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Abstract

Hand gesture recognition using Surface Electromyography (sEMG) has
been one of the most efficient motion analysis techniques in human-computer
interaction in the last few decades. In particular, multichannel sSEMG tech-
niques have achieved stable performance in hand gesture recognition. How-
ever, the general solution of collecting and labeling large data manually leads
to time-consuming implementation. A novel learning method is therefore
needed to facilitate efficient data collection and preprocessing. In this paper,
a novel autonomous learning framework is proposed to integrate the benefits
of both depth vision and EMG signals, which automatically label the class of
collected EMG data using depth information. It then utilizes a multiple layer
neural network (MNN) classifier to achieve real-time recognition of the hand
gestures using only the sEMG. The overall framework is demonstrated in an
augmented reality application by the recognition of ten hand gestures using
the Myo armband and an HTC VIVE PRO. The results show prominent
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performance by introducing depth information for real-time data labeling.

Keywords: Depth vision, hands gesture recognition, machine learning,
clustering, classification.

1. Introduction

Hand gesture is one of the most elementary and meaningful forms of
human communication [I]. As a result, hand gesture recognition within
Human-Computer Interaction (HCI) has received an increasing amount of
attention in a wide range of applications, e.g. augmented reality [2], robot-
manipulation [3, 4] rehabilitation training [5, [6] and sign language recogni-
tion [7]. Thanks to advances in computer vision technology, low-cost and
innovative commercial off-the-shelf depth vision devices, such as Microsoft
Kinect and Leap Motion Controller (LMC), have dramatically increased the
speed of touchless interaction applications [§].

In recent years, touchless interaction in medical applications has increased
since it provides more intuitive manipulation and sterile interaction compared
to methods based on physical interaction with mouse and keyboard, while
at the same time, offering a lower-cost solution for robot manipulation than
other commercialized teleoperation devices. In [9], the touchless teleoper-
ation of the RAVEN-II surgical robot is performed using LMC. In clinical
applications, hand gestures are mostly used for the manipulation of medical
image data both intraoperatively and preoperatively [10, 11, 12]. In [13],
Touchless Radiology Imaging Control System (TRICS) software developed
using Microsoft Kinect in order to control the image during interventional
radiology procedures. Twenty-nine radiologists participated in the system
evaluation survey, and the majority (69%) of them said that the proposed
system could be useful for interventional radiology. In [14], a set of gestures
has been introduced in order to control the projection of 2D CT scans and
3D segmentation of medical images on radiation shield during Computed
Tomography (CT) by using LMC. All of these cited works show that hand
gesture integration in operating rooms and telerobotic surgeries is feasible,
but performance issues still exist when they are compared to clinically es-
tablished methods [15] [16, [17].

Beyond the well-discussed computer vision supported hand gesture recog-
nition algorithms, there is also a great potential in Electromyography (EMG)
signals, which represents the superimposed electrical activity of muscle fibers



[18, 19]. Particularly in the field of medical robots, EMG signals are fre-
quently employed as control signals for robotic control |20 21], 22], which
advances the intuitive interaction between human and surgical robots [23], 24]
25]. Numerous hand recognition methods using EMG signals have been pro-
posed over the last few decades [20]. tr-orderto-control-a-bionie-manipulator;
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ertheless, the prepro-
cessing of the collection and labeling of large manual data imposes a heavy
work burden and results in time-consuming implementations. Moreover,
pure sEMG signals are not adequate for practical applications due to the
its drawbacks on low spatial resolution caused by muscle crosstalk [29]. For
this purpose, in the last decade, a new kind of sensor using near-infrared
light was developed to outperform sEMG approaches for detecting muscle
activities [30]. More recently, myoelectrically-operated radio frequency iden-
tification (RFID) introduced to control prosthetic hands by overcoming chal-
lenges of sSEMG [31]. Another solution to deal with drawbacks of SEMG came
from [32], by fusing webcam and a deep learning-based EMG acquisition to
control multi-functional prosthetic hands.

Lastly, contrary to the poor spatial resolution of the SEMG signals, an
ultrasound sensing with a sub-millimeter spatial resolution [B3] appears. To
this end, a variety of studies have conducted high-precision gesture recogni-
tion with ultrasound sensing methodologies. In the [B4], ten different hand
gestures are classified with the more than 98% accuracy thanks to the use
of the wearable ultrasonographic device by employing image processing sup-
ported neural networks. More recent research has been done by the [B3]. In
this research, the linear discriminant analysis (LDA) classifier compared to
the support vector (SVM) classifier, where the LDA classifier obtained offline
accuracy of approximately 98.83%, and the SVM classifier resulted in offline
accuracy of 98.41%.

