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Abstract

Medical image fusion plays an important role in the clinical diagnosis of
several critical neurological diseases by merging complementary information
available in multimodal images. In this paper, a novel CT-MR neurological
image fusion framework is proposed using an optimized biologically inspired
feedforward neural model in two-scale hybrid `1 − `0 decomposition domain
using gray wolf optimization to preserve the structural as well as texture
information present in source CT and MR images. Initially, the source
images are subjected to two-scale `1 − `0 decomposition with optimized pa-
rameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2
base layer. Two detail layers at scale-1 and 2 are fused using an optimized
biologically inspired neural model and weighted average scheme based on
local energy and modified spatial frequency to maximize the preservation
of edges and local textures, respectively, while the scale-2 base layer gets
fused using choose max rule to preserve the background information. To
optimize the hyper-parameters of hybrid `1 − `0 decomposition and biolog-
ically inspired neural model, a fitness function is evaluated based on spatial
frequency and edge index of the resultant fused image obtained by adding
all the fused components. The fusion performance is analyzed by conducting
extensive experiments on different CT-MR neurological images. Experimen-
tal results indicate that the proposed method provides better-fused images
and outperforms the other state-of-the-art fusion methods in both visual
and quantitative assessments.

Keywords: CT, MR, Image fusion, Hybrid `1 − `0 layer decomposition,
Biologically inspired spiking neural model

1. Introduction

Brain is the most complex organ which controls various physiological
functions of the body. Neural activities of the brain are also responsible for
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steering a person’s emotions which ultimately drive his/her social behavior.
Even an acute physical injury or minor abnormality in its function can lead
to catastrophic damages. Hence, there is a continuous need for advance-
ments in tools and techniques which help to visualize and analyze differ-
ent brain structures more meticulously. There are several medical imaging
modalities as X-ray, ultra Sound (US), Computed Tomography (CT), Mag-
netic Resonance (MR), etc. which can provide different kind of information
(anatomic, functional, etc.) of the body part being imaged. However, no
single medical image modality can provide complete and comprehensive di-
agnostic information, especially in critical diseases. For example, CT is pre-
ferred to image hard-tissue structures like bones and provides an accurate
diagnosis of skull injuries, brain calcification, etc., while MR is considered
better to image soft tissues and provides excellent anatomical details of vari-
ous brain lesions [1]. Therefore, it is necessary to find out the correlation be-
tween different imaging modalities to provide significant information which
is very time consuming for clinicians and costly for an individual. Therefore,
there is a need to develop a unique solution that is used to improve the effec-
tiveness of analyzing methods to determine the level of severity associated
with the disease. The proposed work is focused on the problem of ana-
lyzing the multi-modal medical images. The fusion of the complementary
anatomical information provided by CT and MR modalities results in more
localized and factual clinical interpretations. Hence, CT-MR medical image
fusion can be regarded as a high-value tool for clinicians and radiologists to
infer the causes of different neurological anomalies and may assist them to
come up with a more accurate and reliable diagnosis, especially in critical
neurological diseases.

In past years, several image fusion methods have been reported in the lit-
erature which can be categorized into spatial domain and transform domain
[2]. In spatial domain fusion methods, source pixels are fused directly based
on their intensities or some regional activities, while in transform domain
methods, firstly reference images are decomposed using multi-scale trans-
formation and then the transform coefficients at each scales are fused using
different fusion rules based on their values or activity levels. Though spatial
domain image fusion methods have an advantage of less computational com-
plexity, its results are limited to poor contrast, artifacts, and blurring effects
in the fused image. Multiscale transform-based approaches can extract both
the spatial and spectral information and hence provide better localization
to spatial structures present in the source images. In this context, a wide
range of multiscale transform-based fusion approaches are presented in the
literature [3]. Pyramid decomposition-based methods outperform spatial do-
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main fusion, however, they suffer from blocking effects because they are not
able to offer directional selectivity [4]. Discrete wavelet transform (DWT)-
based fusion provides direction selectivity and captures 1-dimensional point
singularities resulting in reduced blocking artifacts. However, artifacts are
still introduced in the regions of line or curve singularities [5]. Further-
more, different decompositions such as curvelet (CVT) [6], contourlet (CT)
[7] and shearlet transform (ST) [8]-based methods have been reported to
reflect higher-order singularities and to provide an improved fusion perfor-
mance. However, subsequent subsampling at each scale makes it shift vari-
ant. The shift-invariance property of nonsubsampled contourlet transform
(NSCT) [9, 10, 11], nonsubsampled shearlet transform (NSST) [12, 13, 14]
and stationary wavelet transforms (SWT) [15, 16] overcomes the problem
of shift-invariance and offers better fusion performance in terms of the edge
preservation. Moreover, to preserve small edges present in the source im-
ages, the number of decomposition levels has to be increased which further
increases the computational complexity.

