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Abstract 

Signal processing and machine learning methods are valuable tools in epilepsy research, potentially assisting in diagnosis, 

seizure detection, prediction and real-time event detection during long term monitoring. Recent approaches involve the 

decomposition of these signals in different modes or functions in a data-dependent and adaptive way. These approaches 

may provide advantages over commonly used Fourier based methods due to their ability to work with nonlinear and non-

stationary data. In this work, three adaptive decomposition methods (Empirical Mode Decomposition, Empirical Wavelet 

Transform and Variational Mode Decomposition) are evaluated for the classification of normal, ictal and inter-ictal EEG 

signals using a freely available database. We provide a previously unavailable common methodology for comparing the 

performance of these methods for EEG seizure detection, with the use of the same classifiers, parameters and spectral and 

time domain features. It is shown that the outcomes using the three methods are quite similar, with maximum accuracies of 

97.5% for Empirical Mode Decomposition, 96.7% for Empirical Wavelet Transform and 98.2% for Variational Mode 

Decomposition. Features were also extracted from the original non-decomposed signals, yielding inferior, but still fairly 

accurate (95.3%) results. The evaluated decomposition methods are promising approaches for seizure detection, but their 

use should be judiciously analysed, especially in situations that require real-time processing and computational power is an 

issue. An additional methodological contribution of this work is the development of two python packages, already available 

at the PyPI repository: One for the Empirical Wavelet Transform (ewtpy) and another for Variational Mode Decomposition 

(vmdpy). 
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Introduction 1 

Epilepsy is a burdening neurological disease that has a prevalence rate of around 6 per 1000 persons 2 

and incidence rate of 61 per 1000 person-years [1]. One of the factors contributing for its high incidence 3 

rate is the large number of causes leading to this condition, such as: genetic predisposition, displasias, 4 

cerebrovascular disease (CVD), trauma, tumor, infection, ischemia, among others [2].  5 

Recurrent seizures are considered the hallmark of Epilepsy. These events reflect the abnormal firing 6 

of groups of neurons in the brain, in general synchronous and of high intensity [3]. This deviation from 7 

the normal functioning patterns of neurons may invoke sensations varying from strange feelings, 8 

behaviors and sensations to seizures with muscular spasms and possible loss of conscience [4]. 9 

The electroencephalogram (EEG) is a high temporal resolution recording of brain electrical activity 10 

central to the diagnosis of epilepsy and other neurological disorders. Its signals can reflect abnormal 11 

neuronal activity during ictal (i.e. seizures) or interictal periods, such as sharp transients occurring in-12 

between seizures [5]. These signals are commonly interpreted by experienced neurologists through      13 

visual inspection, taking into account features such as frequency, amplitude and regularity of waveforms, 14 

reactivity to stimuli, spatial range and temporal persistence of the signal’s anomalies [6]. However, this 15 

method may be cumbersome and time consuming, especially for long series and multi-channel data; 16 

which can lead to an increasingly high ratio of false-negative results. Furthermore, there is a series of 17 

subtle signal features and components, as well as inter-channel relationships, which are virtually 18 

impossible to detect by simple visual inspection. This task may be assisted by signal processing and 19 

classification algorithms [7] that can deal with signal nonlinearities and subtleties, high-dimensional data 20 

and the possibility of real-time processing. As such, these automated methods are valuable tools for the 21 

diagnosis, detection and prediction of epilepsy and epileptic seizures [8].  22 

A variety of algorithms and signal processing techniques have been developed for the extraction of 23 

relevant features related to the epileptic phenomena [9]. Methods which analyze frequency components 24 

using the Fourier Transform are not always recommended, because EEG signals contain non-stationary 25 
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components, violating conditions for the use of such transform [10]. Thus, recent methods for EEG 26 

analysis of epileptic patients may use Time-Frequency approaches, or non-linear methods such as 27 

Lyapunov Exponents, Fractal Dimension, Entropy or Correlation Dimension [11]. Other methods include 28 

the use of signal decomposition in adaptive ways, such as the Empirical Mode Decomposition (EMD), 29 

proposed by Huang et al [10].  30 

Of particular interest to the work presented here, the EMD is an adaptive and data-dependent 31 

decomposition method that successively extracts intrinsic mode functions (IMFs), defined by amplitude 32 

modulated (AM) and frequency modulated (FM) components. Accordingly, complex non-linear and non-33 

stationary signals can be decomposed into a finite number of IMFs, each with well-behaved Hilbert 34 