In conclusion, the accuracy of computer vision is highly dependent on
the quality of the captured images, which is considerably more challenging
to get in unstructured environment and dark conditions. On the other hand,
most hand gesture recognition methods require a significant number of man-
ual data preprocessing, including gesture segmentation and labeling, which
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makes full automation difficult [36]. Therefore, an optimal solution is to
combine depth vision and EMG in hand gesture recognition.

In this paper, a novel autonomous learning framework is proposed to au-
tomatically label the class of EMG data collected using depth vision in order
to integrate the benefits of both depth vision and the EMG signal. Enhanced
accuracy is tested in VR application for validation. For this purpose, firstly
the depth vision acquired by HTC VIVE PRO is used to recognize hand
gestures and to label EMG signals using a novel clustering algorithm. In
addition, a multi-layer neural network (MNN) classifier is proposed to pre-
dict hand gestures. The results of the MNN classification are compared with
the single neural network (SNN), the LDA and the SVM. Ultimately, the
framework is demonstrated for the recognition of ten hand gestures using
Myo Armband with the HTC VIVE PRO (3D glass). The visual output of
hand posture provided to subjects using 3D glass in augmented reality mode.
The novel contributions of this work include:

e A novel autonomous learning framework is presented to integrate the
benefits of both depth vision and EMG signals.

e Combination of depth information and sEMG with HSOM and MNN
adopted to achieve better accuracy for the designed VR application.

e A hand gesture recognition demonstration is implemented to verify the
effectiveness of the proposed framework.

2. Related works

Over the last decade, a significant amount of research has been con-
ducted using deep learning approaches to hand gesture recognition through
the adoption of EMG or depth vision data [37, 38]. In order to control
a bionic manipulator, a hand gesture recognition system by using the k-
nearest-neighbors (KNN) algorithm as a classifier for the analysis of EMG
signals is proposed in [27]. A two-channel EMG system that uses the SVM
as a classifier is presented in [39] for EMG-based gesture recognition. Kinect
depth sensor-based hand gesture recognition as a sign language is developed
using the SVM classifier [40]. However, the SVM algorithm requires a great
deal of training and can not incorporate domain knowledge [41]. A gesture
detection and recognition system by decoding EMG is presented with four



time-domain features and an LDA classifier [42]. The hand gesture recogni-
tion for the real-time interface of the LDA as a classifier is designed in [43].
Although LDA excels in linear data, a small number of categorical variables
are usually not practical [44].

The ANN methodology, as one of the most popular classification algo-
rithms, has been used for various hand gesture recognition applications [45].
A number of interconnected parallel processing neurons are formed by the
ANN. Each neuron receives and processes input data, and then presents
the output data separately. ANN’s functions can be estimated to depend
on a large amount of input data. An artificial neural network classifier has
been presented for depth information from the Kinect camera in hand gesture
recognition [46]. An ANN-based hand gesture recognition system is proposed
to process depth information applying a self co-articulated set of features [47].

A real-time hand gesture recognition model, using the ANN network to train
EMG signals, is proposed in [2§]. In this research, EMG and IMU signals are
combined to recognize hand gestures in order to implement hands-free navi-
gation and free-hand writing in the air. However, the aforementioned neural
network methods do not realize the combined advantages of multiple neural
networks. MNN primarily consists of unique neural networks trained with
different initial weights and/or training data [48]. The structure of multiple
neural networks is presented to improve the overall predictive performance
of the system.

However, none of the above systems has achieved the combination of EMG
signals and depth information. Moreover, the preprocessing and labeling
of such systems is carried out manually, and therefore time-consuming. In
order to solve these problems, we proposed a novel autonomous learning
framework to integrate the benefits of both depth vision and EMG signal,
which automatically labels the class of the collected EMG data using depth
information.

Based on our previous experiences in robot-assisted minimally invasive
surgery (RAMIS) [49] 3], the graphical user interface developed in our previ-
ous work [50], is improved for augmented reality (AR) in RAMIS to provide
advanced visual feedback in surgical applications. In the visualization soft-
ware, hand postures are overlaid in AR on real-time 3D endoscope images
with scenes of painted silicone replicas of human organs.



Figure 1: Myo armband in the forearm, EMG signal and Chinese number hand gestures
to recognize.