The main motivation of the proposed work is to preserve the energy of the
source images and provides perceptually appealing fused images. To achieve
this, it is important to develop such fusion methods that are capable to pre-
serve small diagnostic detail and edges as much as possible by enhancing
the visualization of fused images. Hence, an edge-preserving decomposition
named as hybrid `1 − `0 layer decomposition (HLD) model [17] having two
`1 and `0 sparsity terms for detail and base layer, individually is utilized in
the proposed approach to capture sharp edges and week structural details,
respectively. However, the fusion performance largely depends on the reg-
ularization parameters (λ1, λ2, λ3) which control the degree of smoothness
of base and detail layers. Conventionally, these values are manually cho-
sen based on successive experiments at a regular interval or hit and trial
method [17, 18] which may not lead to optimal performance. To overcome
the limitation of manual selection of hyper-parameters, gray wolf optimiza-
tion technique (GWO) [19] is utilized in the presented work to optimize λ1,
λ2, λ3 regularization parameters of `1 − `0 HLD model.

Alongwith the proper selection of the decomposition method, it is very
important to device an intelligent fusion rule for detail and base layers, in-
dividually to conserve the spatial information and edge information present
in the base and detail layers, respectively. Normally, base layer coefficients
carry most of the energy and textural details of the source images. Simple
averaging fusion rule results in significant loss of texture information and
contrast [20]. Weighted average based on local energy, Laplacian energy
[10], and variance [21], etc. have shown better performance with lesser com-
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putational cost. Moreover, detail layer coefficients carry structural details
and edge information available in the source images. To preserve maximum
structural information, some activity level measures such as local log Ga-
bor energy [22, 23], directive contrast [24], phase congruency and sharpness
[10], etc are utilized by choose max rule. Moreover, biologically-inspired
spiking feedforward neural network (BISFNN) such as pulse coupled neural
(PCNN) model and its variants are extensively utilized in the formulation of
image fusion algorithm because of its ability to extract features consistent
with human vision [2, 5, 12, 13, 25, 26]. In these approaches, each neuron is
subjected to local activities of input coefficients such as intensity, regional
energy, a novel modified spatial frequency, novel sum modified Laplacian,
etc. [2, 5]. However, the major limitation of the conventional BISFNN model
is the optimal selection of its free parameters (αL, αT , β, VL, VT ) which de-
pend on the nature and texture of the input source images. In the past years,
the selection of all free parameters was done based on successive experiments
on a regular interval (or hit and trial approach) [5, 12, 27]. To overcome the
limitation of manual selection, some fusion methods are developed based on
the adaptive selection of few free parameters using local contrast, entropy,
directional gradient, saliency, local visibility and intensity of pixels or coeffi-
cients [23, 25, 28, 29, 30, 31, 32]. They showed improved fusion performance,
however, successive trials based parameter selection is involved in those ap-
proaches. Besides the PCNN based fusion methods, sparse representation
and deep learning-based fusion approaches have also been presented recently
in [33, 34, 35, 36, 37, 38] and showed better preservation of textures, but
involve a large number of training samples and computations.

With the consideration of the aforementioned discussion, an optimized
CT-MR neurological image fusion framework is presented in this paper by
optimizing the free parameters of `1−`0 HLD model and BISFNN model
using the gray wolf optimization (GWO) technique.