Transforms [10]. The EMD approach, as well as its extensions [12,13], has been successfully used in  35 

epilepsy [14–17]. However, drawbacks such as computational cost, lack of theory (due to its algorithmic 36 

approach) and difficulty in interpreting the large number of modes have motivated the use and evaluation 37 

of different adaptive decomposition methods in seizure EEG signals [18]. 38 

The Empirical Wavelet Transform (EWT) [18] addresses some limitations of EMD. By adapting 39 

some of the Wavelet formalisms, this method designs appropriate wavelet filter banks and decomposes a 40 

signal into a predetermined number of modes. The use of EWT has been explored in different areas such 41 

as compression of electrocardiogram (ECG) signals [19], decomposition of seismic activity [20] and 42 

time-frequency representation of non-stationary signals [21]. Although the use of Wavelets for seizure 43 

detection and classification has been widely explored [6,22–24], few works evaluate EWT for processing 44 

seizure EEG signals [25,26]. 45 

Another adaptive method denominated Variational Mode Decomposition [27] (VMD) decomposes a 46 

signal into its principal modes adaptively and non-recursively. The method is related to the so-called 47 

Wiener filter, a property which grants it advantages in relation to noise robustness. Similar to what 48 

happened in the case of EWT, few researchers have evaluated VMD use for seizure EEG analysis [28–49 

30]. 50 

When processing EEG from ictal phenomena, features generated from the use of the aforementioned 51 
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decomposition methods are promising tools. In addition to their adaptive capabilities and ability to deal 52 

with nonlinear and non-stationary signals, extracted modes (or signal components) are compact around 53 

specific center frequencies and have well-behaved Hilbert transforms. This enables the extraction of 54 

features related to amplitude or bandwidth modulation, as well as instantaneous phase and amplitude. 55 

This work aims to compare these three decomposition methods for EEG signal seizure detection using a 56 

freely available database and a common methodology, by extracting the same features and using the same 57 

classifiers. So far, this comparison has been hampered not only by the small number of works using EWT 58 

and VMD, but also by the fact that, for seizure detection, EMD, VMD and EWT are evaluated in the 59 

literature using different sets of features, parameters and classifiers. In this work, results are also 60 

compared with features extracted from original non-decomposed signals. Expected results are 61 

performance improvements with the use of adaptive decomposition methods (EMD, EWT and VMD), but 62 

similar overall performances among them. 63 

The rest of this work is organized into three sections. In Section 2, the used methodology is 64 

presented, containing the used data, decomposition methods, description of extracted features and 65 

classification problem. In Section 3, the obtained results are presented and discussed. Concluding remarks 66 

are left for the last section. 67 

Methods 68 

Dataset 69 

The EEG data used in this work was obtained from a public online database offered by the University 70 

of Bonn. This dataset is divided into 5 subsets: Z, O, N, F, S (or A, B, C, D, E) [31]. Each subset contains 71 

100 temporal series with sampling frequency of 173.6 Hz and duration of 23.6 seconds. The Z and O 72 

subsets correspond to surface EGG recordings of 5 healthy volunteers, with eyes open and closed, 73 

respectively. The rest of the subsets belong to presurgical recordings of epileptic patients. Set S contains 74 

seizure activity, while sets F and N are from seizure-free intervals, with electrodes placed on the 75 

epileptogenic zone and opposite hippocampus, respectively.  76 
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This work deals with the most common classification problem, using three subsets: S, F and N, 77 

corresponding to Ictal, Interictal and Normal classes, respectively. Samples from each class and their 78 

regularized spectra, given by the Gaussian-filtered Fast Fourier Transform (FFT) of each signal are shown 79 

in Erro! Fonte de referência não encontrada..  80 

 81 

Fig 1. Example EEG signals of each class (Ictal, Interictal and Normal) and respective spectra 82 

The first stage of processing consists of applying a zero-phase 4
th

 order lowpass Butterworth filter, 83 

with cutoff frequency equal to 40 Hz. Next, signals are decomposed into N modes or IMFs, either by 84 

