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Higher order tensor decomposition for
proportional myoelectric control based on

muscle synergies
Ahmed Ebied, Eli Kinney-Lang, and Javier Escudero

Abstract— Muscle synergies have recently been utilised1

in myoelectric control systems. Thus far, all proposed2

synergy-based systems rely on matrix factorisation3

methods. However, this is limited in terms of task-4

dimensionality. Here, the potential application of higher-5

order tensor decomposition as a framework for propor-6

tional myoelectric control is demonstrated. A novel con-7

strained Tucker decomposition (consTD) technique of syn-8

ergy extraction is proposed for synergy-based myoelectric9

control model and compared with state-of-the-art matrix10

factorisation models. The extracted synergies were used to11

estimate control signals for the wrist’s Degree of Freedom12

(DoF) through direct projection. The consTD model was13

able to estimate the control signals for each DoF by utilising14

all data in one 3rd-order tensor. This is contrast with matrix15

factorisation models where data are segmented for each16

DoF and then the synergies often have to be realigned.17

Moreover, the consTD method offers more information by18

providing additional shared synergies, unlike matrix factori-19

sation methods. The extracted control signals were fed to20

a ridge regression to estimate the wrist’s kinematics based21

on real glove data. The Coefficient of Determination (R2) for22

the reconstructed wrist position showed that the proposed23

consTD was higher than matrix factorisation methods. In24

sum, this study provides the first proof of concept for the25

use of higher-order tensor decomposition in proportional26

myoelectric control and it highlights the potential of tensors27

to provide an objective and direct approach to identify28

synergies.29

Index Terms— Myoelectric control; Muscle synergy; Ma-30

trix factorisation; Sparse non-negative matrix factorisation;31

Tucker decomposition; Tensor decomposition.32

I. INTRODUCTION33

MUSCLE synergy and the concept of modular organ-34

isation of muscle activity have been accepted as a35

framework to analyse the fundamental roles underlying the36

coordinated motor activity [1]. The muscle synergy concept37

would help to solve the complexity problem of motor control38

concerning the redundant number of actuators needed for39

motor activity [2], [3]. The muscle synergy model suggests that40
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the nervous system activates muscles in groups (synergies) for 41

motor control rather than activating each muscle individually 42

[4]. Muscle synergies has been proved to be an important 43

analysis tool for many applications such as clinical research [5] 44

and biomechanical studies [6], [7] thanks to the fact that they 45

can be extracted from non-invasive Electromyography (EMG). 46

According to the time-invariant synergy model [4], [8], the 47

estimation of muscle synergies and their weighting functions 48

from a multi-channel EMG signal is a Blind Source Separation 49

(BSS) problem. Several matrix factorisation techniques have 50

been used to solve this problem by estimating unknown 51

synergies, with the Non-negative Matrix Factorisation (NMF) 52

algorithm [9] being the most prominent method [10], [11]. 53

However, in recent years, tensor decomposition has been 54

introduced for synergy estimation [12], and a robust technique 55

[13], [14] has been developed for muscle synergy extraction. 56

We now seek to explore the usefulness of this approach for 57

proportional myoelectric control. 58

For decades, EMG has been used to control prostheses [15]. 59

In addition to the conventional direct control approach, the 60

current state-of-the-art methods for prosthetic upper-limb are 61

usually based on pattern recognition techniques [16] which 62

have been successful in achieving high classification accuracy 63

for a range of motions (10 classes) [17]. Moreover, pattern 64

recognition-based systems recently found their way into com- 65

mercial products such as “Complete Control” 1. 66

However, pattern recognition systems generally provide se- 67

quential control schemes [18]. Natural limb movements consist 68

in the simultaneous and proportional activation of multiple 69

DoFs [19]. Thus, muscle synergies have been utilised in 70

prosthesis control to achieve a simultaneous and proportional 71

myoelectric control across multiple DoFs [20], [21]. Most 72

approaches for upper-limb synergy-based myoelectric control 73

[22]–[24] rely on a matrix factorisation algorithm (usually 74

NMF) to extract muscle synergies from a training multichan- 75

nel EMG dataset. Then, the extracted synergies are used to 76

estimate proportional and continuous control signals. 77

Synergy-based myoelectric control schemes need to identify 78

the muscle synergies and their weighting functions associated 79

with single-DoF. In this way, a control signal which cor- 80

responds to a Degree of Freedom (DoF) can be estimated 81

through matrix factorisation. However, NMF is unable to 82

extract the specified DoF synergies without further conditions 83

1https://www.coaptengineering.com/
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imposed on the protocol. To tackle this problem, Choi and84

