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Abstract

Background: The Electrocardiogram (ECG) signals are usually used to detect
and monitor human health. However, the Electromyogram (EMG) artifact also
can be obtained during measurement, these make difficult for doctors in correct
diagnosis. In general, the ECG signal is periodic while EMG artifact is
non-stationary and has overlapped with it under the frequency domain. According
to these characteristics, it is necessary to extract clean ECG signals from noisy
EMG artifact signals by using the periodic separation method.
Methods: A novel Adaptive Periodic Segment Matrix (APSM) based on Singular
Value Decomposition (SVD) is proposed for extracting clean ECG from EMG
artifact. Firstly a periodic segment estimation method is proposed by obtaining
an average periodic length and RR intervals constraint via envelope spectrum of
the measured signal. Secondly, the R wave peaks and its position of the ECG
signals are detected by these. After that, APSM with rank one is formed using R
wave peaks and the calculated RR intervals constraint, Then SVD is processed on
this matrix, the restructured ECG signals will be obtained by the first maximum
singular value of the formed matrix. The validation of proposed method is made
by applying the algorithm to ECG records from the MIT-BIH Arrhythmia
Database. The zero-mean percent root-mean-square difference (PRD1),
Cross-correlation coefficient and output signal to noise ratio (SNRoutput) have
been calculated for presenting the algorithm performance by comparison with
other methods. Finally two heart disease cases have been studied for P wave and
ST segment detection under noisy ECG with EMG artifact.
Results: The proposed methods achieved significant improvement in output
signal-to-noise ratio, percentage root-mean-square differences and lead to the
higher value of cross-correlation coefficient between the original (clean) ECG and
the denoised ECG signal. Also, the reconstructed ECG signal can be better able
to follow the trend of original (clean) ECG signal under the EMG noise.
Conclusion: The proposed periodic segment estimation method can adaptively
find the periodic length in ECG signal by using envelope spectrum. Also, the
more strict rank one trajectory matrix has been formed in APSM by using R wave
peaks and RR intervals constraint. The results show that the proposed
APSM-SVD method is effective for EMG artifact removal and extracting the
clean ECG signal. The R peak, P wave, QRS complex and ST segment can be
preserved in the reconstructed ECG signal.
Keywords: ECG signal; EMG artifact; Adaptive Periodic Segment Matrix;
Singular Value Decomposition; Periodic Segment Estimation Method
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Background
The Electrocardiogram (ECG) is one of the most important biomedical signals
for indicating human health. It provides information about the functional condi-
tions of the heart. The heart rates could partly represent the human body environ-
ment and the performances in scenarios[1]. The ECG signals are normally distorted
by artifacts that affect the results of health diagnose and monitoring. Therefore,
signal denoising and separation have become an essential process in engineering
communities[2]. Generally, various artifacts and noise types during ECG record-
ing can lead to erroneous diagnoses. The measured signal contains the artifacts
like electrode contact noise, muscle contraction interference, baseline wander, and
some instrumental noise generated by the ECG collecting device[3]. All of these
can corrupt the ECG and lead to a wrong diagnosis and identification. Statisti-
cal techniques such as Principal Component Analysis[4], Independent Component
Analysis[5], and Neural Networks[6] have also been used to extract a relatively
noise-free signal from noisy ECG. However, those techniques cannot reduce some
specific noise in ECG signal.

Many signal processing methods have been used for solving the particular noise.
The baseline wander noise arises due to the patient respiration that fluctuates the
baseline from zero potential, and lies in the very low-frequency range. The useful
frequency range of ECG signal is about 0.5-45 Hz[7]. Therefore, several methods
based on the filters can be applied for removing the baseline wander. For exam-
ple, the high-pass filter[8], nonlinear filter bank[9], median filter and morphology
adaptive filter[10], adaptive switching mean filter (ASMF)[11]. Also, other signal
processing methods like eigenvalue decomposition[12], Modified Variational Mode
Decomposition[13], wavelet transform[15], and Empirical Mode Decomposition[14]
can still realize the removal of baseline wander by decomposing the baseline wander
and other ECG signals into different components. Powerline (AC) interference is a
high-frequency additive noise of 50 or 60 Hz. It is typically a sinusoidal wave with
the random phase but constant frequency[15]. This kind of noise comes from the
power line to data acquisition device and is present even if special care is taken in
proper grounding, shielding, and design of amplifier[16]. It is often removed by a
fixed or adaptive notch filter[17]. Hilbert Huang Transform is also used for power-
line interference removal[18]. Apart from these, like EMD, eigenvalue decomposition
and Modified Variational Mode Decomposition can still remove the powerline inter-
ference by decomposing the powerline interference into a single signal component.