3. Materials and Methods

3.1. Depth Information based Labeling

The captured depth data is used to automatically label, based on the
hierarchical self-organizing map (HSOM). Three layers of the SOM model is
revealed in this paper. Figure [2| displays the data stream of the self-labeling
procedure. After collecting the raw depth vision data from the developed
human-machine interactive system, there is a need to select useful infor-
mation for accuracy enhancement. Therefore, we choose the regions of the
fingertips and palm, namely V = [V4; V?]T V4 € R VP € R, Calibration
is required for the data of fingertips with the palm due to the positions and
directions that are easily affected by the interference of shaking and move-
ments. This procedure will be introduced in Section Additionally, we
adopt the wavelet denoising approach to remove the high-frequency white
noise with the adaptive thresholding [51] model, as shown here:

o

Gln] = (V% ¢)[La) = Y VI[jlg[La —i] (1)

j==o0

As the discrete mother wavelet ¢, it can decompose the depth signals into
groups of coefficients at different frequency levels. Hence, the high frequency
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Figure 2: The flow chart of self-labeling using the three layers HSOM.

composition will be removed and the rest of the compositions are transformed
by the inverse discrete wavelet transform (IDWT) method.

To label the divided depth data segments, namely v;,s = 1,2,--- , M, we
designed a three layer HSOM clustering approach [52]. The SOM algorithm
is good for large data sets, and it does not require vast amounts of memory,
which results in its high performance [52]. As it is shown in Figure the first
step is to split the gestures into two groups, one includes gesture four and
five, and the other consists of all of the rest of the gestures. To enhance the
clustering accuracy, we select the data from the fifth finger, i.e., Vs = V& V7.
The second step aims to divide gestures four and five, so we only choose
the features from the first finger, i.e., Vi = {V¢, V/}. Due to the third step
should consider separating all of the other gestures, we use all of the depth
data in the last step, i.e., V = {V4 VP}.

In this paper, the basic SOM model is the original, stepwise recursive
learning map [53]. This method will assume other real vectors z,, € R,
which represent the successively computed approximations of model z,. p
is associated with z, as the grid node in the spatial index. And a SOM



procedure is used to acquire the ordered values by

Zgi1p = Zap T Je(ap) (Vg — Xq] (2)

. fe(qp) is the distance function which aims to get the smallest Euclidean
distance from v, at a particular node ¢ (winner) as follows

¢ = argmin {[|v; — 2|} (3)
p
The SOM model will be modified continuously by this recursive step for
obtaining the best matching model. In order to increase the computational
speed, feqp) is chosen, with its the mathematical form shown here:

fe(ap) = g - €xp [_%1 (4)

Where D(c, j) is the square of the geometric distance between the p in the
grid and nodes ¢. «; and o; are different monotonically decreasing scalar
functions.

The adopted SOM model can reduce to the adaptive k-means algorithm
when the neighborhood kernel value of the best matching unit (BMU) is one
or zero [54]. The SOM model has proved to be a better clustering method
than k-means and k-medoids approaches because it adopts the competitive
learning mechanism (e.g., backpropagation with gradient descent) to label
the classes [55].

3.2. Calibration of the Hand and the HTC VIVE PRO

The collected depth data from the hand should be calibrated by rotating
the coordinate system from the HTC VIVE PRO RF';, to the palm RFp,
which can be described in Figure

This operation can solve the problem of the impact of the palm, which
results in multiple hand gestures with the same fingertip movement in dif-
ferent palm frames. The dynamically moving reference frame is attached to
the palm frame RF'y. The transformation matrix Ty is applied to transfer
ground reference frame to the palm frame and is defined as follows:

Ry Ry -Ry "Py

L
Tu=1"0"09 0 1 (5)



Figure 3: The coordinate transformation from HTC VIVE PRO controller to palm frame.

At time ¢, the angle of yaw «, pitch £, and roll v will be rotated counter-
clockwise to the palm frame. The transformation operators R%, Rf, and R}
can be calculated by

R(a.B,7) = R - Ry, - R} =
cosacosf cosasinfsiny —sinacosy cosasin [ cosy + sinasiny
sinacos B sinasin fsiny + cosacosy sinasin B cosy — cos asin vy
—sinf cos 3 siny cos 3 cosy
(6)
Therefore, the coordinate system of the palm can be fixed by the designed
dynamic frame between the hand and the HTC VIVE PRO. The direction
and position of the five fingertips are computed according to the reference
frame of the hand.