Kim [23] chose a completely supervised approach using a joint85

synergy matrix. Jiang et al. [20], [22] proposed ”divide and86

conquer” method, a semi-supervised approach which was used87

in [24] as well.88

The Sparse Non-negative Matrix Factorisation (SNMF) ap-89

proach is similar to the classical NMF method, but it tries90

to exploit the fact that some recent studies suggest the sparse91

nature of muscle synergies [11], [25] and the lack of sparseness92

solution is one of the notable drawbacks for NMF [9], [26].93

Therefore, SNMF would help to improve the muscle synergy94

estimation and simplify the training stage as demonstrated by95

Lin et al. [21]. Recently, a similar approach using SNMF was96

introduced by Lin et al. [21]. This approach tries to exploit97

the fact that some recent studies suggest the sparse nature98

of muscle synergies [11], [25], since the lack of sparseness99

solution is one of the notable drawbacks for NMF [9], [26].100

Therefore, SNMF would help to improve the muscle synergy101

estimation and simplify the training stage as demonstrated by102

Lin et al. [21]. SNMF was utilised to identify control signals103

from two DoFs training datasets where synergies are assigned104

to their respective DoF after matrix factorisation which makes105

it a quasi-supervised approach.106

The performance of proportional myoelectric control based107

on NMF synergies degrades significantly with the increase108

in task-space dimension into three DoFs of movement [20],109

[24]. In addition, the current approaches assign two synergies110

for each DoF (one synergy per movement). Thus, the number111

of synergies needed for control increases with the number of112

movements [27].113

We hypothesise that tensor decomposition could help to114

solve this problem by incorporating the movement and DoF115

information into the decomposition process. Hence, the con-116

trol signals for each DoF can be extracted directly with an117

appropriate tensor decomposition method. This is encouraged118

by our preliminary study [14] which showed that tensor119

decomposition was able to estimate consistent synergies when120

the task dimensionality is increased up to 3-DoFs, something121

that cannot be achieved via traditional matrix factorisation.122

In a nutshell, higher-order tensors are the generalisation of123

matrices, which are 2nd-order tensors. Tensor decompositions124

provide several advantages over matrix factorisation such as125

compactness, uniqueness of decomposition, and generality126

of the identified components [28]. Moreover, EMG data are127

naturally structured in higher-order form in many applications,128

such as repetition of subjects and/or movements. Hence,129

matrix factorisation methods have limitations. For instance,130

in biomechanical studies, identifying shared muscle synergies131

requires to apply NMF repetitively to each movement and/or132

subject, then relying on metrics such as the correlation co-133

efficient to identify the shared and task-specific synergies.134

This makes such an approach complex and unreliable [12].135

Hence, tensor decomposition was utilised to identify muscle136

synergies through a variant of Tucker decomposition named137

constrained Tucker decomposition (consTD) [13]. Moreover,138

Takiyama et al. used Parallel Factor Analysis (PARAFAC)139

decomposition for joint angle and EMG to estimate spatial,140

temporal and the task-specific synergies [29]. consTD was141

DoF1 DoF2 DoF3

Fig. 1: The 6 movements selected to represent wrist’s DoFs.

introduced as a framework for muscle synergy analysis [13] 142

as it provided unique and consistent muscle synergies in 143

comparison with unconstrained Tucker model. This proposed 144

model was capable of identifying shared synergies across 145

movements [14]. 146

In this paper, the consTD method is proposed for pro- 147

portional myoelectric control. The EMG data is tensorised 148

by adding movement mode to the spatial (Channels) and 149

temporal (time) modes to create a 3rd-order tensor with 150

dimensions time×channel×movements (see section III-A.1 151

for details). Control signals are estimated from this tensor via 152

consTD. To assess this approach, control signals are mapped to 153

hand kinematics through ridge regression. The results will be 154

compared with NMF and SNMF using two publicly available 155

datasets. Therefore, this paper contributes a novel technique 156

to use 3rd-order tensor decomposition in a synergy-based 157

myoelectric control system. Tensor synergies have not been 158

utisied in myoelectric control before. 159

II. MATERIALS 160

Two datasets from the publicly available Ninapro [30], [31] 161

were used in this paper (http://ninapro.hevs.ch/ 162

node/7). The first dataset [32] consists of 27 able-bodied 163

subjects instructed to perform 10 repetitions of 53 hand, wrist 164

and finger movements. The dataset includes 10-channel EMG 165

signals recorded by a MyoBock 13E200-50 system (Otto Bock 166

HealthCare GmbH), rectified by Root-Mean-Square (RMS) 167

and sampled at 100Hz. The hand kinematics were captured 168

using a 22-sensor CyberGloveII (CyberGlove Systems LLC). 169

The glove returns 8-bit values proportional to joint angles 170

using a resistive bend-sensing technology with an average 171

resolution of less than one degree depending on the size of 172

the subject’s hand. Data synchronisation was performed offline 173

using high-resolution timestamps [30]. The “stimulus” time 174

series in the Ninapro dataset labelled the start and end of each 175

movement repeated by the subject. This series has been used 176

for dataset segmentation of the training and testing datasets. 177

The signals are divided into training and testing sets with 60% 178

(six repetitions of each movement) of the data assigned to 179

the training for each subject. The wrist motion and its three 180

DoFs are investigated. Therefore, six movements are selected 181

to represent the wrist’s DoFs which are: the wrist radial and 182

ulnar deviation that creates the horizontal DoF (DoF1); wrist 183

extension and flexion movements which form the vertical DoF 184

(DoF2); and finally wrist supination and pronation (DoF3). 185

http://ninapro.hevs.ch/node/7
http://ninapro.hevs.ch/node/7
http://ninapro.hevs.ch/node/7
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The second dataset [33] consists of 40 able-bodied subjects186

instructed to perform six repetitions of 50 hand, wrist and187

finger movements. The same wrist’s movements investigated in188

the first dataset were selected from the second one. However,189

the myoelectric activity in this dataset is recorded with 12-190

channel setup by Delsys Trigno Wireless System. This dif-191

ferent setup allows to record raw EMG signals sampled at 2192

kHz with a baseline noise of less than 750 nV RMS. The193

EMG data is rectified by RMS in the pre-processing stage.194

Hand kinematics were captured using the same 22-sensor195

CyberGloveII system (CyberGlove Systems LLC) used in the196

first dataset. As mentioned, three wrist’s DoFs are investigated197

with four repetitions of training and two assigned to the testing198

dataset.199

III. MATHEMATICAL MODELS200

In this section, the mathematical models for synergy ex-201

traction approaches used in this paper will be described. We202

will present the higher-order tensor model (including the steps203

of constructing the tensor, the factorisation, and our novel204

method of consTD). Then matrix factorisation benchmarks205

will then be described. We will focus on NMF and SNMF206

as the current state-of-the-art synergy extraction methods. The207

difference between them as well as the difference between208

consTD will be highlighted.209

A. Higher-order tensor models210

1) Tensor Construction: The current muscle synergy extrac-211

tion approaches prepare the EMG data in a matrix form with212

temporal and spatial dimensions. Hence, matrix factorisation213

methods are applied such as NMF and SNMF. Thus, in the214

case of synergy-based myoelectric control, where the EMG215

data consists of different movements and/or DoFs, synergies216

are extracted from each segment of movement or DoF sepa-217

rately [20], [22].218

For example, Figure 2a shows a sample EMG data for219

six repetitions of four movements (two DoFs). In the case220

of matrix factorisation, the data is divided into two separate221

segments, one for each DoF as shown in Panels 2b and 2d.222

The synergistic information is estimated from each segment223

independently. On the other hand, the tensor decomposition224

prepare the data in a tensor form where all synergistic infor-225

mation are estimated from the same tensor.226

3rd-order tensors are created by stacking the training EMG227

segments of each movement shown in Figure 2a to form228

a tensor with modes; time × channels × movements as229

shown in Figure 2c. In this study, the training tensor is230

designed to have four different movements where a pair of231

them make a wrist’s DoF. This results in three training tensors232

for each subject where each one consists of two wrist’s DoF233

(four movements). The three tensors are named DoF1-2 for234

horizontal and vertical DoFs, named DoF1-3 for horizontal235

and inclination DoFs, and Finally, DoF2-3 for vertical and236

inclination DoFs.237

2) Tucker decomposition model: Several decomposition 238

models have been introduced to decompose higher-order ten- 239

sors into their main components. Tucker decomposition [34] is 240

one of the most prominent models for tensor factorisation [35]. 241

In the Tucker model, an nth-order tensor X ∈ Ri1×i2×....in is 242

decomposed into a smaller core tensor (G ∈ Rj1×j2···×jn ) 243

transformed by a matrix across each mode (dimension) [36], 244

where the core tensor determines the interaction between those 245

matrices as the following: 246

X ≈ G×1 B
(1) ×2 B

(2) · · · ×n B(n) (1)

