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Abstract: Optical coherence tomography angiography (OCTA) is extensively used for visualizing retinal 

vasculature, including the foveal avascular zone (FAZ). Assessment of the FAZ is critical in the diagnosis 

and management of various retinal diseases. Accurately segmenting the FAZ in the deep retinal layer 

(dFAZ) is very challenging due to unclear capillary terminals. In this study, a customized encoder-

decoder deep learning network was used for dFAZ segmentation. Three-fold cross-validation was 

performed on a total of 80 subjects (63 healthy subjects and 17 diabetic retinopathy subjects). The 

proposed method obtained an average Dice of 0.86 and an average Hausdorff distance of 23.35. 

suggesting the dFAZ was accurately segmented. The proposed method is expected to realize good clinical 

application value by providing an objective and faster and spatially-quantitative preparation of dFAZ-

related investigations. 

Keywords: Deep learning; automatic segmentation; optical coherence tomography angiography; deep 

foveal avascular zone. 

1. Introduction 

The fovea, which supports the highest visual acuity, is a depression of the retinal surface approximately 

1 mm in diameter. The center of the fovea, which is termed the fovea centralis or foveola, has the highest 

cone density in the photoreceptor layer. It is generally centered within a small zone devoid of retinal 

blood vessels, known as the foveal avascular zone (FAZ) (J. M. Provis et al., 2013). The FAZ is 

surrounded by interconnected retinal capillary networks (Tick et al., 2011) and plays a critical role in the 

development of the foveal pit (Springer & Hendrickson, 2004). Classical histology studies suggest that 

there are two capillary networks (Jan M. Provis, 2001): the superficial network, which is formed in the 

nerve fiber layer and the ganglion cell layer, and the deep network lying in between the inner nuclear 
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layer and the outer plexiform layer. The deep capillary network is denser and more complex than the 

superficial (Hayreh, 2015).  Both fluorescein angiography (FA) (Marmor & Ravin, 2011; Mendis et al., 

2010) and optical coherence tomography angiography (OCTA) (Kuehlewein et al., 2015; Mammo et al., 

2015; Tan et al., 2015) support the visualization of the retinal capillary networks. However, FA requires 

invasive intravenous dye administration by clinicians and the imaging of the deep retinal capillary 

network is poor (Spaide et al., 2015a). OCTA is a more convenient, non-invasive technique to visualize 

both the superficial and deep retinal capillary networks (Spaide et al., 2015a).  

OCTA has been widely used to visualize the retinal vasculature of various retinal vascular pathologies, 

including but not limited to diabetic retinopathy (Dimitrova & Chihara, 2019; Enders et al., 2020; 

Matsunaga et al., 2015; Samara et al., 2017; Takase et al., 2015; Yoon et al., 2017), retinal vein occlusion 

(Coscas et al., 2016; Werner et al., 2019)  macular telangiectasia type 2 (Spaide et al., 2015b; Villegas 

& Kovach, 2017), non-infectious posterior uveitis (Waizel et al., 2018), choroidal melanoma (Y. F. Li et 

al., 2017), and X-linked retinoschisis (Romano et al., 2019). The size of the FAZ correlates with the 

condition of the vascular circulation surrounding the fovea, whereby an enlarged FAZ commonly 

indicates an ischemic condition in the fovea and may indicate visual acuity (Romano et al., 2019; Samara 

et al., 2017). Interestingly, pathological changes in the circulation tend to be more prominent in the deep 

(dFAZ) than the superficial vascular layer (sFAZ). Dimitrova et al (Dimitrova & Chihara, 2019) 

suggested that deep-vascular-layer alterations were most frequently present in patients with diabetic 

macular edema. Tang et al (F. Y. Tang et al., 2020; Fang Yao Tang et al., 2017) reported a more 

pronounced association between the severity of diabetic retinopathy (DR) and dFAZ (F. Y. Tang et al., 

2020) than with sFAZ (Fang Yao Tang et al., 2017). Similarly, the deep capillary plexus appeared to be 

more severely affected in retinal vein occlusion (Coscas et al., 2016), macular telangiectasia type 2 

(Villegas & Kovach, 2017), and choroidal melanoma (Y. F. Li et al., 2017). The dFAZ is also a common 

parameter reported in myopia-related hemodynamic studies and it seems to be more sensitive to axial 

elongation than the superficial FAZ (sFAZ). Sung et al. (Park & Kang, 2018) found a significant 

association between the axial length and dFAZ, but no such correlation was observed between the axial 

length and superficial FAZ (sFAZ). Cheng et al (Cheng et al., 2019) also reported a stronger association 

between axial length and dFAZ than with sFAZ. With the extensive application of OCTA technique, the 

dFAZ has become increasingly important in both clinical and research studies. 