Firstly, source CT and MR-T2 neurological images are subjected to two-
scale `1−`0 HLD decomposition to extract the structural and textural com-
ponents from source images and also to reduce the effect of noise and arti-
facts simultaneously. To extract the structural information present in the
source images, detail layers at scale-1 are fused using optimized BISFNN
based on firing time, whereas the detail layer at scale-2 having mostly tex-
tural details of the source images get fused using a weighted average scheme
based on local energy and novel sum modified spatial frequency to preserve
the local textures in the fused image. The base layer at scale-2 has only the
local luminescence, hence a choose max rule is applied to fuse the base layer
to retain better contrast. Moreover, the free parameters of HLD model and

4



BISFNN are optimized using GWO by considering a fitness function based
on spatial frequency [9] and edge index [39] of the fused images to maximize
the visual clarity and preservation of structural details, respectively. The
salient contributions of the proposed work are outlined as follows:

• This paper presents an optimized CT−MR-T2 neurological image fu-
sion framework using an optimized HLD and BISFNN model that
captures the structural and textural details and further enhances the
visualization of the fused images.

• Three different fusion rules are designed to fuse each decomposition
layer (detail and base layers at a different scale) following the nature
of the information carried by the decomposed coefficients to preserve
structural, textural, and background information of the source images
effectively.

• Instead of successive trails to select the hyper-parameters of conven-
tional `1−`0 HLD and BISFNN model, the GWO approach is applied
to compute the optimal values of all parameters.

• In the proposed method, the optimization process is guided by a fitness
function based on spatial frequency and edge index of the fused image
which maximizes the clarity and preservation of sharp edges present
in the source images.

Subsequent sections of this paper are organized as follows: section 2 gives a
brief introduction of the methodologies utilized to implement the proposed
approach. Section 3 provides the detailed implementation steps involved in
the proposed fusion approach. Experimental results and their discussions
are presented in section 4. Finally, conclusions are given in section 5.

2. Methodology

2.1. Hybrid `1 − `0 Layer Decomposition Model

The hybrid `1 − `0 layer decomposition model involves the composite
use of `1 and `0 regularization factors on base and detail layer, respectively
[17]. The piece-wise constant property of `0 sparsity term helps in better
preservation of structural details. On the other hand, `1 sparsity term holds
piece-wise smoothness property which helps in preserving edges, effectively.
The mathematical formulation of the hybrid layer decomposition framework
is discussed below.
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At first level decomposition, `1 − `0 priors are imposed on the input
image to get first scale components as follows:

B1 = model`1,`0(I) (1)

D1 = I −B1 (2)

where, the input image is denoted by I, B1 and D1 represent the base layer
and detail layer, respectively at scale 1. The mathematical equation of the
decomposition model `1 − `0 is given by:

minB

K∑
p=1

(Ip −Bp)2 + λ1

∑
i={x,y}

|∂iBp|+λ2

∑
i={x,y}

H(∂i(Ip −Bp))

 (3)

where K and p denote the total number of pixels and the pixel position
in the I, B and D. ∂i represents partial derivative operator along x and
y directions. λ1 and λ2 are two regularization parameters that control the
degree of smoothness of the base layer and detail layer, respectively. The
first term is a squared error minimization term which forces the base layer
to be close to the input image to preserve most of the information present in
the source image. The second term is used to model edge-preserving prior
by imposing `1 gradient sparsity on the base layer. The third term indicates
`0 gradient sparsity imposed on the detail layer as a structural prior using
a function H(x):

H(x) =

{
1, x 6= 0
0, x = 1.

(4)

The outlier-rejection nature of `1 sparsity term preserves the important
edges present in the base layer. On the other hand, the flattening nature of
`0 sparsity terms effectively preserve structures present in the detail layer.
For the second level decomposition, a simplified version of the model given
in Eq.(3) is applied to B1 to capture the texture information as follows:

B2 = minB

K∑
p=1

(B1,p −Bp)2 + λ3

∑
i={x,y}

|∂iBp|

 (5)

D2 = B1 −B2 (6)

where B2 and D2 represent the base layer and detail layer at scale 2, respec-
tively. The parameter λ3 controls the degree of smoothness in the base layer
B2. `1 gradient sparsity is imposed on base layers to model edge-preserving
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Figure 1: Two scale hybrid `1−`0 decomposition model

prior and hence D2 holds most of the textural information, while B2 con-
tains only the local mean brightness. A fast joint bilateral filtering of B2 is
also performed using B1 as a guiding image to regain the sharp edges from
its sampled version. Fig. 1 depicts block diagram of two-scale hybrid `1 −
`0 layer decomposition model. The decomposition model outputs D1, D2

and B2 containing structural, textural and local mean brightness informa-
tion of the input image respectively. The original image is reconstructed as
by simply adding the decomposed layers follows:

I = D1 +D2 +B2 (7)

2.2. Biologically Inspired Spiking Feed-forward Neural Model

Bio-Inspired Spiking Feedforward neural network (BISFNN) is a biomi-
metic design inspired by the visual cortex model of a Human Visual System
(HVS) that excites connected neurons based on external input and its char-
acteristics [26]. The feature extraction and feature linking phenomenon of
the neuron assemblies present in the visual cortex is captured by a simple
neural network model named Pulse Coupled Neural Network (PCNN) [40].
This neural model is a two-dimensional, single-layer network of laterally con-
nected neurons that extract visual features of an image by processing local
features and further linking them with the features extracted by the neigh-
bour neurons that help to extract features consistent with human visual
perception. Moreover, the internal activities of the neurons are translation,
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rotation, illumination, and scale-invariant which makes it more suitable for
feature extraction in image processing applications as compared to other
methods. Thus, it responds sharply to significant features. The mathemati-
cal representation of a simplified version of the BISFNN model is expressed
as follows,

Ei,j(n) = Pi,j (8)

Li,j(n) = e−αLLi,j(n− 1) + VL
∑
w

Wi,jYi,j(n− 1) (9)

Ui,j(n) = Ei,j(n)(1 + βLi,j(n)) (10)

Ti,j(n) = e−αT Ti,j(n− 1) + VTYi,j(n) (11)

Yi,j(n) =

{
1, Ui,j(n) > Ti,j(n)
0, otherwise

(12)

where Pi,j is the corresponding pixel intensity or pixel activity at (i, j) which
acts as external stimuli to the PCNN neurons. Ei,j and Li,j are feeding and
linking inputs, respectively. Wi,j represents synaptic weights of neighboring
neurons within a specified window (w). For a neuron, Ui,j , Yi,j and Ti,j pro-
vide their total internal activity, external activity and variable threshold,
respectively. n denotes the number of iterations. The conventional BISFNN
model has several hyper-parameters such as decay time constant (αL, αT ),
linking parameter (β), internal linking voltage (VL) and output threshold
voltage (VT ) which are selected manually using hit and trail approach based
on the successive experiments at a regular interval, this may not lead to
optimal fusion performance. αT affects the firing time of the neurons and β
controls the extent of modulation of feeding input by linking input. More-
over, they are largely dependent on the nature and texture of the input
image. hence it is required to optimize all these free parameters of BISFNN
model to get better fusion performance.

2.3. Gray Wolf Optimization

Grey wolf optimization is inspired by the hunting behaviour of grey
wolves. It mimics the three phases of social behaviour of a grey wolf pack
while hunting their prey namely, tracking, encircling and attacking [19].
There is a four-level of social hierarchy in a pack which are categorized into
alpha (α), beta (β), delta (δ) and omega (ω) in descending order of their
dominance. The alpha wolves are the leaders and they control the hunt-
ing process. The beta wolves execute decisions taken by alpha wolves and
lead the pack in their absence. The delta and omega wolves are responsible
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for the unity and safety of the pack. The mathematical representation of
encircling a prey is depicted by the following formulations:

~D =
∣∣∣~C. ~Xpr(k)− ~Xp(k))

∣∣∣ (13)

~Xp(k + 1) = ~Xp(k)− ~A. ~D (14)

Initially, the wolves are positioned randomly around the prey. Here, p =
1, 2, ..., P refers to the pth wolf in a group of P gray wolves , ~Xpr and ~Xp de-
note the position vector of prey and the grey wolf respectively, k = 1, 2, ...,K
represent the number of iterations, ~A and ~C denote coefficient vector given
as follows:

~A = 2~a.~r1 − ~a (15)