where B(n) ∈ Rin×jn are the components matrices trans- 247

formed across each mode while “×n” is multiplication across 248

the nth-mode [36]. The number of components for each mode 249

(jn) or the core tensor G dimensions is flexible (and they can 250

be different) as long as (jn ≤ in). Tucker decomposition for 251

a generic 3rd-order tensor is illustrated in Figure 3. 252

The Tucker model usually uses the Alternating Least 253

Squares (ALS) to estimate the core tensor and the component 254

matrices. ALS has two main phases. The first one is the 255

initialisation of components and core tensor either randomly 256

or by certain criteria [37]. The second phase is a series of 257

iterations to minimise the loss function between the original 258

data and its model. For example, the least squares loss function 259

for a 3rd-order Tucker model would be: 260

argminB(1),B(2),B(3),G‖X−B(1)G(B(3) ⊗B(2))T‖2 (2)

where ⊗ is Khatri-Rao product which is the column-wise 261

Kronecker product. This loss function is solved by fixing three 262

out of four factors (B(1),B(2),B(3) and G) and computing 263

the unfixed factor by iterating alternatively. Although ALS has 264

several advantages, its main drawback is that it cannot guar- 265

antee convergence to a stationary point [38] since the problem 266

could have several local minima. This can be solved by 267

applying multiple constraints on the initialisation and iteration 268

phases [39] to improve the estimation. Hence, constraints over 269

both initialisation and iteration phases can help to solve the 270

convergence problem. Moreover, the constrained Tucker model 271

has several benefits including: uniqueness of the solution, and 272

interpretable results that do not contradict prior knowledge and 273

finally speeding up the algorithm. Although constraints could 274

lead to poorer fit of the data compared to the unconstrained 275

model, the advantages outweigh the decrease in the fit for most 276

cases [28]. 277

Therefore, in our previous work [13], we developed a 278

constrained Tucker model (consTD) that was able to estimate 279

a unique and interpretable shared and task-specific synergies 280

with high explained variance and short execution time in 281

comparison with the standard NMF approach. 282

3) Constrained Tucker Decomposition: Here, we devise the 283

consTD for the extraction of muscle synergies that could be 284

utilised in myoelectric control. This builds on top of our 285

previous work on tensor models to extract muscle synergies 286

[13], [14] but, crucially, we now use 3rd-order EMG tensor 287

data where the third additional mode is movements instead 288

of repetitions, as described in Section III-A.1. This change 289

in the tensor construction was implemented so that consTD is 290

applied to a data structure similar to the matrix factorisation 291
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(a) An example of the 10-channels surface EMG training dataset for DoF1-3. It consists of 6
repetitions for the 4 wrist’s movements forming DOF1-3 (radial/ulnar deviation and

supination/pronation).
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(b) The data preparation for NMF and SNMF to estimate
the muscle synergies for DoF1.
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(c) 3rd-order tensor for DoF1-3 with modes (time×
Channels × movements).
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(d) The data preparation for NMF and SNMF to estimate
the muscle synergies for DoF1.

Fig. 2: An example for training data preparation and tensor construction for subject 6 and DoFs 1 and 3. Panel 2a shows
the whole recorded segment for the 6 training repetitions of the 4 movements. Data preparation for both NMF and SNMF
methods are illustrated in Panels 2b and 2d, The data is divided into two separate segments for each DoF and NMF is applied
to estimate 2 muscle synergies from each segment (1 for each movement). Panel 2c shows the 3rd-order tensor construction
by stacking the 4 movements in Panel 2a as separate slabs. Tensor decomposition is applied to directly estimate 6 synergies
(4 task-specific and 2 shared).

approaches under comparison. NMF or SNMF are applied292

on EMG segments of several repetitions and not on each293

repetition separately, something that will be discussed in detail294

in Section III-B. Moreover, we test the ability of the proposed295

consTD to work with different settings and data construction.296

Two constraints are imposed on the initialisation phase and297

one constraint in the iteration phase. For initialisation, the298

core tensor is initialised and fixed at a value of 1 between299

each component in the (temporal\movements) modes and300

its respective spatial synergy and 0 otherwise as the following:301

gn,n,n = 1 n ∈ {1, 2, 3, 4},
gn,5,n = 1 n ∈ {1, 2},
gn,6,n = 1 n ∈ {3, 4},
gi,j,k = 0 otherwise.

302

This core set-up that does not update with every iteration 303

avoids undesired cross interactions between spatial compo- 304

nents (synergies) and other modes components. The values 305

in the core tensor are chosen to be 1 in order to hold any 306

variability in the components rather than core tensor. 307

The second initialisation constraint fixes the movement 308

mode components since we have the information about each 309
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≈𝐗 𝐆𝐁(1)𝑖1
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𝑗3

𝑗3

Fig. 3: Illustration of Tucker decomposition for 3rd-order
tensor X.

factor and its corresponding movement. The values are de-310

signed to be 1 for the considered movement and 0 otherwise.311

Non-negativity constraint on temporal and spatial modes is312

the only constraint in the iteration phase. This is imposed to313

have meaningful factors (synergies) [12], [23]. Non-negativity314

is a common constraint because of the illogical meaning of315

negative components in many situations. Here, it is beneficial316

due to the additive nature of muscle synergies. It is imple-317

mented in the iteration phase by setting the negative values of318

computed components to zero by the end of each iteration to319

force the algorithm to converge into a non-negative solution.320

A similar constrained set-up have been used in a previous321

study [13] to extract shared muscle synergies. Moreover, the322

algorithm runs for a minimum of ten iterations to ensure that323

the model does not converge to a poor local minimum and the324

decomposition with the highest explained variance is chosen.325

This consTD approach would result in four task-specific326

synergies and two additional shared DoF synergies in the327

spatial mode. The additional DoF synergies are a shared328

synergy between the two movements (tasks) that form DoF.329

This is determined by the set-up of the core tensor for the 5th
330

and 6th factors (synergies) as shown in Figure 7.331

B. Matrix factorisation models332

To evaluate the tensor-based approach for proportional333

myoelectric control, we introduce NMF and SNMF as state-334

of-the-art benchmarks to compare with. In general, matrix335

factorisation is the standard approach for synergy extraction336

with NMF being the most prominent technique [11]. Both337

matrix factorisation methods – NMF and SNMF – are the338

main extraction methods used for synergy based myoelectric339

control [21].340

1) NMF: NMF [9] has been the most prominent method to341

extract muscle synergies [11]. In addition, it has been utilised342

for a proportional myoelectric control approach based on343

muscle synergies [20]. NMF processes the multichannel EMG344

recording as a matrix X ∈ Rm×n with modes (channel ×345

time). This matrix is factorised into two smaller matrices346

(factors) as347

X(m×n) = B
(1)
(m×r) ×B

(2)T

(n×r) (3)

where B(1) ∈ Rm×r holds the temporal information (known348

as weighting function) while the other factor B(2) ∈ Rr×n is349

the muscle synergy holding the spatial information and r is 350

number of synergies where r < m,n to achieve dimension 351

reduction. The algorithm relies on a cost function where both 352

factors are updated and optimised with respect to the non- 353

negativity constraint to minimise the difference between the 354

data matrix X and its approximation as the following: 355

min
B(1),B(2)