Accurate segmentation of the dFAZ in the OCTA images is the prerequisite for precise quantification 

of the dFAZ. However, quantifying dFAZ is quite challenging, since its boundary is usually less well-

defined than sFAZ due to various artifacts, such as that due to projection. There are many OCTA devices 

in the market, some of which have built-in software for automatic segmentation and quantification of the 

superficial and deep FAZ (e.g. AngioVue) (Chun et al., 2019; Falavarjani et al., 2018; Magrath et al., 

2017; Pilotto et al., 2018), but others only quantify the superficial plexuses and provide the sFAZ 

parameters (e.g. Heidelberg, Cirrcus) (Lin et al., 2020; Magrath et al., 2017; Wylegala et al., 2019). In 

addition to relying on the built-in software, some researchers and clinicians have employed customized 

automatic segmentation programs (Diaz et al., 2019; Lu et al., 2018; F. Y. Tang et al., 2020; Fang Yao 

Tang et al., 2017) or conducted manual delineation by using public images processing tools, such as 

ImageJ (Corvi et al., 2018) and AngiOCTool (Lupidi et al., 2016). Several studies have concluded that 

the built-in automatic segmentation software was less reliable than manual segmentation (Lin et al., 2020; 

Linderman et al., 2017). The built-in software might mislead due to the noise signals inside the FAZ and 

recognize the noise as capillaries, resulting in an inaccurate FAZ detection (Lin et al., 2020). 

Conventional image processing techniques employed by customized programs, include the denoising 



filters, region-growing approach, and morphologic operators (Diaz et al., 2019; Lu et al., 2018; F. Y. 

Tang et al., 2020; Fang Yao Tang et al., 2017). However, the major limitation shared by most non-deep 

learning techniques is the empirical parameter settings, which are highly dependent on the designer’s 

prior knowledge and are sensitive to the position, size, and shape of the FAZ. These methods could have 

excellent performance on a small dataset but might encounter more difficulties when applied to larger 

and more complex datasets. Manual segmentation is reliable, but time-consuming and might be subject 

to greater inter-observer variance. Shahlae et al (Shahlaee et al., 2016) showed that the interobserver 

agreement of manual segmentation was lower for dFAZ than sFAZ (intraclass correlation coefficient of 

0.84 vs 0.95). 

As conventional image processing techniques might not be sensitive enough in detecting the dFAZ 

boundary, while manual segmentation is very time-consuming, this study proposed the use of a deep 

learning solution to address this issue. The deep learning technique displayed excellent ability to 

determine the intricate structures of high-dimensional data and extracts their features and, therefore, 

could provide accurate and objective results. In addition, it can maintain excellent performance when 

generalizing to new datasets (LeCun et al., 2015). In a recent study (Guo et al., 2019), the deep learning 

method achieved good performance in accurate automatic segmentation and quantification of sFAZ, 

demonstrating the great potential of applying deep learning in automatic segmentation in dFAZ. In this 

paper, an encoder-decoder network constructed for the segmentation of dFAZ is described. A boundary 

alignment module (BAM) was implemented at the bottom of the decoder network to extract global 

information and align boundaries. Thereafter, the boundary supervision modules (BSMs) were employed 

as decoders to refine the segmentation results scale-by-scale with deep and boundary supervision.  

2. Method 

2.1 Data 

Cirrus HD-OCT 5000 with AngioPlex (Carl Zeiss Meditec, Inc., Dublin, California) was used to acquire 

the 3 × 3 mm OCTA images centered on the macula. The A-scan rate of Cirrus HD-OCT 5000 is 68,000 

scans per second, and the central wavelength of the light source is 840 nm. The axial and transverse 

resolutions in the tissue are 5 and 15 µm/pixel, respectively. A total of 45 OCTA images were collected 

from random eyes of 45 healthy subjects (12 high myopes with a spherical equivalent ≤ -6D and 33 

non-high myopes with a spherical equivalent > -6D) at the Optometry Clinic of The Hong Kong 

Polytechnic University (HK PolyU). 