~C = 2.~r2 (16)

where ~a is a variable that is set to 2 at the beginning and decreased linearly
up-to 0 at the end of the maximum iteration. ~r1 and ~r2 denote random
vectors on the basis of which grey wolves update their position in search
space. The mathematical representation of the social hunting nature of grey
wolves is expressed by the following equations:

~Dα =
∣∣∣ ~C1. ~Xα − ~Xp

∣∣∣ , ~Dβ =
∣∣∣ ~C2. ~Xβ − ~Xp

∣∣∣ , ~Dδ =
∣∣∣ ~C3. ~Xδ − ~Xp

∣∣∣ (17)

~X1 = ~Xα − ~A1. ~Dα, ~X2 = ~Xβ − ~A2. ~Dβ, ~X3 = ~Xδ − ~A3. ~Dδ (18)

~Xp(k + 1) =
~X1 + ~X2 + ~X3

3
(19)

Alpha (α), beta (β) and delta (δ) wolves participate in hunting as de-
picted by Eq. 17. Next, the fitness for each of the hunting wolf is evaluated
depending on its distance from the prey. The top three fittest wolves are
identified and their position is updated using Eq. 18. Next, their positions
are saved and averaged together to update the positions of wolves in the
next iteration i.e. ~Xp(k + 1). In the proposed optimized fusion approach,
the optimizer searches for optimal values of eight free parameters (λ1, λ2, λ3

for `1−`0 HLD model and αL, αT , β, VL, VT for optimized BISFNN model),
making the search space eight dimensional i.e. (ND = 8). All the vectors in
above mentioned formulations are 1× 8 dimensional and each wolf position
~Xp represents a set values of λ1, λ2, λ3, αL, αT , β, VL and VT that is a

potential solution to the optimization problem.
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3. Proposed Method

This section details the complete implementation steps involved in the
process flow of the proposed optimized framework for CT-MR image fu-
sion method which utilizes two scales `1−`0 hybrid decomposition, BISFNN
model having optimized parameters using GWO approach. The proposed
CT-MR image fusion model based on the aforementioned approach is illus-
trated in Fig.2.
Step 1: Start with the source CT and MR neurological images referred as
R = Ri,j and S = Si,j , respectively, where i and j represent row and column
indices.

Step 2: Initialize the GWO parameters i.e. number of search agents (P ),
number of search variable (ND), number of maximum iterations (K), po-
sition vector ( ~Xp), top three fittest wolves ( ~Xα, ~Xβ, ~Xδ) and variables

(~a, ~A, ~C).

Step 3: Apply two scale hybrid layer `1−`0 decomposition to the source
images which provides two details layers and one base layer component.[

DX
1i,j , D

X
2i,j , B

X
2i,j

]
= HLD (Ri,j) (20)

where D1i,j and D2i,j refer to detail layers at scale-1 and scale-2, respectively.
B2i,j refers to the base layer components and X ∈ (R,S)
Step 4: Scale-1 Detail layer fusion − To fuse DX

1 layer components,
motivate the BISFNN model by applying the feeding input as scale-1 detail
layer coefficients (DX

1i,j
). Obtain the pulse firing map of neurons (Y X

i,j ) by
the given mathematical relations:

EXi,j(n) = DX
1i,j (21)

LXi,j(n) = e−αLLXi,j(n− 1) + VL
∑
w

WX
i,jY

X
i,j (n− 1) (22)

UXi,j(n) = EXi,j(n)(1 + βLXi,j(n)) (23)

TXi,j(n) = e−αT TXi,j(n− 1) + VTY
X
i,j (n) (24)

Y X
i,j (n) =

{
1, UXi,j(n) > TXi,j(n)

0, otherwise,
(25)

Step 5: Compute the firing times ftXi,j in n iteration for which Y X
i,j = 1 as

follows:
ftXi,j(n) = ftXi,j(n− 1) + Y X

i,j (n) (26)
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Figure 2: Process flow of the proposed fusion method

Step 6: After maximum iterations n = nmax, fuse the D1 layer coefficients
based on the firing times evaluated in the previous step as follows:

DF
1i,j =

{
DR

1i,j
; ftRi,j(n)) > ftSi,j(n))

DS
1i,j

; otherwise
(27)

where DF
1i,j

refers to fused scale-1 detail layer coefficients.