1

2
‖X−B(1)B(2)‖2F

s.t.B(1),B(2) ≥ 0

(4)

where ‖.‖F is the Frobenius norm and both factors B(1) and 356

B(2) are constrained to be non-negative. For more details, see 357

[40]. 358

In order to use the NMF synergies for a simultaneous and 359

proportional myoelectric control scheme, Jiang et al. [20], 360

[22] proposed a ”divide and conquer” approach. This is done 361

by designing an experimental protocol to estimate muscle 362

synergies and their respective weighting functions for a single 363

DoF (two movements) at a time. Consequently, this approach 364

would limit the factorisation into a few possible solutions. 365

The result would be two muscle synergies and their respective 366

weighting functions (or control signal) for each DoF, which 367

allows simultaneous and proportional EMG control without 368

multi-DOF training data. 369

2) SNMF: The SNMF approach is similar to the classic 370

NMF method, but it tries to impose sparseness constraints on 371

the factorisation since the lack of sparseness solution is one 372

of the notable drawbacks for NMF [9], [26]. This is done by 373

imposing a sparseness constraint to the weighting functions 374

(control signals) based on the SNMF scheme introduced in 375

[41]. In the case of SNMF algorithm, the cost function of 376

classic NMF is shown in Equation 4 is modified to the 377

following: 378

min
B(1),B(2)

1

2
‖X−B(1)B(2)‖2F + λ

j=1∑
n

‖B(2)(:, j)‖21

s.t.B(1),B(2) ≥ 0

(5)

where B(2)(:, j) is the jth column vector of B(2) and λ > 0 379

is a regularisation parameter to balance the trade-off between 380

the accuracy of the approximation and the sparseness of B(2)
381

(control signals). 382

IV. METHODS 383

In this section, the methodology of comparing and assessing 384

the use of consTD and matrix factorisation methods for 385

synergy-based myoelectric control is discussed. All decom- 386

position and computing are performed using Matlab 9 with 387

Intel core i7 processor (2.4 GHz, 12 GB RAM). The consTD 388

algorithm uses the ”tucker” function in the N-way toolbox 389

[42]. 390

A. Muscle synergy extraction 391

To assess and compare between the application of tensor 392

decomposition and matrix factorisation in a synergy-based 393

myoelectric control system, muscle synergies were extracted 394

from the EMG dataset. 395



6

Estimated
Synergies

NinaPro Dataset

EMG Data

Training Dataset

EMG Data

Testing Dataset

EMG Data

NMF\SpNMF\Tensor

Estimated Control Signals

Direct 
Projection

Fig. 4: Block diagram for the use of extracted muscle syner-
gies from the training dataset to estimate control signals.

The {4, 6, 4} consTD method discussed in III-A.3 decom-396

poses the 3rd-order tensors to estimate the muscle synergies.397

The decomposed tensor consists of a pair of wrist’s DoFs.398

For example, tensor (DoF1-3) of subject six is shown in399

Panel 2c. The tensor is decomposed into {4, 6, 4} components400

across its three modes (temporal, spatial and movements)401

respectively. The first four components in the spatial mode402

are task-specific synergies for each movement of DoFs 1 and403

3, while the 5th and 6th synergies are shared between DoFs 1404

and 3 respectively. Those synergies are then used to estimate405

control signals through direct projection.406

On the other hand, matrix factorisation methods, NMF407

and SNMF, decompose EMG segments of one DoF (two408

movements) into two synergies and their respective weighting409

functions. An example of EMG segments for subject six (DoFs410

1 and 3) are shown in Panels 2b and 2d. This was applied411

to the three main wrist’s DoFs separately. Then the extracted412

synergies are used to estimate the control signal through direct413

projection.414

B. Direct projection of control signal415

The identified synergies either from matrix factorisation416

methods or consTD are used to estimate the control signals as417

shown in Figure 4.418

The muscle synergies extracted using consTD on the train-419

ing tensors are utilised to estimate one control signal per420

movement (four in total). This is done through direct pro-421

jection of the testing data onto the fixed training components422

(core tensor and spatial\movement modes) to estimate the423

temporal mode components of the testing dataset. For the 3rd-424

order tensor in this study, the projection of the training DoF425

tensor X to the time mode (B(1)) based on Equation 1 would426

be427

B(1) = X(i1×i2i3)[G(j1×j3j2)(B(3) ⊗B(2))T ]+ (6)

where B(2) and B(3) are the spatial (synergy) and428

movements modes, respectively. Both modes are calculated429

from the training dataset, while G(j1×j3j2) is the fixed core430

tensor unfolded across the temporal mode (j1). Therefore,431

Equation 6 can be used to project the testing dataset (Xtest)432

to estimate the control signals (temporal mode) projection433

1-Fold EMG Data

Direct Projection

Ridge Regression

Reconstructed 1-FoldGlove Data

Control Signal

1-Fold Glove Data
Compare

Ridge regression parameters optimisation

Fig. 5: The 10-Fold Cross validation process to optimise Ridge
regression parameters.