EMD, EWT or VMD, which are described in the following sections. 85 

Empirical Mode Decomposition 86 

The Empirical Mode Decomposition (EMD) is an interesting method due to its adaptability, not 87 

depending on assumptions as linearity or stationarity. This method aims to divide the analyzed signal into 88 

a series of Intrinsic Mode Functions (IMFs), where each IMF must satisfy to two relatively simple 89 

conditions: 90 

 91 
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I. The number of extrema must be equal or differ by at one (at most) in relation to the number 92 

of zero crossings.  93 

II. In every sample, the mean envelope value, defined by the local maxima and minima, must 94 

be equal to zero. 95 

The algorithm proposed by [10] for obtaining IMFs consists of the following steps: 96 

1) Given a temporal series x(t), find the local maxima and minima. 97 

2) Generate the envelopes emax and emin by cubic spline interpolation of maxima and minima, 98 

respectively. 99 

3) Calculate the mean of the envelopes,                            100 

4) Subtract the value found previously from the:                . If h(t) satisfies the 101 

conditions given previously for an IMF, an IMF            is found. 102 

5) A new residue r is generated:                . Repeat steps 1 to 4, applied to the 103 

residue r, in order to find the remaining IMFs. The process halts when it is no longer 104 

possible to compute an IMF from a residue, which is then defined as a final residue rM. 105 

The signal is then decomposed into a determined number of IMFs ci(t), plus another residue rM, and 106 

represented by (1), 107 

        ∑      

 

   

     (1)  

where N is the total number of IMFs found. 108 

Unlike methods such as the Discrete Wavelet Transform, which extracts low frequencies (or 109 

approximations) first, and detail levels (corresponding to higher frequencies) later, the first modes 110 

isolated by EMD correspond to high frequencies of the signal, then moving progressively to slower 111 

components.  112 

The pyEMD Python package [32] was used for the implementation of EMD in this work.  113 

Empirical Wavelet Transform 114 

As in EMD, EWT method aims to extract the oscillatory amplitude (AM) and frequency (FM) 115 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691055doi: bioRxiv preprint 

https://doi.org/10.1101/691055
http://creativecommons.org/licenses/by-nd/4.0/


  

 

6 

 

components of a signal, considering these as having compact Fourier support. Unlike traditional wavelet 116 

transforms, which use predefined filter bank structures, EWT defines the supports of the filters in 117 

accordance with the spectral distribution of the signal, in a fully adaptive way. Some considerations are 118 

made for analysis: (1) the signal must be real valued, due to the need for symmetry, and (2) a normalized 119 

frequency axis with 2π periodicity is considered, but analysis is restricted to [0, π], due to Shannon's 120 

sampling criterion. 121 

A number of modes N is defined a priori, determining how many segments the spectrum is 122 

partitioned in the range [0, π]. Among the N+1 frequency limits to be determined, two are already 123 

predefined (ω0 and ωN), corresponding to frequencies of 0 and π, respectively. The remaining N-1 limits 124 

are set according to the distribution of the signal’s frequency spectrum: the N-1 local maxima are found, 125 

and the limits ωn (n = 1,2, .. N-1) are defined as midpoints between two consecutive maxima. In this 126 

work, maxima were detected on the smoothed spectrum that is obtained by applying a Gaussian filter 127 

(filter length = 25, σ = 5) on the Fast Fourier Transform of each signal. The segmentation of a signal 128 

spectrum into 5 Modes is given in Erro! Fonte de referência não encontrada..  129 

 130 

Fig 2. Spectral segmentation of ictal EEG into 5 modes 131 

 132 
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With limits ωn defined, the segments Λn= [ωn-1, ωn] fill the interval [0, π]. The limits of each segment 133 

are characterized by a transition period centered at the respective ωn, with width equal to 2τn. Each 134 

segment is associated to a filter (lowpass for the ω0, bandpass for the rest), the construction of which is 135 

related to Littlewood-Paley and Meyer Wavelets [33]. Thus, an empirical scale function       and an 136 

Empirical Wavelet       are defined. These are constructed in such a way that a Tight Frame is 137 

obtained. Further details on the construction of such functions are given in [18]. 138 

With the conditions for building a Tight Frame satisfied, the EWT is defined similarly as the 139 

traditional Wavelet Transform, with details given by the inner product of the Wavelet function with the 140 

signal, and the approximation equal to the inner product of the signal with the scaling function. 141 

Based on Jérôme Gilles’ MATLAB toolbox [34], a Python package of EWT (ewtpy) was developed 142 

for this work and is available at https://pypi.org/project/ewtpy/ and at https://github.com/vrcarva/ewtpy. 143 