Unlike power line interference and baseline wander, the EMG artifact is difficult
to detect and eliminate using linear filtering, because of the non-stationary nature
of this noise and the big overlaps on whole frequency bands of ECG and EMG
signals[19][20]. Due to the characteristics of EMG artifact, several methods based on
non-linear filters have been widely used have been applied to denoise the EMG noise
to get a clean ECG signal[21], Those method can denoise the EMG artifact but may
cause distortion of the ECG signal due to the overlapping with the spectrum[22].
Apart from those filter methods, several scholars have devoted and focused on de-
noising the ECG signal by using the modern signal processing method. A method
based on the wavelet transform was proposed to remove the EMG noise from the
ECG signals[23]. Besides, the noisy ECG signal can be cleaned by using Empirical
Mode Decomposition (EMD) again[24].
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Compared with those methods, when applying the wavelet transform method on
ECG signals, the selection of the mother wavelet is an unavoidable issue, it of-
ten depends on the ECG signal types[25]. For EMD method, there exits the mode
mixing and the EMG artifact will be distributed over a number of intrinsic mode
functions (IMFs) in the EMD method. Among those existing denoising and separa-
tion approaches, the singular value decomposition (SVD) is a method to separate
the signal of interest from various noises effectively[26]. A hybrid ECG compression
method based on SVD and discrete wavelet transform have been used to extract
the ECG from mixing noise[27]. The ECG signal has the characteristic of periodic
component[28]. A method based on periodic trajectory matrix and SVD has been
applied to extract the fetal ECG from maternal ECG signals[29]. Later, The peri-
odic segment matrix (PSM) has been come out and applied with SVD for detecting
and extracting the periodic impulse component in vibration signals[30]. The embed-
ding dimension of periodic segment matrix can utilize singular value ratio (SVR)
spectrum and the effective rank order of singular value is equal to one[31]. In fact,
due to the random disturbance of EMG artifact, the detected intervals among R
wave peaks fluctuate. At this time, the ECG signal is a pseudo cyclostationary sig-
nal, and the traditional SVR spectrum will not be able to determine the embedding
dimension. Hence, it is necessary to come out an adaptive periodic segment matrix
for extracting clean ECG from EMG artifact.

In this paper, an Adaptive Periodic Segment Matrix (APSM) based on Singular
Value Decomposition is proposed to separate the EMG artifact and ECG signals.
The average periodic length is firstly calculated by the maximum of envelope spec-
trum in input signal, also the RR intervals constraint for R wave peaks selection can
be work out. Then find out the R wave peaks and its positions of the ECG signals
by these. After the previous stage, the Adaptive Periodic Segment Matrix can be
constructed by trajectory matrix with R peaks and RR intervals constraint. Singu-
lar Value Decomposition is processed on this matrix to work out the first maximum
singular value. According to this value, the ECG signals can be reconstructed.

The organization of this paper is as follows. In method section, the theoretical
background is provided, the Periodic Segment Matrix (PSM) and the proposed
Adaptive Periodic Segment Matrix (APSM) are introduced, the RR intervals con-
straint and the embedding dimension of proposed matrix is also discussed. Then, the
process of proposed method in ECG is presented. The result section indicates the
validation of the proposed method by using the MIT-BIH Arrhythmia Database[32].
Also, a comparative analysis of the existing method and the proposed method is
carried out in output signal to noise ratio (SNRoutput), zero-mean percent root-
mean-square difference (PRD1), and cross-correlation coefficient. Finally, in dis-
cussion section, the performance of the reconstructed signal in proposed method is
compared and discussed with other methods on the time domain waveform. At the
same time, two heart disease cases are also analyzed in the P wave and ST segment
to show performance of proposed method in doctor diagnosis.