B
(1)
test. The resulting projection is the time mode matrix B(1). 434

This projected matrix consists of four control signals, where 435

each one represents the projection of one movement of the 436

input testing dataset. The final control signal will be the dif- 437

ference between the two control signals of the two movements 438

that form each DoF. Thus it could be used in real-time for 439

myoelectric control. 440

In the case of matrix factorisation methods – either NMF 441

or SNMF –, control signals for each movement are estimated 442

using the the inverse model of the weighting functions. Ac- 443

cording to Equation 3, the control signal C would be 444

C = Xtest ×B(1)+ (7)

where B(1)+ is the pseudoinverse of the synergy matrix B(1)T
445

and Xtest is the testing EMG dataset for one DoF. The re- 446

sulting projection consists of two control signals representing 447

the projection of both movements of the DoF test dataset. 448

For myoelectric control applications, the final control signal 449

is calculated for each DoF in a similar approach to other 450

synergy-based myoelectric control studies [20], [21]. It is 451

deduced by taking the difference between the control signals 452

of each movement and its antagonistic movement for each 453

DoF. As a result, we estimate the final control signal for each 454

wrist’s DoF using NMF, SNMF and consTD methods. 455

C. Mapping into glove data 456

To demonstrate how our approach can be used in simultane- 457

ous and proportional myoelectric control systems, the testing 458

EMG dataset is used to reconstruct its respective glove data 459

using the estimated control signals from NMF, SNMF and 460

consTD. The signals are mapped via ridge regression into the 461

22 sensor glove dataset as shown in Figure 6. For all subjects, 462

the reconstructed glove data is compared to the true testing 463

dataset, where Coefficient of Determination (R2) is calculated 464

as an index for the quality of reconstruction. 465

The four control signals are regressed onto the 22 glove 466

sensors data [43]. The coefficients for the multi-linear ridge 467

regression are estimated separately from the training dataset of 468

the same subject, then applied to the control signal to predict 469

each glove sensor signal. The multi-linear ridge regression 470
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Fig. 6: Block diagram for the use of estimated synergies from the training dataset in reconstructing the glove testing dataset.

model estimates regression coefficients β̂ using471

β̂ = (XTX + kI)−1XT y (8)

where X is the predictor matrix and y is the observed response.472

The regression parameter k is a regularisation constant. To473

optimise these parameters, a ten-fold cross-validation (CV)474

procedure is designed. The training dataset for each subject475

is divided into ten folds. For each fold, the optimisation of476

k parameter is performed via a log-linear search to maximise477

the quality of regression using the R2 index. The glove data478

were reconstructed using the muscle synergies and control479

signals estimated from the training datasets using the three480

methods under investigation as shown in Figure 5. The k481

regularisation constant parameter and regression coefficients482

β̂ were calculated from the training datasets and used to map483

the control signals of the testing data sets into the glove data484

to be compared.485

To rule out any statistical chance from the comparison,486

random synergies are used to project control signals and487

regress the glove data as the other three methods. For each488

DoF, two random synergies are created from random values489

selected from a uniform distribution between [0,1]. Two-490

sample t-test were conducted to compare the total R2 of each491

technique and the randomly generated synergies.492

Finally, since many of the 22 glove sensors are redundant493

and most of them do not capture the wrist’s motion, the top494

three sensors across all methods for R2 values are selected to495

represent the hand kinematics and were compared across all496

subjects.497

V. RESULTS498

A. Constrained Tucker decomposition 499

The consTD decomposes the 3rd-order tensors constructed 500

for each pair of wrist’s DoFs. An example of the consTD 501

for the EMG tensor (DoF1-3) of subject six is shown in 502

Figure 7. The tensor is decomposed into {4, 6, 4} components 503

across its three modes (temporal, spatial and movements) 504

respectively where the core tensor and movement mode are 505

constrained as discussed in detail in III-A.3. Each component 506

in the temporal mode is related to one movement of the 507

four movements of DoFs 1 and 3. For the spatial mode, 508

the first four components are task-specific synergies for those 509

four movements, while the 5th and 6th synergies are shared 510

synergies between wrist’s DoFs 1 and 3 respectively. 511

Those task-specific and shared synergies are then used to 512

estimate the control signals for the testing dataset through 513

direct projection, as discussed in Section IV-B. An example 514

of the final control signals for DoF1 and DoF3 of subject six 515

estimated using the consTD approach are illustrated in Figure 516

12. 517

B. Matrix factorisation models 518

Both NMF and SNMF decompose a training EMG segment 519

of one DoF (two movements) into two synergies and their 520

respective weighting functions. This was applied to the three 521

main wrist’s DoFs separately. Then the extracted synergies 522

were used for estimating the testing glove dataset through 523

direct projection of EMG dataset. The SNMF was used to 524

separate between movements directly by imposing sparseness 525

on the weighting function. An example of NMF of DoF1 and 526

DoF3 for subject six is shown in Figure 8. The same segments 527

were decomposed by SNMF as illustrated in Figure 9. 528
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Fig. 8: The NMF of training EMG datasets for DoF1 (Panels 8a, 8b) and DoF3 (Panels 8c, 8d) recorded from subject 6.

Control signals for each movement are estimated using529

direct projection of the matrix factorisation components and530

consTD methods as discussed in Section IV-B. The final531

control signals are calculated via the difference between the532

control signals of each movement and its antagonistic move-533

ment for each DoF [44]. An example of the final control534

signals for DoF1 and DoF3 of subject six are illustrated in535

Figures 10 and 11 using NMF and SNMF respectively.536

C. Comparison through glove data reconstruction 537

Synergies estimated by consTD, SNMF, and NMF were 538

used to estimate the control signals from the testing EMG 539

datasets. The glove data were reconstructed by applying ridge 540

regression on the estimated testing control signals. This was 541

done for each sensor of the 22 glove sensors where the ridge 542

regression coefficients were calculated separately from the 543

training data set as discussed in Section IV-C. An example of 544

the four reconstructed glove data (sensor 12) plotted against 545



EBIED et al.: PREPRINT SUBMITTED TO BIOMEDICAL SIGNAL PROCESSING AND CONTROL. 9

Synergy 1 Synergy 2
0

0.2

0.4

0.6

0.8

1

N
o

rm
al

is
ed

 V
al

u
e

Ch 1
Ch 2
Ch 3
Ch 4
Ch 5
Ch 6
Ch 7
Ch 8
Ch 9
Ch 10

(a) SNMF synergies for DoF1.

Weighting function 1

0 4.5 9
Seconds

N
o

rm
al

is
ed

 A
m

p
lit

u
d

e

Weighting function 2

(b) Weighting Functions for DoF1.

Synergy 1 Synergy 2
0

0.2

0.4

0.6

0.8

1

N
o

rm
al

is
ed

 V
al

u
e

(c) SNMF synergies for DoF3.

Weighting function 1

0 4.5 9
Seconds

N
o

rm
al

is
ed

 A
m

p
lit

u
d

e

Weighting function 2

(d) Weighting Functions for DoF3.

Fig. 9: The NMF of training EMG datasets for DoF1 (Panels 9a, 9b) and DoF3 (Panels 9c, 9d) recorded from subject 6.