One experienced expert in dFAZ delineation and two researchers contributed to the annotation of the 

ground truth (GT). The GT of dFAZ for both training and testing sets was generated manually by the 

experienced expert using the “polygon selections” and “fill” functions of the ImageJ (National Institutes 

of Health, Bethesda, MD). Following this, the two researchers reviewed the GT together and modified 

the boundary if necessary. 

In order to improve the stability of the proposed method, a portion of 3 × 3 mm OCTA images from 

the public image dataset OCTAGON (Díaz M, 2018) was included in the experiments and the details 

were summarized as follows: 36 images from both eyes of 18 healthy subjects and 17 images from 17 

DR subjects. The data distribution of different datasets was shown in Table 1. 

Table 1. Data distribution of different datasets 

 Class Subject Image 

HK Polytechnic University dataset Healthy 45 45 



DR 0 0 

OCTAGON dataset 

Healthy 18 36 

DR 17 17 

Total  80 98 

In order to implement the boundary supervision, the boundary ground truth (BGT) was defined as: 

BGT = GT − 𝐸𝑟𝑜𝑑𝑒(GT, SE) (1) 

where 𝐸𝑟𝑜𝑑𝑒 denotes the morphologic erode operation and SE denotes the structural element of 9 

× 9 kernel size. 

2.2 Image Pre-processing 

All OCTA images were resized to 704 × 704 pixel for the subsequent training and testing. The size of 

raw images from HK PolyU were 736 × 718 pixel, so they were cropped the image to 704 × 704 pixel 

with the image center maintained in the same location as the raw image, whilst for the OCTAGON 

dataset, the bilinear interpolation was used to upsample the 320 × 320 pixel raw images to 704 × 704 

pixel in both horizontal and vertical directions. For the HK PolyU dataset, cropping was applied to 

preserve local details of the image, while for the OCTAGON dataset, bilinear interpolation achieved the 

balance of upsampling performance and running time, compared with nearest neighbor interpolation and 

trilinear interpolation. Examples of raw OCTA images from two datasets and their preprocessing results 

are shown in Fig. 1. All OCTA images were normalized by the equation (2) to substantially improve the 

final generalization error of the proposed network and accelerate the training. The normalization formula 

is defined as: 

X̂ = (X − X𝜇) X𝜎⁄  (2) 

where X̂ denotes the result of the normalization, X denotes the image, X𝜇  denotes the mean pixel 

value in the image and X𝜎  denotes the standard deviation of the pixel values in the image. 



 

Fig. 1. Raw optical coherence tomography angiography (OCTA) images and their preprocessing results. 

(a) A raw OCTA image example in The Hong Kong Polytechnic University dataset. (b) The preprocessing 

result corresponding to (a). (c) A raw OCTA image example in the OCTAGON dataset. (d) The 

preprocessing result corresponding to (c). 

The randomized data augmentations (a random combination of horizontal flipping, vertical flipping, 

90° rotation, 180° rotation, and 270° rotation) were applied to improve the generalization performance 

of the proposed network model. In order to save local storage space, data augmentation was applied 

before network training. After the image was input to the CPU, each data augmentation method was 

randomly selected to be applied or not. This process only transformed the image data stored in the CPU, 

and did not transform the image in the local storage space. The total number of images obtained after 

applying data augmentation was 3136. 

2.3 Network Architecture 

The proposed network consists of two processing components: the encoders extract the multi-scale 

features from the input image and the decoders refine the segmentation result scale-by-scale as shown in 

Fig. 2. 



 

Fig. 2. Graphical representation of the proposed network. The proposed network includes the encoders 

(left) and the decoders (right). The output of each layer is a three-dimensional feature map of the size (h × 

w × d), where h and w are the height and width of the feature map, respectively, and d is the feature 

dimension. 

In the encoder, the basic convolutional group 𝐶𝑐𝑜𝑛𝑣, which consists of convolutional layers, batch 

normalization (Ioffe & Szegedy, 2015) layers, and activation layers (i.e. ReLu layer or Sigmoid layer), 

extracts the features step by step and is expressed as: 

𝑐𝑐𝑜𝑛𝑣(x)  =   𝐴𝑐𝑡(𝐵𝑛(𝐶𝑜𝑛𝑣(x))) (3) 

𝐶𝑐𝑜𝑛𝑣(x)  =   𝑐𝑐𝑜𝑛𝑣(𝑐𝑐𝑜𝑛𝑣(x)) (4) 

where 𝐶𝑜𝑛𝑣 denotes the convolutional layer, 𝐵𝑛 denotes the batch normalization layer and 𝐴𝑐𝑡 

denotes the activation layer. 