Variational mode decomposition 144 

In the Variational mode decomposition, the number of modes is predefined. Initially, the method 145 

assumes each mode k as having compact bandwidth in the Fourier spectrum, with a respective central 146 

frequency   . For each mode, a unilateral frequency spectrum is obtained and shifted to baseband 147 

according to its estimated central frequency. The bandwidth is then assessed by the H
1
-norm Gaussian 148 

smoothness of the demodulated signal, with the optimization problem iteratively updating each mode in 149 

the frequency domain. The complete constrained variational optimization problem is available in [27]. 150 

In comparison with EMD, VMD performed better in tests dealing with tone detection and separation, 151 

and noise robustness [27]. And although its use for long-time EEG signals suffers from caveats due to 152 

non-stationarity, the use of VMD in this work is motivated by the relatively short duration of the EEG 153 

signals from the used Database, and the focus on classification rather than exact mode decomposition and 154 

reconstruction. 155 

A Python package, based on the original MATLAB toolbox [35], was developed for this work and 156 

made available at https://pypi.org/project/vmdpy/ and at https://github.com/vrcarva/vmdpy. These can be 157 

readily installed with pip (pip install vmdpy and pip install ewtpy). 158 
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Hilbert Transform and Analytic signal 159 

The presented decomposition methods have the interesting property of yielding modes/IMFs with 160 

“well-behaved” Hilbert transforms [10,27], from which features as instantaneous phase, frequency or 161 

envelope can be extracted. The analytic signal of each mode/IMF is given by equation (2). 162 

                                 (2)  

where xh(t) is the Hilbert transform of x(t), 163 

           
 

  
      (3) 

and the amplitude and phase are defined as: 164 

     √        
         (4) 

            (
    

     
)     (5) 

The instantaneous frequency of a given IMF can be calculated from its analytic signal with: 165 

     
     

  
      (6) 

By dividing a signal into a given number of modes/IMFs, features related to their respective analytic 166 

signals and spectra can be extracted.  167 

Feature extraction 168 

Modes given by the three aforementioned methods (EMD, EWT and VMD) may be considered as 169 

amplitude and frequency modulated signals. Thus, feature extraction is made according to properties of 170 

the spectrum of each mode, with a similar approach used by [36] and [15]. 171 

The first feature extracted is the Spectral Energy (SE), given by Equation 7. 172 

   
 

 
∑   

  
 

   

         (7) 

where N is the total number of spectral coefficients, and     is the mode PSD estimated by Welch’s 173 

method [37]. The second feature is the Spectral Entropy (SEnt), shown in Equation 8. 174 
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      ∑ ̅  

  
 

   

      [ ̅     ]     (8) 

 ̅   is the normalized PSD. The following three features are related by the main frequency 175 

component of the respective mode. After determining the global maximum of    , the corresponding 176 

magnitude is defined as the Spectral Peak (SP), as well as the associated frequency (f), defining the 3
rd

 177 

and 4
th

 features. The following feature is the spectral centroid (SC) of the respective mode, defined in 178 

Equation 9: 179 

   
∑         

  
 
   

∑     
  
 
   

      (9) 

where f is the frequency bin, and ω(f) and M(f) are respectively, the central frequency and magnitude of 180 

the PSD of bin f. The last two features are the AM and FM bandwidths, defined by Equations 10 and 11 181 

[38]: 182 

  
   

 

 
∫(

     

  
)

 

       (10) 

     
 

 
∫(

     

  
 〈 〉)

 

            (11) 

where A is the amplitude of the analytic signal, E is the Energy and 〈ω〉 is the center frequency of the 183 

current mode, given by Equation 12. 184 

〈 〉  
 

 
∫

     

  
            (12) 

Time-domain features are also extracted from each mode: Hjorth parameters [39] and statistical 185 

moments.  186 

Hjorth Mobility is related to the mean frequency of the signal and proportional to the variance of its 187 

spectrum, while Hjorth Complexity is an estimate of the signals’ bandwidth [40]. These are defined by: 188 

        √
   (

     
  

)

   (    )
     (13) 
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   (

     
  

)

         
      (14) 

where x(t) is the current signal component, and Var() is the variance.  189 

The Skewness is related to the signal distribution’s asymmetry, and is given by the following 190 

equation: 191 

       *(
      

 
)

 

+     (15) 

The standard deviation of x(t) is represented by σ, and its mean by μ. The Kurtosis is related to the 192 

tails of the distribution yielded by the signal and is given by. 193 

       *(
      

 
)