TABLE I: The mean values of R2 for the reconstructed glove
data of the 3 DoFs combination.

consTD SNMF NMF

DoF 1-2 dataset-1 0.5241 0.5238 0.5146

dataset-2 0.5112 0.5111 0.4964

dataset-1 0.580 0.5723 0.5704DoF 1-3
dataset-2 0.5589 0.5576 0.5566

DoF 2-3 dataset-1 0.535 0.541 0.532

dataset-2 0.516 0.512 0.511

the true glove data is shown in Figure 13 for subject six.546

For all subjects, R2 were calculated between the true and547

reconstructed glove datasets for each wrist’s DoF combination.548

The top three performing glove sensors were (8, 12, and 21)549

across all methods. The R2 results for DoF1-3 are represented550

as a violin plot in Figures 14 and 15 for datasets 1 and551

2, respectively. The mean values for the three wrist’s DoF552

combinations for both datasets are summarised in Table I.553

The statistical analysis of two-sample t-test between the three554

methods (consTD, NMF, and SNMF) against random syner-555

gies showed that the three methods rejected the null hypothesis556

(p ≤ 0.05). Hence, there is a significant difference between the557

R2 results for the three methods and the randomly generated558

synergies.559

VI. DISCUSSION560

EMG has been used for decades to control prostheses [15].561

Recently, several synergy-based systems have been proposed562

to achieve simultaneous and proportional myoelectric control563

[20], [21]. These approaches rely on matrix factorisation meth- 564

ods to extract muscle synergies which are utilised to provide 565

continuous control signals. However, those approaches are still 566

limited in terms of the number of DoFs, task-dimensionality, 567

and reliability. Because of the limitations of matrix factorisa- 568

tion methods, tensor decomposition was introduced to EMG 569

signals for muscle synergies (i.e., modules) investigation [13], 570

[14], [29]. Matrix factorisation might be suitable to extract 571

spatial and temporal modules, but it cannot investigate the 572

task-specific synergies. Hence, tensor decomposition could be 573

suitable for muscle synergy applications in prosthesis control. 574

In this study, the potential application of higher-order tensor 575

model in myoelectric control system was explored. We pro- 576

vided a scheme for applying synergies extracted via higher- 577

order tensor decomposition in prosthesis control systems. This 578

was approached by using a consTD method for synergy 579

extraction from 3rd-order EMG tensor and incorporating the 580

shared synergy concept. In an earlier study [14], we showed 581

that the consTD method can estimate consistent synergies 582

when the task dimensionality is increased up to 3-DoFs, 583

while the traditional NMF was not able to extract consistent 584

synergies when EMG segments were expanded to include 585

additional DoFss. In addition, the consTD approach was better 586

than NMF when the EMG data consists of several DoFs, 587

since consTD includes shared synergies in the estimation 588

process naturally [13]. Moreover, Takiyama et al. [29] showed 589

that tensor decomposition enables the quantification of task- 590

specific synergies in both spatial and temporal synergies simul- 591

taneously. While matrix factorisation methods including NMF 592

can only quantify task-specific synergies in either spatial and 593

temporal synergies when combined with a posteriori analysis 594

[45], [46]. Hence, we demonstrate here the ability of tensor 595
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(b) Final control signal for DoF3 using NMF synergies.

Fig. 10: Final control signal for DoF1 (Panel 10a) and DoF3
( 10b) projected through direct projection of muscle synergies
extracted via NMF recorded from subject 6.

decomposition in general and consTD specifically to estimate596

muscle synergies and control signals that can be utilised597

to provide a framework for simultaneous and proportional598

myoelectric control systems, especially with the increase of599

task-dimensionality and the number of DoFs.600

A consTD scheme was proposed to estimate muscle syner-601

gies from training data for proportional myoelectric control.602

Muscle synergies were extracted via both NMF and SNMF603

for comparison. The estimated synergies were used to obtain604

control signals for each DoF through direct projection of the605

EMG testing data. The three methods were able to estimate606

the control signals for each DoF that can be used in synergy-607

based myoelectric control systems. However, consTD was608

able to use all data in one 3rd-order tensor, unlike matrix609

factorisation models where the data is segmented for each DoF610

as shown in Figure 2. Moreover, the consTD method provides611

more information by including additional shared synergies612

as shown in Figure 7, where spatial synergies 5 and 6 are613

shared between the tasks of DoFs 1 and 3 respectively. In614

comparison, matrix factorisation (Figures 8 and 9) methods615

can only provide synergies for each task separately without616

any regard to the underlying shared synergistic information617

between tasks and/or DoFs.618

In addition, the concept of tensor decomposition can include619

more information by expanding the tensors to add additional620

related data to EMG signals. These additional information621

can enhance the performance of decomposition and synergy622

extraction. For example, tensor decomposition was applied623

to joint angle and EMG data to investigate task-specific624

synergies [29] in addition to spatial and temporal synergies.625

This was done simultaneously using tensor decomposition626
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Fig. 11: Final control signal for DoF1 (Panel 11a) and DoF3
( 11b) projected through direct projection of muscle synergies
extracted via SNMF recorded from subject 6.
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Fig. 12: Final control signal for DoF1 (Panel 12a) and DoF3
( 12b) projected through direct projection of muscle synergies
extracted via consTD recorded from subject six.
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Fig. 13: Representative traces of wrist movement (DoF1-3) glove
data (sensor 12) reconstruction using muscle synergies extracted via
(13a) consTD, (13b) SNMF and (13c) NMF synergies for subject 6.