Results
Simulated signals
In this section, the simulation signals for several different cases are carried out
for evaluation and validation of the proposed method. The simulated noisy signal is
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combined with a clean ECG and EMG artifact. The simulated signals can be shown
in Eq.1.

s
Simulated

= s
ECG

+ s
EMG

(1)

where s
ECG

is the clean ECG signal used from the MIT-BIH arrhythmia database[32].
s
EMG

is the EMG noise chosen by the muscle (EMG) artifact (in record ’ma’) from
MIT-BIH Noise Stress Test database[37]. The Figure 1 shows the constructed sig-
nals based on the 103 record in MIT-BIH arrhythmia database. Every data file in
the database consists of two lead recordings with sampling frequency at 360 Hz
with 11 bits per sample of resolution. The simulation experiment is performed over
the EMG noise.
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Figure 1 The constructed simulated signals with clean ECG and EMG artifact (a)Clean ECG
(b)EMG artifact (c)Clean ECG+EMG artifact

Validation studies in EMG artifact cases
In this sub-section, the EMG artifact in ECG signals will be discussed. The proposed
APSM-SVD method will be used for obtaining the clean ECG signals from EMG
artifact, the comparison with EEMD, DWT, PSM-SVD and SSA will be done,
and the qualitative and quantitative evaluations will be given and presented. The
quantitative evaluation will be progressed with different input/output Signal to
Noise ratio (SNRinput)(SNRoutput) and the modified percentage root-mean-square
differences PRD1 and Cross-correlation coefficient[38]. The Output Signal to Noise
ratio (SNRoutput) will be used for representations and defined as:

SNRoutput = 10log10

(

1
L

∑L

l=1 (ŷ[l])
2

1
L

∑L

l=1 (ŷ[l]− y[l])
2

)

(2)
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where y[l] and ŷ[l] represent original clean ECG signal and reconstructed ECG
signal, respectively. In most ECG compression algorithms, the percentage root-
mean-square differences (PRD) measure is employed[13] and it can be defined as:

PRD =

√

√

√

√

∑N

n=1 (x(n)−
⌢

x(n))
2

∑N

n=1 x
2(n)

(3)

This error estimate is the one most commonly used in all scientific literature con-
cerned with ECG compression techniques. The clinical acceptability of the recon-
structed signal is desired to be as high as possible. The main drawbacks are the
inability to cope with baseline fluctuations and the inability to discriminate be-
tween the diagnostic portions of an ECG curve. However, its simplicity and relative
accuracy that make it a popular error estimate among researchers. As the PRD

is heavily dependent on the mean value, it is more appropriate to use the mod-
ified criteria. Therefore, the PRD1 is proposed for accuracy evaluation in ECG
compression. The equation of PRD1 has been shown below:

PRD1 =

√

√

√

√

∑N

n=1 (x(n)−
⌢

x(n))
2

∑N

n=1 (x(n)− x̄)
2

(4)

where the ⌢

x(n) is the reconstructed signal, and x̄ is the mean of the signal. If the
PRD1 value is between 0% and 9%, the quality of the reconstructed signal is either
‘very good’ or ‘good’[38], whereas if the value is greater than 9%, its quality group
cannot be determined. As we are strictly interested in very good and good recon-
structions, it is taken that the value PRD1, as measured with Eq.1, must be less
than 9%. Hence we compared the performance of our proposed method with three
existing techniques: Ensemble Empirical Mode Decomposition, Discrete Wavelet
Transform and Singular Spectrum Analysis (SSA). In EEMD method, the noisy
ECG signal is decomposed into intrinsic mode functions (IMFs) and the last three
IMF are discarded. Discrete Wavelet Transform (DWT) uses filter banks for con-
struction of the multi-resolution analysis with relatively low computation time. The
procedure of SSA is usually divided into the following steps: embedding, singular
value decomposition, grouping and reconstruction. PSM-SVD method is similar to
the proposed APSM-SVD, but the periodic segment is fixed.

Table 1 Comparison of SNRoutput for the proposed APSM-SVD method with EEMD, DWT, SSA
and PSM-SVD averaged over 5 segments

SNRoutput (dB)

SNRinput (dB) EEMD DWT SSA PSM-SVD APSM-SVD
-20 0.039 0.045 0.054 0.0225 0.063
-15 0.085 0.202 0.25 0.0556 0.329
-10 0.133 0.478 0.61 0.1043 0.683
-5 0.376 1.139 1.582 0.5079 1.749
0 1.217 4.321 9.402 6.8342 12.421

It is evident from Table.1 and Fig.2 that SNRoutput obtained by all the methods
are larger than those in SNRinput. Meanwhile, the proposed method has relatively
higher output signal to noise ratio than other methods under the same level. As
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Figure 2 The comparative performance SNRoutput of the proposed APSM-SVD with other
methods over 5 segments