The pooling layer was applied to provide feature maps with a smaller size for the extraction of global 

information. Multi-level encoders were implemented to extract the multi-scale features. 

The decoder combined the features extracted by the encoder to reconstruct the segmentation results 

in the same size as the input image. A boundary alignment module (BAM), as shown in Fig. 3, was 

implemented at the bottom of the decoder network to extract the global information combined with the 

encoder. In the BAM, the feature map was initialized using a basic convolutional group with a 

convolution kernel 1 × 1 pixel in size to integrate the information from the encoder and decoder network. 

Two 𝑆𝐶𝑜𝑛𝑣(7,7) paths were used to extract features from the feature maps, and two global feature maps 

with the same abstract degree were obtained. The subsequent addition operation weighted the important 

semantic information on the feature maps, while reducing the noise interference. These operations 

improved the ability of the receptive field to extract global features, while saving computational resources. 

Finally, the refined boundary was provided through the residual connections. The BAM (Bam) is 

expressed as: 

𝑆𝐶𝑜𝑛𝑣(7,7)(x)  =   𝐶𝑜𝑛𝑣(1,7)(𝐶𝑜𝑛𝑣(7,1)(x)) (5) 

𝐷𝑆𝐶𝑜𝑛𝑣(7,7)(x) =  𝑆𝐶𝑜𝑛𝑣(7,7)(x) +  𝑆𝐶𝑜𝑛𝑣(7,7)(x) (6) 

𝑐𝐷𝑆𝐶𝑜𝑛𝑣
(7,7)

(x)  =   𝐴𝑐𝑡(𝐵𝑛(𝐷𝑆𝐶𝑜𝑛𝑣(7,7)(x))) (7) 

𝐵𝑎𝑚(x) = x + 𝑐𝐷𝑆𝐶𝑜𝑛𝑣
(7,7)

(𝑐𝐷𝑆𝐶𝑜𝑛𝑣
(7,7)

(𝐶𝑐𝑜𝑛𝑣
(1,1)

(x))) (8) 



where 𝑆𝐶𝑜𝑛𝑣(7,7) denotes the asymmetric convolutions with a convolution kernel size of 7 × 7 

and 𝐷𝑆𝐶𝑜𝑛𝑣(7,7) denotes the additive application of two asymmetric convolutions. 

 

Fig. 3. Graphical representation of the boundary alignment module (BAM). 

As with the decoder, the boundary supervision module (BSM), as shown in Fig. 4, used the feature 

maps of the skip connection in the same scale-level encoder xs to connect with the feature maps of the 

previous scale-level decoder xp . Thus, it performed convolution to extract the global feature maps, 

which alleviates the information loss that could be caused by applying the pooling layer in the encoder. 

The branch used for boundary supervision was designed to extract the boundary features and output the 

boundary segmentation results to calculate the loss and refine the boundary. The convolution of the 

concatenated global and boundary feature maps and outputting the segmentation results to calculate for 

the loss for deep supervision contributed to optimizing the segmentation results of the target subject, 

while refining the target boundary. Multi-scale BSMs were implemented to optimize the segmentation 

results scale-by-scale with deep supervision and boundary supervision, and to obtain the segmentation 

result with a fine boundary. The BSM (Bsm) can be expressed as: 

𝐺𝑓(xs, xp) = 𝐶𝑐𝑜𝑛𝑣
(3,3)

(𝐶𝑐𝑜𝑛𝑣
(3,3)

(xs) ⊕ 𝑈𝑝(xp)) (9) 

𝐵𝑓(xs, xp) = 𝐶𝑐𝑜𝑛𝑣
(3,3)

(𝐺𝑓(xs, xp)) (10) 

𝐵𝑜𝑢𝑡(xs, xp) = 𝐴𝑐𝑡(𝐶𝑜𝑛𝑣(1,1)(𝐵𝑓(xs, xp))) (11) 

𝐵𝑠𝑚(xs, xp) = 𝐶𝑐𝑜𝑛𝑣
(3,3)

(𝐺𝑓(xs, xp) ⊕ 𝐵𝑓(xs, xp)) (12) 

𝑆𝑜𝑢𝑡(xs, xp) = 𝐴𝑐𝑡(𝐶𝑜𝑛𝑣(1,1)(𝐵𝑠𝑚(xs, xp))) (13) 

where 𝐺𝑓 denotes the global feature maps, 𝐵𝑓 denotes the boundary feature maps, 𝐵𝑜𝑢𝑡 denotes 

the boundary segmentation result, 𝑆𝑜𝑢𝑡  denotes the segmentation result, 𝑈𝑝  denotes the upsample 

layer and ⊕ denotes the concatenation operation. 