unlike matrix factorisation approaches where it is limited to627

only two variables. Other prosthesis control studies [47], [48]628

used inertial measurement unitss (IMUs) along with EMG to629

improve classification accuracy and reduce the number of used630

electrodes, which is essential for the practicality of prosthesis631

control. Hence, it could be useful to incorporate both EMG and632

IMU data in a data fusion scheme based on tensor factorisation633

to extract the underlying information between them. This could634

further improve the analysis and performance which cannot be635

done by the conventional methods.636

The identified synergies and the extracted control signals637

were used to reconstruct the glove dataset through direct re-638

gression of the EMG testing data. The reconstructed glove data639

were compared with real glove data as shown in Figure 13. R2
640

was calculated between the reconstructed and actual glove data641

as a metric to assess each method. To rule out any statistical642

chance, random synergies were used to reconstruct glove data643

as well and two-sample t-test was performed on the three644

methods (NMF,SNMF and consTD). The statistical analysis645

of R2 showed that there is a significant difference between the646

R2 results of the three methods and the randomly generated 647

synergies. 648

The reconstructed glove data that was computed via consTD 649

method has higher R2 values than that of the matrix factorisa- 650

tion methods as shown in Figures 15 and 14. However, the 651

R2 values difference is not statistically significant. This is 652

because ridge regression affected R2 values. As a result, the 653

differences between methods are not represented effectively. 654

Another drawback is that the average R2 value across all 655

subjects for the three methods was generally modest. This 656

is due to the fact that glove data may be not the best way 657

to capture the hand kinematics, especially the wrist’s DoF, as 658

they rely on resistive bend-sensing [32]. 659

However, this study provides a proof of concept for the use 660

of higher-order tensor decomposition in proportional myoelec- 661

tric control. For this application, 3rd-order tensor provides an 662

easier approach to identify synergies for each DoF by adding 663

this information to the tensor construction and decomposition. 664

On the other hand, NMF methods have to extract synergies 665

separately through DoF-wise training [20], [24]. SNMF ex- 666

tracted synergies from two DoFs datasets [21], but another 667

step was needed to identify synergies for each DoF after the 668

factorisation process. 669

VII. CONCLUSION 670

In summary, the novel consTD was presented as a method 671

for synergy-based proportional myoelectric control. Tensor 672

decomposition has not been utlised in any myoelectric con- 673

trol system. consTD was compared with NMF and SNMF 674

methods, the current benchmarks in synergy-based myoelectric 675

control schemes. The wrist’s three main DoFs from two pub- 676

licly available datasets were investigated in this comparison. 677

Synergies extracted by the three methods (consTD, NMF, and 678

SNMF) were used to estimate the control signal for each DoF 679

through direct projection, to provide a proof of concept for 680

the application of consTD in proportional myoelectric control. 681

Then, the control signals were used to reconstruct the glove 682

testing dataset for comparison. Although the consTD method 683

is not significantly better than matrix factorisation techniques, 684

its R2 tends to be higher and it allows avoiding some of the 685

problems associated with the training of the alternatives based 686

on matrix factorisation. Therefore, we expect consTD to be a 687

method worthy of further investigation to obtain myoelectric 688

control signal. 689
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vol. 10 of Biosystems & Biorobotics, pp. 251–272, Cham: Springer708

International Publishing, 2016.709

[6] M. M. Nazifi, H. U. Yoon, K. Beschorner, and P. Hur, “Shared and710

Task-Specific Muscle Synergies during Normal Walking and Slipping,”711

Frontiers in Human Neuroscience, vol. 11, pp. 1–14, 2 2017.712

[7] G. Martino, Y. P. Ivanenko, A. D’Avella, M. Serrao, A. Ranavolo,713

F. Draicchio, G. Cappellini, C. Casali, and F. Lacquaniti, “Neuromus-714

cular adjustments of gait associated with unstable conditions,” Journal715

of Neurophysiology, vol. 114, p. jn.00029.2015, 9 2015.716

[8] P. Saltiel, K. Wyler-Duda, A. D’Avella, M. C. Tresch, and E. Bizzi,717

“Muscle synergies encoded within the spinal cord: evidence from focal718

intraspinal NMDA iontophoresis in the frog.,” Journal of neurophysiol-719

ogy, vol. 85, pp. 605–619, 2 2001.720

[9] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-721

negative matrix factorization.,” Nature, vol. 401, pp. 788–91, 10 1999.722

[10] M. C. Tresch, V. C.-K. K. Cheung, and A. D’Avella, “Matrix factor- 723

ization algorithms for the identification of muscle synergies: evaluation 724

on simulated and experimental data sets.,” Journal of neurophysiology, 725

vol. 95, pp. 2199–2212, 4 2006. 726

[11] A. Ebied, E. Kinney-Lang, L. Spyrou, and J. Escudero, “Evaluation of 727

matrix factorisation approaches for muscle synergy extraction,” Medical 728

Engineering & Physics, vol. 57, pp. 51–60, 7 2018. 729

[12] A. Ebied, L. Spyrou, E. Kinney-Lang, and J. Escudero, “On the use of 730

higher-order tensors to model muscle synergies,” in 2017 39th Annual 731

International Conference of the IEEE Engineering in Medicine and 732

Biology Society (EMBC), pp. 1792–1795, IEEE, 7 2017. 733

[13] A. Ebied, E. Kinney-lang, L. Spyrou, and J. Escudero, “Muscle Activity 734

Analysis using Higher-Order Tensor Models: Application to Muscle 735

Synergy Identification,” IEEE Access, vol. 7, pp. 27257–27271, 6 2018. 736

[14] A. Ebied, E. Kinney-Lang, and J. Escudero, “Consistency of Muscle 737

Synergies Extracted via Higher-Order Tensor Decomposition Towards 738

Myoelectric Control,” in 2019 9th International IEEE/EMBS Conference 739

on Neural Engineering (NER), pp. 315–318, IEEE, 3 2019. 740

[15] E. Biddiss, D. Beaton, and T. Chau, “Consumer design priorities for up- 741



EBIED et al.: PREPRINT SUBMITTED TO BIOMEDICAL SIGNAL PROCESSING AND CONTROL. 13

per limb prosthetics,” Disability and rehabilitation. Assistive technology,742

vol. 2, pp. 346–357, 7 2007.743

[16] P. Geethanjali, “Myoelectric control of prosthetic hands: state-of-the-art744

review.,” Medical devices (Auckland, N.Z.), vol. 9, pp. 247–55, 2016.745

[17] L. J. Hargrove, E. J. Scheme, K. B. Englehart, and B. S. Hudgins,746

“Multiple binary classifications via linear discriminant analysis for747

improved controllability of a powered prosthesis,” IEEE Transactions748

on Neural Systems and Rehabilitation Engineering, vol. 18, pp. 49–57,749

2 2010.750

[18] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and751

O. C. Aszmann, “The extraction of neural information from the surface752

EMG for the control of upper-limb prostheses: Emerging avenues and753

challenges,” IEEE Transactions on Neural Systems and Rehabilitation754

Engineering, vol. 22, no. 4, pp. 797–809, 2014.755

[19] N. Jiang, S. Dosen, K.-r. Muller, and D. Farina, “Myoelectric Control of756

Artificial Limbs: Is There a Need to Change Focus? [In the Spotlight],”757

IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 150–152, 2012.758

[20] N. Jiang, H. Rehbaum, I. Vujaklija, B. Graimann, and D. Farina, “In-759

tuitive, online, simultaneous, and proportional myoelectric control over760

two degrees-of-freedom in upper limb amputees.,” IEEE transactions on761

neural systems and rehabilitation engineering, vol. 22, no. 3, pp. 501–762

10, 2014.763

[21] C. Lin, B. Wang, N. Jiang, and D. Farina, “Robust extraction of basis764

functions for simultaneous and proportional myoelectric control via765

sparse non-negative matrix factorization,” Journal of Neural Engineer-766

ing, vol. 15, p. 026017, 4 2018.767

[22] N. Jiang, K. B. Englehart, and P. a. Parker, “Extracting simultaneous and768