Table 2 Comparison of cross-correlation coefficient for the proposed APSM-SVD method with
EEMD, DWT, PSM-SVD and SSA averaged over 5 segments

Cross-correlation coefficient

SNRinput (dB) Input noisy signal EEMD DWT SSA PSM-SVD APSM-SVD
-20 0.053 0.051 0.039 0.053 0.0227 0.055
-15 0.123 0.144 0.093 0.123 0.133 0.226
-10 0.214 0.392 0.163 0.214 0.1043 0.631
-5 0.449 0.662 0.343 0.447 0.134 0.929
0 0.904 0.883 0.693 0.895 0.843 0.966

the SNRinput increase, the obtained SNRoutput increased. Still, the APSM-SVD
performs better than the other method. Moreover, the Cross-correlation coefficient
is also calculated with clean ECG and shown in Table.2. The Cross-correlation
coefficient of input noisy signal is smaller when SNRinput is lower, which matches
the EMG noise is larger under the lower signal to noise ratio.

Nevertheless, the proposed method still achieved better results compared with
others in Cross-correlation coefficient. Also, the performance measures for PRD1

under different SNRinput have been calculated and shown in Table.3. The PRD1 can
be guarantee good reconstructed signals under the range of 0%-9%. Particularly, the
PRD1 exceeds 9% when SNRinput is -20dB in EEMD, DWT, SSA and PSM-SVD,
where the APSM-SVD achieved 6.0375%. In other SNRinput levels, the APSM-SVD
has lower PRD1 compared with other methods. Therefore, the proposed APSM-
SVD would be a promised method for separate clean ECG from EMG artifact.

Table 3 Comparison of the percentage root-mean-square differences among the EEMD, DWT, SSA,
PSM-SVD and proposed APSM-SVD

Performance measures PRD1 (%)

SNRinput EEMD DWT SSA PSM-SVD APSM-SVD
-20 12.075 13.673 13.56 13.66 6.0375
-15 5.156 7.052 6.963 6.88 4.159
-10 4.023 4.255 4.175 4.19 3.018
-5 1.41 2.083 1.957 2.07 1.217
0 0.795 0.826 0.476 0.553 0.156

Different records may have different denoised performance, the performance mea-
sures for PRD1 in different MIT-HIH records have been calculated and shown in
Table.4, as the PRD1 decreases, the better the performance is, this also obeys the
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rule with good reconstructed signals under the range of 0%-9%. Therefore, the re-
sults show that the APSM-SVD achieve better performance compared with other
method among the records.

Table 4 Comparison of the percentage root-mean-square differences among the EEMD, DWT, SSA,
PSM-SVD and proposed APSM-SVD in different MIT-BIH records

Performance measures PRD1 (%)

MIT-BIH record EEMD DWT SSA PSM-SVD APMSVD
103dat 0.795 0.826 0.476 0.553 0.156
104dat 1.021 0.739 0.853 0.563 0.522
105dat 0.889 0.624 0.515 0.502 0.269
117dat 3.655 0.792 0.669 0.768 0.465
118dat 2.221 0.584 0.389 0.407 0.187
119dat 1.806 0.488 0.632 0.333 0.314
214dat 0.831 0.472 0.413 0.375 0.352
231dat 0.892 0.831 0.475 0.590 0.310

Discussion
In order to better reflect the effect of noise reduction, the time domain waveform
after denoised and separated of the proposed method and other methods are also
shown in Fig.3. The reconstructed signals in EMD, DWT, SSA and PSM-SVD
method still have some EMG artifact compared with the clean ECG signal in 103
record . However, the reconstructed ECG signal in proposed APSM-SVD method
is better and can quite follow the clean ECG signal.

In many cases, we need to recognize the R peak of the original (clean) ECG along
with the P wave, T wave, QRS complex and the ST segment for correct heart disease
identification. It can be seen from Fig.4 (a) and (b) that all the methods can identify
the R peak. There is a small phase shift in DWT results, due to the addition of
the EMG artifact, the noisy ECG signal has a baseline shift compared with clean
ECG signal. This causes the baselines of reconstructed results in DWT and SSA are
similar to the noisy ECG signal, and cannot detect the actual baseline of the clean
ECG signal.The reconstructed signal in PSM-SVD also has a phase shift compared
with APSM-SVD.But the effect of baseline shift is better than other methods.
Meanwhile, EEMD method can quite detect the baseline of clean ECG. But there
still existed the incorrect identification in P wave and T wave. The proposed APSM-
SVD is better able to follow the original (clean) ECG signal under the EMG noise.
Also, the R peak, QRS complex and the ST segment can be detected correctly in
comparison to the other methods.

