
wherein visual (and other sensory information) are translated
into action [38], [39]. It is difficult in this context to ascribe
these changes in ongoing alpha oscillations to specific mu
rhythms since the latter is specific to motor cortex and move-
ment, but it seems plausible in this task that the desynchroniza-
tion observed peri-perturbation is related to impending visuo-
motor processing required to perform visuomotor processing
in order to respond to the perturbation. In this particular
experiment, this processing appears to be more prominent in
the predictive cueing conditions.

VII. CONCLUSION

li In this paper, we introduce an IVA model with a jICA-type
data definition, which we term jIVA, and we demonstrate how
this model can be applied to obtain discriminating features
from EEG datasets.

In comparing jIVA to IVA implemented on the averages of
concatenated epochs, we demonstrate that jIVA can leverage
increased statistical power, via large sample properties and
preservation of epoch variability, to provide more informative
features describing group difference between conditions. We
also show that jIVA is able to provide meaningful discrim-
inating features in cases when IVA on concatenated epoch
averages cannot, as seen for theta band electrode groupings.

In comparing jIVA to jICA implemented on individual
electrode concatenated datasets, we demonstrate that jIVA
can leverage dependence across electrodes to better estimate
discriminatory information present across electrodes. Unlike
jICA, jIVA provides the additional benefit of linking processes
dependent across electrodes via source alignment. Across all
four jIVA electrode groupings, jIVA additionally identifies
more electrodes than jICA that discriminate between cues.

Thus, the modeling of dependence across concatenated
datasets and across data matrices provides jIVA with additional
statistical power for more robust source separation.
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