 

Fig. 4. Graphical representation of the boundary supervision module (BSM). 

2.4 Loss Function 

Dice loss (𝐷𝐿𝑜𝑠𝑠) was calculated when the segmentation result (r) was compared against the GT (g), 

and it is given by: 

𝐷𝐿𝑜𝑠𝑠(r, g) = 1 − (2 ∗ ∑(r ∗ g)) (∑r + ∑g)⁄  (14) 

For deep supervision and boundary supervision, the loss function of the network 𝐿 was designed as 

follows: 

𝐿 = 𝜆1 ∗ 𝐷𝐿𝑜𝑠𝑠𝑆
1 + 𝜆2 ∗ (𝐷𝐿𝑜𝑠𝑠𝑆

2 + 𝐷𝐿𝑜𝑠𝑠𝐵
1 + 𝐷𝐿𝑜𝑠𝑠𝐵

2) + 𝜆3 ∗ (𝐷𝐿𝑜𝑠𝑠𝑆
3 + 𝐷𝐿𝑜𝑠𝑠𝐵

3)

+ 𝜆4 ∗ (𝐷𝐿𝑜𝑠𝑠𝑆
4 + 𝐷𝐿𝑜𝑠𝑠𝐵

4) 
(15) 

where 𝐷𝐿𝑜𝑠𝑠𝑦
x  denotes the dice loss of the 𝑥 -level segmentation result when 𝑦  is S or the 

boundary segmentation result when 𝑦 is B. 

The output results of deep and boundary supervision were used to calculate the loss to optimize the 

segmentation results and their boundaries. Although the high-level segmentation results participated in 

the loss calculation, such as 4-level and 3-level, these feature maps extracted from these high-level 

networks were only able to provide the rough location and boundary of dFAZ due to their small scale. 

With the decrease of network-level and the increase of the scale of the feature maps, more location 

information and boundary details of dFAZ were extracted. Therefore, as the network level decreased, 𝜆 

was set to increase gradually. The ultimate goal was to make the final segmentation result (1-level 

segmentation result) of the network in order to achieve the best performance, and other output results 

only played the role of assisting the supervision of network learning. As a result, 𝜆1 was set to the 

maximum value. 𝐷𝐿𝑜𝑠𝑠𝐵
1  was used to supervise the network learning of the boundary of the final 

segmentation result, and it played an auxiliary role in optimization and supervision. The contribution of 

𝐷𝐿𝑜𝑠𝑠𝐵
1  was considered to be less than that of 𝐷𝐿𝑜𝑠𝑠𝑆

1 , which was similar to that of 𝐷𝐿𝑜𝑠𝑠𝑆
2  and 

𝐷𝐿𝑜𝑠𝑠𝐵
2 . Therefore, the values of 𝜆1, 𝜆2, 𝜆3and 𝜆4 were set to 7,3,2 and 1, respectively, to control the 

loss weights in the implementation. 

3. EXPERIMENTS 

3.1 Cross Validation 

The proposed method was evaluated using all the 98 images without data augmentations based on cross 

validation. Generally, statistics take more than 30 samples as large samples. Therefore, in order to ensure 



that there are enough images (the number of images is more than 30) in each fold to train and test the 

network, we used three-fold stratified cross-validation to validate the proposed method. Eighty subjects 

(45 subjects from the HK PolyU + 35 subjects from the OCTAGON) were evenly distributed into three 

groups (27 subjects +27 subjects +26 subjects). In each group, the proportion of DR / healthy subjects, 

as well as the proportion of the HK PolyU / the OCTAGON dataset were the same. At each fold, one 

group was used as the test set, without repetition, and the other two were used as the training sets. Finally, 

the segmentation results of the test set of each fold were obtained together as the final segmentation 

results of the proposed method. 