3.83. EMG-based Modeling

This work only adopts the 8D EMG signals to build the hand gesture
recognition classifier. However, the EMG signal is easily affected by several
types of noises, such as inherent noise in electronic equipment [56], ambient
noise [57], motion artifact [58], Inherent instability of signal [59] and base-
line shifts [60]. A series of signal preprocessing methods are used to remove
noise and expand the raw sEMG signals, such as rectification and normaliza-
tion. Recently, the multi-layers ANN approach has become the most popular
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method for modeling complex classification problems and accuracy enhance-
ment [61]. Hence, we adopt a two layer NN method to build the classifier by
extracting several useful features.

3.8.1. Signal Preprocessing and Feature Extraction
The captured eight channels of EMG signals (S € R®) should be pro-
cessed by expanding the dimensions for acquiring more information. Figure ]
illustrates the procedure of an MNN classifier building. The Myo armband
(Thalmic Labs Inc.) is worn on the user’s forearm, which can provide eight
dimensions (8D) EMG signals (S). To enhance the classification accuracy,
we expand the raw EMG signals as follows:
S—S+
— @

, which includes two operations of rectification |S| and normalization N(S).

S =[S;|SEN(9)]T = [S51];

O T
Myo EMG Signals Processed EMG Feature Space ne_wo
Armband S §=1{5I1S,M(S)} F~(5)
Raw l
m - Extrema, Average Three Four
Standard Deviation
W Principal Component Variances
Cha.1 g o FS Five Six
Rectification
A e Labels 7 —¢ Ei
“I' Seven Eight
o Predict
ooy Normalization Q -
./ "%\ : —) Nine Ten
Cha.5 R o e I
e Multi-layer
l " Ao ~,-»;~ Neural Network

Figure 4: The EMG-based modeling procedure using MNN leanring.

As it is described in Section the processed EMG signals will be di-
vided into M segments as §;,¢ = 1,2,--- , M. Three types of features will
be extracted for establishing the ensemble classifier, which is described as
follows:

Extrema: meaning the maximum (¢,) and minimum (¢3). The extrema
can identify the strength of the spatial region. As the minimum of the recti-
fied EMG signal is always zero, it will not be adopted in the features space.
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Vo = max($;)

g = min(s;)

Standard Deviation (0): The amount of variation can find the range and
level of muscle activity.

(8)

I WU
0= M—l;(Si_Si> (9)

Where s; denotes the average.
Average (\): the mean of the rectified EMG signal provides the reference
information of the average level of muscle activity.

il

A=5i (10)

Principal component variances (k): it is the eigenvalues of the covari-
ance matrix of §;, which can be computed by principal component analysis
(PCA) [62]. PCA is the most popular tool for evaluating the visualized
genetic distance and relatedness between populations [63].

The sEMG segment s; can be dismantled into three components by sin-
gular value decomposition as

Where U and @) are the matrices of left singular vectors and right singular
vectors, respectively, the A is the diagonal matrix of singular values. As a
column vector, the principal component variances can be calculated by the
eigenvalues of the covariance matrix of §;, which is a 1 x 8 vector in this
paper.

In the past few decades, the artificial neural network (ANN) has become
the most popular method for solving complex classification problems [64].
Although the capability of single layer ANN has proved to establish any
complex model between high dimensions inputs and classes, the drawbacks
of overfitting and underfitting of NN always limit the performance of the
built model [65]. Therefore, we adopt the MNN to train the classifier, which
consists of two feed-forward layers and a competitive layer (see Figure [5).
The mapping networks in the feed-forward layer can be defined as:
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Figure 5: The schematic diagram of designed two layers feed-forward neural network
(FFNN) for classification.

K N M
g = bo+wozq)k <Zzwn,mk7tmk _'_bmk) (12>
k=1 n=1 m=1

Where @, is the Broyden—Fletcher-Goldfarb—Shanno (BFGS) quasi-newton
activation function [66]. All of the w and b are the weights and bias in
the network, and ~;"* is the outputs of jth neuron. The competitive layer
classifies the input vectors into a given number of classes by the similarity
between vectors.