Step 7: Scale-2 Detail layer fusion − To fuse scale-2 detail layer DX
2

components, the concept of weighted averaging is utilized based on the es-
timation of weighted local energy (WLE) and a novel sum modified spatial
frequency (NMSF ) of DX

2i,j
to preserve the local textures present in source

CT and MR images. Estimate weighted local energy and a novel sum mod-
ified spatial frequency from scale-2 detail layer (DX

2 ) coefficients.

WLEXi,j =
x∑
i=1

y∑
j=1

(DX
2 (x+ i, y + j)2w(i, j)) (28)
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where w = 1
16

1 4 1
4 1 4
1 4 1

 denotes x × y template used for normalization.

x× y denotes the size of the template.

NMSFXi,j =
√

(RFXi,j)
2 + (CFXi,j)

2 + δ (29)

RFXi,j =

√√√√ 1

M(N − 1)

M∑
i=1

N∑
j=2

(DX
2 (i, j − 1)−DX

2 (i, j))2 (30)

CFXi,i =

√√√√ 1

N(M − 1)

M∑
i=2

N∑
j=1

(DX
2 (i, j)−DX

2 (i− 1, j))2 (31)

δ =

[
1

(M−1)(N−1)

∑M
i=2

∑N
j=2(DX

2 (i, j)−DX
2 (i− 1, j − 1))2+

1
(M−1)(N−1)

∑M
i=2

∑N
j=2(DX

2 (i− 1, j)−DX
2 (i, j − 1))2

]
(32)

where RFXi,j and CFXi,i refer to the row and column frequency of DX
2 layer,

respectively. The third term δ refers to the diagonal frequency of neighbor-
hood pixels.
Step 8: Compute the feature matrix (FMX

i,j) as follows:

FMX
i,j = WLEXi,j ·NMSFXi,j . (33)

Step 9: Normalize the FMX
i,j in the range [0,1] to get normalized feature

matrix ZXi,j as follows:

ZXi,j =
FMX

i,j − (FMX
i,j)min

(FMX
i,j)max − (FMX

i,j)min
(34)

Step 10: Calculate the weights w1 and w2 for DR
2 and DS

2 , respectively as
follows:

w1 =
ZR
i,j

ZR
i,j + ZS

i,j

(35)

w2 =
ZS
i,j

ZR
i,j + ZS

i,j

(36)

Step 11: Get the fused layer at scale two DF
2 using weighted average rule

as follows:
DF

2i,j = w1D
R
2i,j + w2D

S
2i,j (37)
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Step 12: Base layer fusion− Chose max rule is applied to fuse base layer
(BX

2 ) coefficients and retain better contrast and background information as
much as possible.

BF
2i,j =

{
BR

2i,j
, BR

2i,j
> BS

2i,j

BS
2i,j
, otherwise

(38)

Step 13: Reconstruct the fused image F = Fi,j as follows:

Fi,j = DF
1i,j +DF

2i,j +BF
2i,j (39)

Step 14: State the fitness function (Ffit) as a product of spatial frequency
(SF ) and edge index (QRS/F ) of the fused images as follows:

Ffit = SF ×QRS/F (40)

SF =
√
RF 2 + CF 2, (41)

where RF and CF refer to the row and column frequency, respectively and
given as,

RF =

√√√√ 1

M(N − 1)

M∑
i=1

N∑
j=2

(F (i, j − 1)− F (i, j))2 (42)

CF =

√√√√ 1

N(M − 1)

M∑
i=2

N∑
j=1

(F (i, j)− F (i− 1, j))2 (43)

and

QRS/F =

∑M
i=1

∑N
j=1

[
QRF (i, j)wR(i, j)

+QSF (i, j)wS(i, j)

]
∑M

i=1

∑N
j=1wR (i, j) + wS(i, j)

(44)

where QRF and QSF denote the edge information preservation [39] values
of source CT and MR images weighted by wR and wS , respectively.
Step 15: Now, update all aforementioned free parameters using GWO ap-
proach by repeating the following steps K times;

1. Evaluate the cost function as defined in step 14.

2. Update the wolf positions using Eqs. 17 - 19.

3. Update the coefficient vectors using Eqs. 15 and 16
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4. Execute steps 3-13 with updated values of free parameters.