3.2 Network Training 

The Adam optimization method (Kingma & Ba, 2014) was applied to minimize the loss of the proposed 

network and guarantee an efficient calculation. To ensure that the hardware had sufficient memory space, 

each batch contained only one sample. The learning rate and decay rate were set to 0.0001 and 0.99, 

respectively. All the weights were initialized using He initialization (He et al., 2015) and the variance of 

the forward pass output was 1. The network was trained until the accuracy of the test set did not increase 

within 30 epochs. In the three-fold stratified cross-validation, the network achieved the best 

generalization performances in the 104-th,145-th, and 135-th training epochs. 

Pytorch (A. Paszke, 2017) and a GPU NVIDIA GeForce GTX 1080TI equipped on an Intel Xeon 

E5-2650 2.30 GHz machine with a Linux Ubuntu 14.04 operating system were used to train the proposed 

network. 

3.3 Performance evaluation 

Dice coefficient (Dice, 1945), precision and recall were used to evaluate the performance of the proposed 

method. The equation of these metrics are as follows: 

Dice = 2TP (FP + 2TP + FN)⁄  (16) 

precision = TP (TP + FP)⁄  (17) 

recall = TP (TP + FN)⁄  (18) 

where TP denotes true positives (correctly predicted dFAZ pixels), FP denotes false positives 

(incorrectly predicted dFAZ pixels), and FN denotes false negatives (incorrectly rejected dFAZ pixels). 

In addition, Hausdorff distance was calculated to evaluate the performance of the proposed method 

in boundary segmentation. Hausdorff distance 𝐻 was defined as: 

𝐻(𝐴, 𝐵) = max (ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) (19) 

ℎ(𝐴, 𝐵) =  max
𝑎∈𝐴

min
𝑏∈𝐵

||𝑎 − 𝑏|| (20) 

where 𝐴 and 𝐵 denote two sets of points in a given Euclidean space. || · || denotes the distance 

paradigm (e.g. L2 or Euclidean distance) form between point set 𝐴 and point set 𝐵.  

Hausdorff distance was used to measure the degree of maximum mismatch between two point sets. 

When it was used to measure the degree of dissimilarity between the segmentation result boundary and 

the GT boundary, the larger the Hausdorff distance was, the higher the dissimilarity between the 

segmentation result boundary and the GT boundary, and the lower the accuracy of boundary 

segmentation. 

4. RESULTS AND ANALYSIS 

The performance of the proposed method was compared with other deep-learning networks. Table 2 

shows the comparison of the segmentation performance in terms of the mean Dice coefficient, precision, 



recall and Hausdorff distance between our method and other methods in all OCTA images (HK PolyU 

dataset and OCTAGON dataset). The mean Dice coefficient of our method with BAM and BSM (0.86) 

was higher than those of the other methods (0.79 in FCN (Long et al., 2015), 0.78 in SegNet 

(Badrinarayanan et al., 2017), 0.84 in U-Net (Ronneberger et al., 2015), 0.85 in OCNet (Yuan & Wang, 

2018), 0.81 in DFANet (H. Li et al., 2019)). This indicates a superior performance and better accuracy 

in the dFAZ segmentation of the proposed method. In addition, BAM and BSM with our method 

achieved the highest precision and recall of 0.94 and 0.82, respectively. We used SPSS20.0 to analyze 

Dice of the proposed method and Dice of other methods. We used paired sample t test to test whether 

Dice of the proposed method was significantly different from that of other methods. The statistical results 

were shown in Table 3. Table 3 showed that the proposed method was significantly different from other 

methods in Dice. This proves that the proposed method achieved a superior performance compared to 

other methods. The Hausdorff distance of the proposed method with BAM and BSM (23.35) was lower 

than those of the other methods (284.93 in FCN, 282.54 in SegNet, 165.58 in U-Net, 65.99 in OCNet, 

120.54 in DFANet). This elaborated the proposed method had the best performance in boundary 

segmentation compared with other methods. 