General speaking, in ECG signal, R peak and QRS complex of ECG signal has
periodicity, and then EMG signal is random with no periodicity. Therefore, the
Adaptive Periodic Segment Matrix with rank one is formed by periodic segment of
noisy ECG signal, and then process to singular value decomposition for reconstruct-
ing the clean ECG signal. The left singular value matrix is a single waveform of QRS
complex, and the right singular value matrix is the coefficient, so as to reconstruct
a new ECG signal. Meanwhile, EEMD does not have the ability to extract the two
signals in the similar frequency band, but for DWT, the result of DWT method
depends on the similarity between wavelet base and target signal. In reality, it is
often difficult to achieve. At the same time, the quality of SSA depends on the
segment length of trajectory matrix, it is difficult to determine a suitable segment
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Figure 3 Reconstructed ECG signals from noisy ECG record by using the proposed APSM-SVD,
EEMD, DWT, PSM-SVD and SSA(a)EEMD (b)DWT (c)SSA (d)PSM-SVD (e)APSM-SVD

length without prior knowledge. The core innovation of this paper is to provide a
suitable period segment estimation method and ensure the formed trajectory ma-
trix is strict rank one matrix by average period length in envelop spectrum and RR
intervals constraint in R wave peak selection. Also the Periodic Segment Matrix has
embedding dimension, but it can not be changed as the length of signals increases.
The proposed APSM-SVD based on this method can separate EMG artifact and
ECG signal, where traditional methods cannot solve this problem.
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Figure 4 The reconstructed signals obtained from the proposed technique compared to EMD,
DWT, SSA and PSM-SVD for QRS complex in 103 record.(a) The amplitude of EMG noise is
smaller (b)The amplitude of EMG noise is larger

The application in heart disease identification
Left bundle branch block (LBBB) case studies
In previous section, the validation has been made for proposed method. Therefore,
in this section, the application of the proposed method in heart disease is discussed.
Hence, the LBBB case has been applied. LBBB is a cardiac abnormality that is
mainly caused due to delay in activation of the left ventricle[39]. ECG recordings of
patients suffering with LBBB have the following characteristics: (1) QRS duration
is greater than 120 ms; (2) Lead V1 signal shows a slurring of QRS with an initial
R wave; (3) ST segment has displacement; (4) the direction of T wave is opposite to
R wave. The Record 214 of MIT-BIH Arrythmia database shows ECG signal with
LBBB. The identification has been shown in Fig.5.

Compared with noisy ECG, the proposed APSM-SVD can denoise the EMG arti-
fact and reconstructed the target ECG. While the PSM-SVD still has EMG artifact
in reconstructed signal. The R waves can be detected and matched with the clean
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Figure 5 The detection of the R peak, P wave and QRS complex in 214 LBBB record

ECG by using APSM-SVD. P wave is difficult to identify in noisy ECG signal and
reconstructed signal in PSM-SVD. This may generate false alarm for heart abnor-
mality known as atrial fibrillation.

ST elevation myocardial infarction (STEMI) studies
ST segment elevation and depression is used for identification of ST elevation my-
ocardial infarction (STEMI)[40]. STEMI is a type of heart attack in which a coro-
nary artery is blocked completely by a blood clot. Some heart muscles which receive
oxygen from that coronary artery begin to die. The highly elevated ST segment in-
dicates the amount of heart muscle damage. We know that EMG noise affects the
ST segment. However, for disease identification such as STEMI, it is necessary to
preserve the ST segment in the denoised signal. To test the efficacy of our proposed
method, we use Record 231 with straight elevation (characteristic of STEMI) in the
ST segment (Fig.6). Noisy ECG signal is created by adding EMG noise to the clean
ECG signal. And the reconstructed signals are obtained by the proposed APSM-
SVD and PSM-SVD. It can be seen that in Fig.6, although the R wave peaks can
be detected correctly in all signals, the EMG artifact in noisy ECG seriously af-
fects ST elevation recognition. On denoising with proposed method, we notice that
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Figure 6 The detection of the R peak, ST elevation and QRS complex in 231 STEMI record