proportional neural control information for multiple-dof prostheses from769

the surface electromyographic signal,” IEEE Transactions on Biomedical770

Engineering, vol. 56, pp. 1070–1080, 4 2009.771

[23] C. Choi and J. Kim, “Synergy matrices to estimate fluid wrist move-772

ments by surface electromyography,” Medical Engineering and Physics,773

vol. 33, pp. 916–923, 10 2011.774

[24] J. Ma, N. V. Thakor, and F. Matsuno, “Hand and Wrist Movement Con-775

trol of Myoelectric Prosthesis Based on Synergy,” IEEE Transactions776

on Human-Machine Systems, vol. 45, pp. 74–83, 2 2015.777

[25] R. Prevete, F. Donnarumma, A. D’Avella, and G. Pezzulo, “Evidence for778

sparse synergies in grasping actions,” Scientific Reports, vol. 8, p. 616,779

12 2018.780

[26] D. D. Lee and H. S. Seung, “Algorithms for Non-negative Matrix781

Factorization,” in Advances in Neural Information Processing Systems,782

pp. 556–562, 2001.783

[27] A. de Rugy, G. E. Loeb, and T. J. Carroll, “Are muscle synergies useful784

for neural control?,” Frontiers in computational neuroscience, vol. 7,785

p. 19, 1 2013.786

[28] A. Cichocki, D. Mandic, A. H. Phan, C. Caiafa, G. Zhou, Q. Zhao,787

and L. De Lathauwer, “Tensor Decompositions for Signal Processing788

Applications From Two-way to Multiway Component Analysis,” IEEE789

Signal Processing Magazine, vol. 32, pp. 1–23, 3 2014.790

[29] K. Takiyama, H. Yokoyama, N. Kaneko, and K. Nakazawa, “Speed-791

dependent and mode-dependent modulations of spatiotem-poral modules792

in human locomotion extracted via tensor decom-position,” Scientific793

Reports, vol. 10, pp. 1–15, 12 2020.794

[30] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,795

S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Electromyography796

data for non-invasive naturally-controlled robotic hand prostheses.,”797

Scientific data, vol. 1, p. 140053, 1 2014.798

[31] M. Atzori, A. Gijsberts, I. Kuzborskij, S. Elsig, A.-G. Mittaz Hager,799

O. Deriaz, C. Castellini, H. Muller, and B. Caputo, “Characterization800

of a Benchmark Database for Myoelectric Movement Classification,”801

IEEE Transactions on Neural Systems and Rehabilitation Engineering,802

vol. 23, pp. 73–83, 1 2015.803

[32] M. Atzori, A. Gijsberts, S. Heynen, A.-G. M. Hager, O. Deriaz,804

P. van der Smagt, C. Castellini, B. Caputo, and H. Muller, “Building805

the Ninapro database: A resource for the biorobotics community,”806

Proceedings of the IEEE RAS and EMBS International Conference on807

Biomedical Robotics and Biomechatronics, pp. 1258–1265, 6 2012.808

[33] A. Gijsberts, M. Atzori, C. Castellini, H. Müller, and B. Caputo,809

“Movement error rate for evaluation of machine learning methods810

for sEMG-based hand movement classification,” IEEE Transactions on811

Neural Systems and Rehabilitation Engineering, vol. 22, pp. 735–744,812

7 2014.813

[34] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”814

Psychometrika, vol. 31, pp. 279–311, 9 1966.815

[35] P. Comon, “Tensors : A brief introduction,” IEEE Signal Processing816

Magazine, vol. 31, pp. 44–53, 5 2014.817

[36] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applica- 818

tions,” SIAM Review, vol. 51, pp. 455–500, 8 2008. 819

[37] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis with Applications 820

in the Chemical Sciences. Chichester, UK: John Wiley & Sons, Ltd, 8 821

2004. 822

[38] P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompositions, 823

alternating least squares and other tales,” Journal of Chemometrics, 824

vol. 23, pp. 393–405, 7 2009. 825

[39] R. Sands and F. W. Young, “Component models for three-way data: 826

An alternating least squares algorithm with optimal scaling features,” 827

Psychometrika, vol. 45, pp. 39–67, 3 1980. 828

[40] K. Devarajan, “Nonnegative matrix factorization: an analytical and in- 829

terpretive tool in computational biology.,” PLoS computational biology, 830

vol. 4, p. e1000029, 1 2008. 831

[41] H. Kim and H. Park, “Sparse non-negative matrix factorizations via 832

alternating non-negativity-constrained least squares for microarray data 833

analysis,” Bioinformatics, vol. 23, pp. 1495–1502, 6 2007. 834

[42] C. A. Andersson and R. Bro, “The N-way Toolbox for MATLAB,” 835

Chemometrics and Intelligent Laboratory Systems, vol. 52, pp. 1–4, 8 836

2000. 837

[43] A. Krasoulis, S. Vijayakumar, and K. Nazarpour, “Evaluation of re- 838

gression methods for the continuous decoding of finger movement from 839

surface EMG and accelerometry,” in 2015 7th International IEEE/EMBS 840

Conference on Neural Engineering (NER), pp. 631–634, IEEE, 4 2015. 841

[44] N. Jiang, T. Lorrain, and D. Farina, “A state-based, proportional myo- 842

electric control method: online validation and comparison with the clin- 843

ical state-of-the-art.,” Journal of neuroengineering and rehabilitation, 844

vol. 11, p. 110, 7 2014. 845

[45] G. Torres-Oviedo and L. H. Ting, “Subject-Specific Muscle Synergies in 846

Human Balance Control Are Consistent Across Different Biomechanical 847

Contexts,” Journal of Neurophysiology, vol. 103, pp. 3084–3098, 6 2010. 848

[46] H. Yokoyama, T. Ogawa, N. Kawashima, M. Shinya, and K. Nakazawa, 849

“Distinct sets of locomotor modules control the speed and modes of 850

human locomotion,” Scientific Reports, vol. 6, pp. 1–14, 11 2016. 851

[47] A. Krasoulis, I. Kyranou, M. S. Erden, K. Nazarpour, and S. Vi- 852

jayakumar, “Improved prosthetic hand control with concurrent use of 853

myoelectric and inertial measurements,” Journal of NeuroEngineering 854

and Rehabilitation, vol. 14, p. 71, 12 2017. 855

[48] A. Krasoulis, S. Vijayakumar, and K. Nazarpour, “Multi-Grip 856

Classification-Based Prosthesis Control with Two EMG-IMU Sensors,” 857

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 858

vol. 28, pp. 508–518, 2 2020. 859