Table 2. Comparison of The Mean (Standard Deviation) of Dice Coefficient, Precision, Recall and Hausdorff distance of 

The Proposed Method Against Other Methods 

 Dice Precision Recall Hausdorff distance 

FCN32  0.79(0.15) 0.94(0.12) 0.72(0.19) 284.93(154.14) 

SegNet  0.78(0.14) 0.92(0.13) 0.69(0.18) 282.54(146.85) 

U-Net  0.84(0.12) 0.93(0.11) 0.79(0.15) 165.58(124.33) 

OCNet 0.85(0.12) 0.92(0.14) 0.81(0.15) 65.35(119.74) 

DFANet 0.81(0.12) 0.93(0.14) 0.74(0.15) 120.54(147.76) 

Proposed method with BAM 0.84(0.11) 0.96(0.09) 0.76(0.14) 57.55(105.44) 

Proposed method with BSM 0.85(0.12) 0.95(0.10) 0.78(0.14) 31.46(68.31) 

Proposed method with BAM, BSM 0.86(0.10) 0.95(0.10) 0.81(0.13) 23.35(53.86) 

Table 3. Paired Sample T-Test Results of Dice of The Proposed Method and Dice of Other Methods 

 p value 

FCN32  0.000(<0.05) 

SegNet  0.000(<0.05) 

U-Net  0.000(<0.05) 

OCNet 0.005(<0.05) 

DFANet 0.000(<0.05) 

A comparison of the segmentation results of the proposed method and other methods is shown in Fig. 

5. The proposed method provided a more accurate and smoother boundary while accurately locating the 

target subject. In contrast, different degrees of glitch appeared at the segmentation boundary of other 

methods. 



 

Fig. 5. Segmentation results of the proposed method and other methods against the ground truth. The green 

area represents true positives, the blue area represents false negatives and the red area represents false 

positives. (a) and (b) rows were examples of healthy subjects, while (c) and (d) rows were examples of DR 

subjects. (e) column: Segmentation result of the proposed method. (f) column: Segmentation result of 

FCN32. (g) column: Segmentation result of SegNet. (h) column: Segmentation result of U-Net. (i) column: 

Segmentation result of OCNet. (j) column: Segmentation result of DFANet. The respective values of Dice, 

precision and recall were placed at the bottom of the image. 

Table 4 shows the performance of the proposed method on individual datasets. The OCTAGON 

dataset was added for training and validation to expand the amount and diversity of the data, and further, 

to improve the stability and generality of the proposed method. The proposed method achieved a mean 

Dice Coefficient of 0.89 on the HK PolyU dataset which was slightly better than that of the OCTAGON 

dataset (0.84).  

Table 4. Mean (Standard Deviation) of Dice Coefficient, Precision and Recall of The Proposed Method on Different 

Datasets 

 Dice Precision Recall 

HK Polytechnic University dataset 0.89(0.06) 0.97(0.09) 0.84(0.08) 

OCTAGON dataset 0.84(0.13) 0.91(0.13) 0.81(0.14) 



The dFAZ of the diabetic retinopathy (DR) subjects was usually severely destroyed, with hardly 

distinguishable boundary in the noisy OCTA image as shown in Fig. 6. Therefore, led to a smaller Dice 

coefficient on DR comparing with healthy subjects, as shown in Table 5. 

 

Fig. 6. Segmentation results of the proposed method on two diabetic retinopathy subjects (a and b) from 

the OCTAGON dataset against the ground truth. The green area represents true positives, the blue area 

represents false negatives and the red area represents false positives.  

Table 5. Mean (Standard Deviation) of Dice Coefficient, Precision and Recall of The Proposed Method and Other 

Methods on Healthy Subjects and DR Subjects 

 Healthy subjects DR subjects 

 Dice Precision Recall Dice Precision Recall 

FCN32  0.82(0.12) 0.95(0.07) 0.75(0.18) 0.65(0.19) 0.90(0.22) 0.56(0.19) 

SegNet  0.80(0.11) 0.94(0.09) 0.71(0.16) 0.67(0.23) 0.84(0.23) 0.60(0.26) 

U-Net  0.86(0.07) 0.95(0.07) 0.81(0.12) 0.72(0.21) 0.88(0.21) 0.68(0.20) 

OCNet 0.87(0.06) 0.93(0.09) 0.84(0.10) 0.72(0.22) 0.87(0.25) 0.66(0.25) 

DFANet 0.83(0.06) 0.95(0.09) 0.75(0.12) 0.71(0.22) 0.87(0.25) 0.64(0.24) 

Proposed method with BAM, BSM 0.89(0.05) 0.96(0.05) 0.83(0.09) 0.74(0.18) 0.88(0.19) 0.70(0.21) 

5. DISCUSSION 

Accurate segmentation of the dFAZ is of great clinical importance and represents a major research 

interest. Quantifying dFAZ remains very challenging due to the less well-defined boundary, which is 

sensitive to the projection artifacts and signal attenuation. Current solutions for dFAZ segmentation, 

including built-in software, customized programs using conventional images processing techniques, and 

manual delineation may not be satisfactory. Therefore, this study proposed a deep-learning solution. 