the straight elevation of ST segment is restored and STEMI is correctly detected.
Where that in PSM-SVD is not clear. Therefore, the alarm for atrial myocardial
infarction can be applied by the proposed method.
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Conclusion
Real-time ECG signals are often suffered from the EMG artifact that need to be
denoise and removed before an ECG signal can be used by a doctor for analysis. The
ECG signal has the periodic components and EMG is nature random, Therefore, the
denoised method based on the periodic segments can extract the clean ECG signal.
However, the periodic segments in measured ECG signal will affect the performance
of the reconstruction. And the periodic segments will be changed due to the different
types of ECG. In this paper, a new periodic segment estimation method and an
Adaptive Periodic Segment Matrix based on SVD has been proposed to extract
the clean ECG signal in noisy ECG signal with EMG artifact. Compared with
Periodic Segment Matrix, the envelop spectrum is used for calculating the average
period length. Then RR intervals constraint has been made for selecting the R wave
peaks. Also, the embedding dimension is adaptively selected from this. Still, the
adaptive periodic segmented matrix is constructed by RR intervals constraint from
a R wave peak to both sides, so as to ensure the formation of more strict rank one
matrix in different ECG signals. The validations of the proposed method have been
made and the comparison also has been done. Performance comparison shows that,
compared to other methods, the proposed methods provide significant improvement
in output signal-to-noise ratio, percentage root-mean-square differences and lead to
higher value of cross-correlation coefficient between the original (clean) ECG and the
denoised ECG signal. The time domain waveform after denoised is also compared.
The reconstructed signal in proposed APSM-SVD can follow the clean ECG signal
and the P wave, QRS complex, ST segment and R wave can be preserved. EMG
artifact affect the ST segment and small amplitude waves i.e. P wave and the ST
segment of the clean diseased (original) ECG signal. Thus, the two heart disease
cases (LBBB) and(STEMI) are also applied in PSM-SVD and APSM-SVD method.
The results show that P waves and ST segment can be preserved in APSM-SVD.
Therefore, Adaptive Periodic Segment Matrix can be used to form the trajectory
matrix and process to SVD for restructuring the pure ECG to preserve the R
peak, P wave, T wave and the ST segment for correct diagnosis. We have also
demonstrated that our proposed APSM-SVD method is able to avoid the effect of
EMG noise on these. Therefore, the proposed APSM-SVD can perfectly achieve the
requirements of extracting clean ECG from noisy ECG signals with EMG artifact.
In further, during the measurement condition of wearable device, the amplitude
of EMG signals may far exceed in ECG signals, which leading to its peak value
cannot be accurately identified, how to extract the pure signal through the proposed
method needs further research and discuss.

Method
Periodic Segment Matrix
Many methods can be used to construct the trajectory matrix. One of the most
famous methods is the Hankel matrix[33][34]. However, the Hankel matrix is un-
suitable for strengthening the periodic impulse responses. Therefore, the novel tra-
jectory matrix, Periodic Segment Matrix (PSM), without accumulative error[29] is
used as the trajectory matrix of SVD. The trajectory matrix with PSM properties
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can be expressed as:

Y =













s(c1 + 1)s(c1 + 2) · · · s(c1 + l)

s(c2 + 1)s(c2 + 2) . . . s(c2 + l)
... . . . ...

s(ca + 1)s(ca + 2) · · · s(ca + l)













(5)

where s is any periodic impulse component, α is the number of periods, and l is the
embedding dimension.l =< p >,ci =< (i− 1)p >, i ∈ [1, a], l, a ∈ N∗, l ≥ 2, a ≥ 2,

and ca + l ≤ N, where < . > is a rounding operator, p is h times T , and h ∈ N∗.
T is the period length of the periodic impulse component and can be determined
by the singular value ratio (SVR) spectrum[31]. Peaks at higher multiples of this
length must be monitored. Therefore, the embedding dimension l can be expressed
as

l =< p >=< hT > (6)

Naturally, the row number a,Y is also determined as

a=argmax <(a-1)hT> + <hT> (7)

h can be obtained by maximizing the rank of a matrix Y, i.e.,

h = argmax
h

rank(Y) (8)

Where rank (Y) is the rank of a matrix Y and is equal to min(a, l). And this of a
pure periodic signal is equal to 1, the trajectory matrix Y can be reconstructed by
using the first maximal singular value, i.e.