3.4. Autonomous Learning Framework

Figure [6] illustrates the proposed autonomous learning framework. In
the human-machine interface, 8D sEMG signals and 30D depth vision data
are synchronously captured from the HTC VIVE PRO and Myo Armband
devices. Then, they will be saved into the computer. After splitting the
selected depth data V = [V VP]T into M segments, i.e., v;,i =1,2,--- , M,
the HSOM clustering approach can label these segments hierarchically. Even
if the obtained classes y;,7 = 1,2,--- , M may not match the true gestures
y, they can be considered as the ground truth. The following experiments
can prove this conclusion. Similarly, the acquired sEMG signals S will be
divided into M segment with the same detection length L;, namely s;,7 =
1,2,---, M. The approaches described above will calculate the features space
(F%). The designed two layers neural network model can be trained by
combining the inputs F% and the labels y*, namely § = f(F*%, w,b). In real-
time demonstration, this system can predict hand gestures only by adopting
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Figure 6: The pipeline of autonomous learning framework to enhance sEMG-based hand
gesture recognition using depth information.
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sEMG signals.

3.5. Hardware Description

In line with the proposed algorithm, multi-sensor processing and data
analysis done with efficient, communicating multi-computers, as shown in
Figure [7] sEMG data is collected from Myo Armband and hand is detected
from depth vision feature of HTC VIVE PRO. ROSﬂ with User Datagram
Protocol (UDP) used to transmit data between computers. Synchronous
data transfer ensured by using timestamps at the ROS messages. The first
computer has an i7-4720HQ CPU 2.60 GHz processor and 8 GB RAM, and
collects the EMG data from the Myo Armband and the second computer has
an i7-7700HQ 2.8 GHz CPU, 8 GB GeForce 1070 GPU and 16 GB RAM,
and gathers depth vision data from the HTC VIVE PRO and provides AR
visualization software to the user to visualize their hands’ on the surgical
scene acquired by the endoscope with painted silicone replicas of organs.
The sampling rate is set at 30Hz for both devices.

?w

Computer Myo Armband

|

VAT O AT RN [ p— ] Computer Server
B L L \ (Big Data)
N, N =

Signal Proccessing

Computer HTC VIVE PRO

Figure 7: Overview of hardware description

Finally, data is processed, and gestures recognized by the computer acting
as a server with an i9-9900K 3.6 GHz CPU, 8 GB Quadro M5000 GPU and
64 GB of RAM. The sensors of the proposed hand gesture recognition system
are listed as follows:

2Robot Operating System, http://www.ros.org/
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e The HTC VIVE PRO (HTC, New Taipei, Taiwan) is used to acquire
depth vision and provides 3D AR vision on demonstrated minimally
invasive surgery for the user.

e The MYO armband (Thalmic Labs, Kitchener, ON, Canada) transmits
the raw EMG information over a Bluetooth Smart connection with 8
Channels (200 Hz).

4. Experimental Protocol and Results

The proposed framework consists of two main stages. The first stage
is HSOM clustering for automatic labeling of collected data by using only
depth vision. Labeled data (y}) is used as an input in the next step to
automate the system without requiring manual labeling. The second stage
is classification of sEMG-based data by using the MNN classifier. Hence,
a supervised learning strategy is adopted to test the accuracy of these two
models. We asked ten subjects (five females and five males, between the ages
of 20 and 35) to make the ten hand gestures with a fixed order from 1 to
10. They wore the Myo Gesture Control Armband is on their forearms, and
they made the gestures on the HTC VIVE PRO. Each gesture took at least
3 minutes. Finally, it has 5.4e* samples of both depth data and the sEMG
signals because the sampling frequency is 30Hz.

For evaluating the performance of a multiple class classification problem,
overall accuracy OA, Fl-measure (F1l-score) F, and receiver operating char-
acteristic (ROC) curve are the three typical metrics. Fl-measure considers
both the precision P and the recall R of the test to compute the score, which
can be computed by

TP TP

2x Px R 2X X
Fl — - 0 — ;:£+FP ;iJrFN (13>
+ TP+FP + TP+FN

Where TP, FP, and FN are real positive, false positive, and false negative,
respectively.

As a graphical plot, the ROC curve illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied.

4.1. Clustering Analyzing

The leave-one-out strategy is adopted to calculate the average of the
overall accuracy and Fl-score. Table [I| displays the comparison of over-
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all accuracy between HSOM with the other three popular clustering ap-
proaches, namely hierarchical k-medoids (Hk-medoids), hierarchical k-means
(Hk-means), and k-means. Both Hk-medoids and Hk-means use the same
three layers as the HSOM structure. The overall accuracy of HSOM is bet-
ter than the others, which proves that HSOM is good at processing high
dimension data streams.