The complete implementation process of the proposed fusion method is
summarized in Algorithm 1. Moreover, the flowchart of complete process of
the propsoed fusion approach is given in Fig. 3.

Figure 3: Flowchart of the the proposed fusion method

4. Experimental Results and Discussions

This section deals with the details of the experiments and their re-
sult analysis carried out to comprehend the efficacy of the proposed fusion
method.
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Algorithm 1: Proposed Method
Input: Pre-registered CT and MR image pair Ri,j and Si,j of size M ×N .
Output: Fused image
Parameters: Maximum BISFNN iterations (nmax), synaptic weight matrix (W ),

number of search agents (P ), number of search variable (ND), maximum number of

iterations (K), initial particle position ( ~Xp)

1. Decompose each source CT and MR image into DX1 , DX2 , BX2 , using Eqs. (1)-(6), where
X ∈ [Ri,j , Si,j ]

2. Scale-1 detail layer fusion

• Activate the BISFNN model with DX1 and obtain the pulse firing map of neurons
Y Xi,j using Eqs. (21)-(25).

• Compute the firing times ftXi,j for nmax iteration using Eq. (26).

• Get the fused detail layer DF1 at scale-1 using Eq. (27),

3. Scale-2 detail layer fusion

• Estimate weighted local energy WLEXi,j and novel sum modified spatial frequency

NMSFXi,j of DX2 using Eqs. (28)-(32).

• Compute feature matrix FMX
i,j ; FM

X
i,j = WLEXi,j ·NMSFXi,j , for X ∈ [Ri,j , Si,j ]

• Compute normalized feature matrix ZXi,j using Eq. (34).

• Calculate the weights w1 and w2 for DR2 and DS2 , respectively Eqs. (35) and (36)

• Get the fused detail layer DF2 at scale-2 using, DF2i,j = w1DR2i,j + w2DS2i,j

4. Base layer fusion: Get the fused base layer BF2 using choose max rule as Eq. (38).

5. Get the resultant fused image Fi,j by combining fused scale-1 detail layer DF1 , scale-2
detail layer DF2 and base layer BF2 .
Fi,j = DF1i,j +DF2i,j +BF2i,j .

6. State the fitness Ffit of the fused image using Eqs. 40-44.

7. Get updated values of free parameters using GWO by repeating the following steps K
times.

• Evaluate the fitness Ffit = SF ×QRS/F of the fused image.

• Update the grey wolf positions using Eqs. 17 - 19.

• Update the coefficient vectors ~A and ~C using Eqs. 15 and 16.

• Find the top three fittest wolves and update ~Xα, ~Xβ , ~Xδ

• Execute step 1-5 by using updated values of free parameters.

4.1. Dataset

To validate the proposed fusion method, several experiments are per-
formed on different CT and MR-T2 neurological image datasets of different
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patients taken from the whole brain atlas of the Harvard medical school
(http: //www.med.harvard.edu /AANLIB/home.html). All the CT-MR im-
age pairs are pre-registered and have a spatial resolution of 256×256. These
CT and MR-T2 image datasets have been considered for visual and quanti-
tative evaluation of the fusion images and validated by radiologists.

4.2. Objective Evaluation Metrics

Qualitative results of fusion methods present the comparison of visual
assessment among source CT, MR-T2 and fused images, while quantita-
tive evaluation validates the subjective analysis in terms of different per-
formance evaluation parameters. Eleven quantitative parameters such as
entropy (EN), standard deviation (SD), mutual information (MI) [41],
spatial frequency (SF ) [9], edge index (QRS/F ) [39], nonlinear correlation in-
formation entropy (QNICE) [42], Peilla Metric (Q) [43], Cvejic Metric (QC)

[44], Yang Metric (QY ) [45], Chen-Blum Metric (QCB) [46] and R
F/RS
Q (with

arctangent sigmoid function) [47] are used to evaluate the performance of
the proposed CT-MR image fusion method and compare its performance
with other state-of-the-art methods. Their mathematical formulations and
significance are tabulated in Table 1.