Instead of directly applying the classic deep learning networks for image segmentation, such as FCN, 

SegNet, U-Net, OCNet and DFANet, BAM and BSM were implemented to further improve the 

performance. This proposed method obtained a mean Dice coefficient of 0.86 in three-fold stratified 

cross-validation, which indicates a superior performance in dFAZ segmentation while allowing the 



independence of empirical parameters that were manually set. This makes the proposed method less 

sensitive to the position, size, and shape of dFAZ. 

The proposed method has been compared with three classic networks (FCN, SegNet, and U-Net) and 

two newly proposed methods (OCNet and DFANet). U-Net exhibits strong generalization ability and 

excellent performance in medical image segmentation. A mean Dice coefficient of 0.84 was obtained 

from our datasets by applying U-Net directly, which was better than 0.79 in FCN, 0.78 in SegNet, and 

0.81 in DFANet. Though OCNet was the only one slightly outperformed U-Net, it was worse than the 

network we proposed in terms of Dice coefficient.  

As shown in Fig. 5, the proposed method accurately located the dFAZ and provided a naturally 

smooth dFAZ boundary. This good performance may be attributable to the implementation of the BAM. 

The asymmetric convolutions in BAM, inspired by Inception V3 (Szegedy et al., 2016), obtained rich 

global information from the feature maps output of the encoder with a significantly improved receptive 

field. Although the stack of convolutions of a small convolution kernel theoretically provided the same 

receptive field as the convolution with a large convolution kernel, it actually caused the attenuation of 

the edge receptive field, subsequently causing the effective receptive field to be smaller than the 

theoretical receptive field. However, the direct use of a convolution with a large convolution kernel 

would inevitably increase the computational cost. The asymmetric convolution was thus a compromise 

with a reasonable computational cost and an improved effective receptive field. The residual branch was 

designed to refine the boundary of the segmentation result. The combination of the asymmetric 

convolution and the residual branch significantly improved the effective receptive field and provided 

rich global information for refining the boundary of the segmentation result. 

The second explanation for the good performance might be the BSM applied in the current method. 

In BSM, the basic convolutional group was applied to boost the ability of the skip connection structure 

to extract features. The designed boundary branch outputted the boundary result and calculated the 

boundary loss, providing not only boundary features, but also performed boundary supervision. As the 

layers deepen, low-scale deep networks may struggle to obtain adequate training. In order to achieve full 

training on all scale-level networks, the segmentation result to calculate the loss in the BSM of each 

scale-level was outputted in a deep supervision manner, thus providing the proposed network with better 

ability to extract features. 

The proposed method achieved a mean Dice coefficient of 0.88 and 0.76 in healthy subjects and DR 

subjects, respectively. Despite the smaller number of OCTA images of the DR subjects in this study and 

the irregular nature of dFAZ in these images, the output indicated that the proposed method could provide 

accurate dFAZ segmentation and quantification. Further studies on evaluating the robustness of this 

method by recruiting DR patients with different severities would be needed to establish a more 

customized network structure. 

Deep learning is an emerging technology with potential applications in optometry and ophthalmology 

for improving diagnosis and management of eye diseases. This is the first study using deep learning 

techniques to deal with the challenges of dFAZ segmentation and quantification. The proposed method 

provides an objective, repeatable, and reliable tool for dFAZ segmentation and quantification. It is hoped 

the future application of this method could both save clinician time and subsequently boost the 

investigations in monitoring dFAZ changes in various ocular conditions. 

6. CONCLUSION 

In this paper, a method using a customized encoder-decoder network was proposed to automaticly 

segment dFAZ in OCTA images. The application of BAM and BSM improved the accuracy in locating 



the dFAZ and produced output segmentation results with smoother boundaries (on a dataset from a total 

of 80 subjects, an average Dice of 0.86 and an average Hausdorff distance of 23.35 is achieved). The 

proposed method is expected to be able to equip clinicians with an automated and more generalized 

method and be helpful to handle more dFAZ-related research with OCTA data. 
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