 

+     (16) 

Feature selection and classification 194 

For feature selection and classification algorithms, functions from scikit-learn package [41] were 195 

used. 196 

Since the number of extracted features of each signal is relatively large, and not every feature is 197 

relevant for class discrimination, there is a need for a feature selection or ranking method. In this work, 15 198 

features were selected according to the SVM Recursive Feature Elimination (RFE) [42]. Afterwards, 199 

different classification methods were evaluated: k-nearest neighbors (KNN) [43], Linear and Radial Basis 200 

Function (RBF) Support Vector Machines (SVM) [44], Gaussian process classification (GPC) based on 201 

Laplace approximation [45] and a Multi-layer Perceptron (MLP) [46]. 202 

In order to avoid data overfitting, 5-fold cross-validation was used for the classification algorithms, 203 

with 70% of samples used for Training, and 30% for testing. For performance evaluation, four common 204 

measures were employed; Accuracy (ACC), Specificity (SPEC), Sensitivity (SEN) and Area Under the 205 

Receiver Operating Characteristic (ROC) curve (AUC). The last three measures are calculated by 206 

choosing the ictal class as positive. 207 
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Results and discussion 208 

All scripts used in this work are available online at https://github.com/vrcarva/carvalho-etal-2019. 209 

Fig 3 illustrates the decomposition of a seizure EEG by EMD, EWT and VMD. Fig S1, and Fig S2 210 

show this for inter-ictal and normal signals, respectively.  211 

 212 

Fig 3. Decomposition of ictal EEG. (A) Original non-decomposed signal. (B) First six extracted 213 

IMFs with EMD. (C) 6 components extracted with EWT. (D) 5 components extracted with VMD. 214 

Samples of each class were decomposed by EMD, EWT or VMD, into N (4, 5, 6 and 7) Modes, 215 

followed by the extraction of the 11 features of each one, thus resulting in N*11 features for each sample. 216 

The SVM-RFE algorithm then selected 15 of these features. RFE was not applied for the “control” (the 217 

non-decomposed signal), which results in 11 features for each sample. Afterwards, different classifiers 218 

are trained and tested, resulting in performance evaluation metrics. Ten iterations of training/testing were 219 

accomplished, resulting in mean ± standard deviation for each performance parameter. The best results 220 

for each classifier applied to each decomposition method are shown in Table 1.      221 

                   222 
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Table 1: Classification results of different decomposition (EMD, EWT, VMD 223 
and original signal) and classification methods. 224 

 225 

Best-case results are similar among all three decomposition methods, with slight superior values for 226 

EMD and VMD. RBF SVM yielded the best performance, with ACC of 97.5%, 96.7% and 98.2% for 227 

EMD, EWT and VMD, respectively. These results are in accordance with the literature, which has 228 

accuracy values varying from 90% in [47] to 99,7% in [48]. VMD and autoregression (AR) based 229 

quadratic feature extraction with a random forest classifier was used in [29], resulting in up to 96.4% 230 

ACC. Random forests with VMD were also used in [28], that combined with semantic feature extraction 231 

resulted in a maximum accuracy of 94.1%. Entropy measures in [49] achieved 92.8% and 91.0% ACC. 232 

Broader summaries of different methods and respective performance measures are given in [50] and in 233 

[36]. The latter uses EMD and similar features of the ones used in this work, achieving 95.7% ACC, 98% 234 

SEN and 97% SPEC. 235 

The methods presented in this work aim to decompose a signal into AM-FM components, and extract 236 

features of each one, which may differentiate “normal” signals from pathologic ones. This has promising 237 