Ŷ = σ1u1v1
T (9)

Finally, the periodic impact component Ŷ is extracted by the inverse process of Y
in Eq.5.
General speaking, the periodic segment matrix can separate the strictly periodic
signals, and it can be extracted by SVD based on the rank of the trajectory matrix
equals to one. However, the periodic segment in PSM may not be appropriate for
the noisy ECG with the EMG artifact, the peaks in SVR spectrum cannot be able
to find. This will cause the rank of the trajectory matrix is not a rank one matrix.
The first singular value of this method will not preserve the P wave, QRS complex,
T wave and ST segment of ECG component. Therefore, the ECG signal will fail to
be reconstructed.

Adaptive Periodic Segment Matrix
As mentioned above, the clean and periodic ECG signal can be detected by using the
Periodic Segment Matrix. Once the EMG artifact has been added, the embedding
dimension and periodic segment in PSM will not be suitable, even though using the
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particular embedding dimension. In other words, the rank of the matrix will not be
equal to one, this affects the signal recovery after processing the SVD. Therefore,
according to this shortage in PSM and the requirement for extracting the clean
ECG from EMG noise, a new matrix named Adaptive Periodic Segment Matrix is
proposed to form a strict rank one matrix. In ECG research field, scholars usually
pay more attention to the P wave, R wave, ST segment and QRS complex for ECG
signals. As a result, the peaks are found and pursuit in the proposed method, the
embedding dimension of the matrix has been selected based on the RR intervals
constraint. These steps can choose the suitable periodic segment for ECG signal
to make the rank of the trajectory matrix strictly equals to one, and guarantee
the correct P wave, R wave, ST segment and QRS complex for reconstructed ECG
signal.

Peak pursuit
In the ECG signal, R wave peak needs to be recognized, but due to the interference
of EMG noise, directly finding R wave peaks will include some other peaks which
not belong to R wave, so a certain RR intervals constraint needs to be set when
pursuing for correct R wave peaks. If the selected interval is too large, the R wave
peaks will not be fully recognized. Otherwise, if the interval is too small, the peak
value that not belongs to R wave will be wrongly selected. Therefore, here is an
assumption of RR intervals constraint:

⌈

max(RRintervals)

2

⌉

<Z< ⌈min(RRintervals)⌉ (10)

where Z is the selected RR intervals constraint. In reality, the maximum RR interval
and the minimum RR interval are not very clear due to the noise. This makes it
difficult to choose the Z. As we know, the fundamental frequency of the envelope
spectrum reflects the average period of the main components of the signal. Hence,
the position corresponding to the maximum value of envelope spectrum can be
taken as mean(RRintervals). Also, there is little difference between the maximum and
minimum RR intervals in normal ECG signals, both of them can be approximated
as mean(RRintervals), so the above Eq.10 can be written as:

⌈

mean(RRintervals)

2

⌉

< Z < ⌈mean(RRintervals)⌉ (11)

where mean(.) is the mean value of the RRintervals. Therefore, the RR intervals
constraint Z can be rewritten as:

Z = ⌈α ·mean(RRintervals)⌉ , α =

(

1,
1

2

)

(12)

In this paper, we choose α = 2/3 as the coefficient for Z. Hence, the R wave peaks
can be found as [R1, . . . , Rn] and their positions [X1, . . . , Xn].
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Trajectory matrix construction
In order to ensure the trajectory matrix is a strict rank one matrix. The position
matrix B based on R wave peak position can be written as:

B =

















X1 − Z,X1−Z + 1, · · · , X1, · · · , X1 + Z − 1

X2 − Z,X2−Z + 1, · · · , X2, · · · , X2 + Z − 1

X3 − Z,X3−Z + 1, · · · , X3, · · · , X3 + Z − 1
...

... . . . ...
...

Xn − Z,Xn−Z + 1, · · · , Xn, · · · , Xn + Z − 1

















(13)

where Z =
⌈

2
3
·mean(RRintervals)

⌉

Then the trajectory matrix Yapsm can be formed

Yapsm = s(B) (14)

Besides, s are the input signal,n is the number of R wave peak. The embedding
dimension selection here can be noted:

(1) If embedding dimension is smaller than any R wave peak intervals, the recon-
structed period ECG component may not cover all QRS complex, P waves and ST
segments, which will lose the feature of the ECG signal.

(2) If embedding dimension is bigger than any R wave peak intervals, the two ends
of reconstructed ECG signal will exceed the length of input signal, which cannot
reconstruct or reconstruct false ECG components.

Therefore, the embedding dimension in proposed matrix is selected as double
length of Z to obtain both requirements above.