Method HSOM Hk-medoids Hk-means k-means
Overall Accuracy (%) | 98.42+0.02 94.754+0.05 85.714+0.15 55.20 4 0.22

Table 1: The comparison of overall accuracy among HSOM, Hk-medoids, Hk-means, and
k-means methods.

Table [2] shows the computed Fl-score of each gesture for further verifi-
cation of the HSOM model’s ability. Although the third gesture cannot be
labeled well by HSOM, the average 90.22 is higher than that acquired by
other methods.

Fl-measure
Method i 2 3 1 5 6 7 B 9 10
HSOM 97.43 94.99 9022 99.90 9344 07.01 99.00 93.89 97.99 99.90
Hk-medoids | 96.38 94.25 80.80 99.90 92.78 06.26 99.00 92.54 96.00 99.34
Hk-means 80.22 92.11 86.90 90.33 9122 00.69 94.27 93.90 89.99 92.55
k-means 67.44 69.63 78.22 7446 69.99 73.28 76.33 7537 78.84 75.90

Table 2: The clustering accuracy of each subject using the designed hierarchical k-medoids
method

In view of the proposed depth vision guild hand gestures recognition
framework should label the gestures at first, the clustering accuracy will
affect the classification rate. In other words, it needs a higher clustering
accuracy to obtain labels which can be regarded as the ground truth results.
By comparing the designed HSOM approach with other clustering methods
(i.e., Hk-medoids, Hk-means and k-means), the HSOM not only acquire the
highest overall accuracy but also get the best results to label each gesture.
Hence, the HSOM model is the best choice to label the depth vision segments.

4.2. MNN Evaluation

Similarly, we use the leave-one-out strategy to compare the classification
performance of the MNN model with the other three machine learning ap-
proaches, i.e., single-layer neural network (SNN), SVM, and LDA classifiers.

16



Method MNN SNN SVM LDA
Overall Accuracy (%) | 81.72+0.04 80.35+0.06 79.36 £0.05 77.86 £ 0.06

Table 3: The comparison of overall accuracy among MNN, SVM, LDA, and linear method
classifiers.

——Class 1
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Class 10

True Positive Rate
True Positive Rate
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Figure 8: The comparison of ROC curves among MNN, SNN;, SVM, and LDA methods.
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Table |3| displays the overall comparison accuracy among the four methods.
The MNN model obtains the highest accuracy.

For further comparison of the different performance in each gesture clas-
sification, we draw the ROC curves using the four classifiers. Figure |8 shows
the comparison of the ten ROC curves obtained by each method. Even if the
MNN model is is comparatively better than the other three approaches, the
trend of the identification for each gesture is similar. For example, the first
gesture gets the worst classification result using all of the four models.

By observing the confusion matrix of the MNN classifier shown in Fig-
ure [9 high confusion rates of gestures one and nine easily detected. It is
because both the first and ninth hand gesture requires the use of the index
finger. As it is shown in Figure [4] the difference between these two gestures
is not apparent, which will decrease the accuracy. Also, we noticed that rela-
tively high confusion rates between Chinese gestures two and three is because
of the difficulties of making gesture three without opening the little finger
which was also common in similar studies [67].

Although the obtained classification accuracy of MNN classifier is higher
than the other approaches, it is only over 80% which is not enough to reach
a high quality for online prediction. The reason for this result is insufficient
sampling and the number of classes are too much to acquire a better accuracy.
However, the results of MNN (81.72%) is good enough to prove the ability
of MNN method to identify these ten gestures.

5. Conclusion and Future Work

A novel autonomous learning framework is proposed in this paper for
enhancing the sEMG-based hand gesture recognition. It adopts the depth
information to label the ten hand gestures automatically, which are captured
from the HTC VIVE PRO Controller. For robustness and reducing the
interference of hand movement, a dynamically moving reference frame is
designed to transfer the palm frame to the HTC VIVE PRO device. The
MNN method is used to build the classifier for accuracy enhancement, which
can acquire better accuracy than the other method. The proposed framework
can not only be utilized for hand gesture recognition using only sEMG signals
but also label the data based on depth data.

Although the proposed framework automatically achieves hand gesture
recognition, further research is needed to fully implement it in RAMIS. In
our future works, a 3D segmented preoperative model will be used for AR
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Figure 9: Confusion matrix of the MNN classifier.
navigation of surgeons, and hand gestures will manipulate it. Finally, hand
gesture-based teleoperation of a surgical robot will be performed in the fu-
ture.
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