METHOD MODES MEASURE KNN LINEAR SVM RBF SVM GPC MLP 

EMD 6 

AUC (%) 99.00±0.28 99.25±0.22 99.63±0.11 99.72±0.08 99.55±0.14 

ACC (%) 97.10±0.63 95.90±0.33 97.53±0.22 97.0±0.58 96.80±0.34 

SEN (%) 94.20±1.60 94.10±0.83 98.60±0.49 96.2±0.98 95.10±0.94 

SPEC (%) 99.05±0.35 97.30±0.24 97.50±0.22 97.9±0.58 98.15±0.23 

EWT 6 

AUC (%) 96.97±0.61 99.27±0.08 99.35±0.09 99.32±0.17 99.43±0.10 

ACC (%) 93.80±0.93 95.77±0.42 96.60±0.70 95.93±0.51 96.70±0.38 

SEN (%) 92.60±1.36 94.50±1.02 96.00±0.63 95.6±1.20 95.80±1.08 

SPEC (%) 94.40±1.04 96.45±0.35 97.20±0.40 96.55±0.47 97.60±0.44 

VMD 5 

AUC (%) 98.17±0.31 99.25±0.18 99.27±0.11 99.49±0.19 99.41±0.10 

ACC (%) 96.83±0.37 96.90±0.40 98.20±0.31 97.50±0.50 97.67±0.42 

SEN (%) 95.90±1.30 95.80±0.87 97.40±0.49 96.60±0.80 95.70±0.64 

SPEC (%) 97.70±0.46 97.85±0.45 98.65±0.39 98.45±0.57 98.85±0.23 

- 1 

AUC (%) 97.31±0.51 96.93±0.31 98.24±0.29 98.36±0.31 98.12±0.28 

ACC (%) 93.27±0.79 89.87±0.65 92.60±0.42 95.27±0.73 93.27±0.51 

SEN (%) 91.10±1.76 89.00±0.63 88.70±1.55 93.60±1.20 89.70±0.90 

SPEC (%) 94.85±1.10 90.80±0.81 95.05±0.52 96.10±0.66 95.50±0.84 
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applications for the identification of epileptogenic systems and for identifying interictal-ictal state 238 

transitions. The feature extraction capabilities can be further explored if each mode was considered as 239 

having “well behaved” Hilbert Transforms, which enables the analysis of phase relationships between 240 

different modes of the same signal or between different brain regions, if multichannel data is available. 241 

Since synchronization is believed to play an important role for ictogenesis, these methods may further 242 

assist on unveiling the mechanisms of seizure generation and devising markers to predict transitions to 243 

ictal states. 244 

Although the results are positive, the application of the presented methods for epileptic seizure 245 

detection and classification must face a series of challenges. The Bonn University EEG database is useful 246 

for preliminary algorithm evaluation and comparison with similar works. However, considering that the 247 

data consists of selected short segments obtained in controlled conditions, it has light requirements in 248 

terms of generalization and robustness in comparison with what would be found in a clinical 249 

environment. Nevertheless, it is an important evaluation step that should be considered for seizure 250 

detection and prediction methods. 251 

Conclusion 252 

The development of feature extraction and classification methods is a key step both for understanding 253 

of the operating mechanisms of epilepsy, as for clinical analysis, including possible applications for 254 

seizure detection and prediction devices.  255 

This work has shown that EWT and VMD, relatively new signal decomposition methods, may be 256 

used to extract relevant features for classifying and detecting EEG signals of epileptic phenomena. 257 

Although EMD and VMD presented the best performance results, the trade-off falls on higher 258 

computational power, which may compromise its application for real-time processing. The EWT method, 259 

in spite of its slightly worse performance, may be preferable if the context of use that requires faster 260 

processing. 261 

The use of adaptive decomposition methods is a promising approach due to their ability to separate 262 

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691055doi: bioRxiv preprint 

https://doi.org/10.1101/691055
http://creativecommons.org/licenses/by-nd/4.0/


  

 

14 

 

different AM-FM components that are altered in the presence of seizures (and possibly on periods 263 

preceding these events). This would facilitate the extraction of features related to these events, increasing 264 

the performance of classification algorithms. However, the extraction of the same features from of non-265 

decomposed signal still results in fairly accurate classifiers. Thus, in contexts with the need of real time 266 

processing and limited computational power, the use of these decomposition methods might not be 267 

needed for detecting seizures in cases with less strict performance requirements.  268 

Another goal of this work was to provide a Python code of these signal decomposition methods for 269 

the community. Python is a fast-growing programming language and is currently the third most popular 270 

programming language in the world [51] and with widespread applications in neuroscience [52]. The 271 

distribution of these packages could further encourage the use of open source programming languages for 272 

works involving these specific signal processing methods.  273 
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Fig S1. Decomposition of inter-ictal EEG. (A) Original non-decomposed signal. (B) First six extracted IMFs with EMD. 

(C) 6 components extracted with EWT. (D) 5 components extracted with VMD. 

 

Fig S2. Decomposition of normal EEG. (A) Original non-decomposed signal. (B) First six extracted IMFs with EMD. (C) 

6 components extracted with EWT. (D) 5 components extracted with VMD. 
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