For the periodic segment matrix, with the increase of signal length and the de-
crease of signal stability, every periodic component of its trajectory matrix will
shift, and the periodic segment mode will break, which will not form a rank one
matrix. Compared with PSM, the trajectory matrix in APSM is traversed from R
wave peak to both sides, so the constructed matrix can be a more strict rank one
matrix. The comparison of the trajectory matrix in APSM(Eq.14) and PSM (Eq.5)
has been shown in Fig.7. It can be seen that the detected periodic components in
PSM has a shift in different rows. This will make the formed trajectory matrix in
PSM will not be a strict rank one matrix. As a result, the first maximum singular
value will recover the false ECG signal.
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Figure 7 The comparison of first three rows in APSM and PSM (a) The first 3 rows in APSM
(b) The first 3 rows in PSM

Singular value decomposition
The formed trajectory matrix Yapsm would be input to the process of SVD, SVD
has been widely utilized as an effective method for enhancing periodic impact
components[35][36]. For an arbitrary real m × n matrix Y, SVD can be expressed
as:

Ym×n = Um×mDm×nV
T
n×n (15)

where Um×m = [u1,u2, · · · ,um],Vn×n = [v1,v2, · · · ,vn], and Dm×n =

[

Cq×q O

O O

]

,

Cq×q = diag(σ1,σ2, · · · , σq), q = min(m,n), and diagonal elements σi(i = 1, · · · ,q)

are the singular values of Y, and σ1 > σ2 > . . . > σq.

Matrix Reconstruction and Signal Recovery
Similar to the periodic segment matrix reconstruction, the rank of trajectory matrix
Yapsm is equal to 1, the trajectory matrix Yapsm can be reconstructed by using the
first maximal singular value, i.e.

Ŷapsm = σ1u1v1
T (16)

Finally, the reconstructed signal ŝ is extracted by the inverse process of Ŷapsm in
Eq.14.

The process of the Adaptive Periodic Segment Matrix based on SVD
All the process has been shown in Fig.8. Firstly, the measured signal has been taken
into the signal pre-processing. The input signals have been calculated with envelope
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spectrum for selecting the average period length. Then the R wave peaks and their
positions coordinates have been found by using RR intervals constraint. After this,
the trajectory matrix Yapsm is also formed based on matrix B in Eq.13 and process
to SVD to find out the rank of the matrix equals to one. Then the signal will be
recovered by the first maximal singular value.

Figure 8 The process of Adaptive Periodic Segment Matrix based on Singular Value
Decomposition (1)Convert the frequency of maximum Spectral line as average period length(2)
use the RR intervals constraint for R wave peaks selection (3) Position matrix B can be formed
based on R wave peaks and the RR intervals constraint(4) the trajectory matrix can be strict rank
one matrix due to B.(5) The first maximal singular value will be used as the signal recovery.
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SNRinput: Input signal to noise ratio; PSM: Periodic Segment Matrix; EMD: Empirical Mode Decomposition; IMF:
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Figures

Figure 1

The constructed simulated signals with clean ECG and EMG artifact (a)Clean ECG (b)EMG artifact
(c)Clean ECG+EMG artifact



Figure 2

The comparative performance SNRoutput of the proposed APSM-SVD with other methods over 5
segments



Figure 3

Reconstructed ECG signals from noisy ECG record by using the proposed APSM-SVD, EEMD, DWT, PSM-
SVD and SSA(a)EEMD (b)DWT (c)SSA (d)PSM-SVD (e)APSM-SVD



Figure 4

The reconstructed signals obtained from the proposed technique compared to EMD, DWT, SSA and PSM-
SVD for QRS complex in 103 record.(a) The amplitude of EMG noise is smaller (b)The amplitude of EMG
noise is larger



Figure 5

The detection of the R peak, P wave and QRS complex in 214 LBBB record



Figure 6

The detection of the R peak, ST elevation and QRS complex in 231 STEMI record



Figure 7

The comparison of �rst three rows in APSM and PSM (a) The �rst 3 rows in APSM (b) The �rst 3 rows in
PSM



Figure 8

The process of Adaptive Periodic Segment Matrix based on Singular Value Decomposition (1)Convert the
frequency of maximum Spectral line as average period length(2) use the RR intervals constraint for R
wave peaks selection (3) Position matrix B can be formed based on R wave peaks and the RR intervals
constraint(4) the trajectory matrix can be strict rank one matrix due to B.(5) The �rst maximal singular
value will be used as the signal recovery.