4.3. Implementation and Parameter Settings

In the proposed approach, both the source images are subjected to 2 scale
hybrid `1−`0 decomposition into scale-1 and 2 detail layers and one base
layer components. To optimize the hyper-parameters of HLD and BISFNN
model, GWO technique having P = 50 search agents, K = 12 iterations
and ND = 8 dimensional search space having search variables (λ1, λ2, λ3,
αL, VL, β, αT , VT ) is used. To implement the proposed fusion method,
the main challenge is to choose a suitable approach among search tech-
niques available in literature such as Particle Swarm Optimization (PSO)
and Differential Evolution Optimization (DEO), Cuckoo Search (CS), etc.
[32, 48, 49, 19]. The proposed fusion approach is implemented and tested
with other optimization techniques alongwith GWO. The following are the
reasons to consider GWO approach in the proposed fusion method.

• For each search algorithm, apart from the number of search agents and
iteration number, other control-parameters are also important which
need to be initialized and have a great influence on the performance
of the search algorithm. For example, PSO requires three control pa-
rameters namely inertia coefficient (w) , acceleration constants c1 and
c2 which control the global and local search abilities of the algorithm
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Table 1: Quantitative evaluation metrics to analyze the performance of different fusion
methods

Sl.No. Performance Metrics Mathematical Formulations Interpretation

1. Entropy (EN) EN = −
∑L−1
i=0 p (i) log2p (i) Higher entropy values refer to

more amount of information
available in the fused image.

2. Standard devia-
tion (SD)

SD =
√∑M

i=1

∑N
j=1

F (i,j)−F̄ (i,j)
M×N Higher SD values refer to the

fused image with better con-
trast compared to the source
images.

3. Spatial Fre-
quency (SF )
[9]

SF =
√
RF 2 + CF 2 , where

RF =
√

1
M(N−1)

∑M
i=1

∑N
j=2(F (i, j − 1)− F (i, j))2

CF =
√

1
N(M−1)

∑M
i=2

∑N
j=1(F (i, j)− F (i− 1, j))2

Higher SF values refer to bet-
ter visual clarity.

4. Mutual Informa-
tion (MI) [41]

MI = I(xR;xF ) + I(xS ;xF ) Higher MI values depict more
visual information transferred
from input to fused images

5. Edge index
(QRS/F ) [39]

QRS/F =
∑M

i=1

∑N
j=1QRF (i,j)wR(i,j)+QSF (i,j)wS(i,j)∑M

i=1

∑N
j=1 wR(i,j)+wS(i,j)

Higher QRS/F values indicate
better preservation of edge in-
formation in fused images.

6. Nonlinear Cor-
relation Infor-
mation Entropy
(QNICE) [42]

QNICE = 1 +
∑k
i=1

λRN

i

k logk
λRN

i

k Higher QNICE values indicate
more correlation between the
source and fused images.

7. Peilla Metric
(Q) [43]

Q = 1
W̄

∑
w∈W [λR(w)Q0(R,F |w) + λS(w)Q0(S, F |w)] Higher values of Q gives the

extent up to which the fused
image retains the salient infor-
mation contained within the
source images.

8. Cvejic Metric
(QC) [44]

Qc =
∑
w∈W

[
sim(R,S, F |w)Q(R,F |w)+

(1− sim(R,S, F |w))Q(S, F |w)

]
Higher QC value refers more
similarity between fused and
reference images.

9. Yang Metric
(QY ) [45]

QY = 1
|W |

∑
w∈W Q(R,S, F |w) Higher QY values indicate

better preservation of compli-
mentary information in the
fused images.

10. Chen and Blum
Metric (QCB)
[46]

QCB = mean(λR(i, j)QRF (i, j) + λS(i, j)QSF (i, j)) Higher QCB values measure
the quality of fused images
based on human vision sys-
tem.

11. Fractional order
differentiation
based edge
information
(R

F/RS
Q ) [47]

R
F
RS

Q =
∑M

i=1

∑N
j=1(RFR(i,j)WR(i,j)+RFS(i,j)WS(i,j))∑M

i=1

∑N
j=1W

R(i,j)+WS(i,j)
Higher R

F
RS

Q values indicate
presence of more edge infor-
mation in the fused image.

[48]. Similarly, in the case of DEO, parameters like scaling factor (FR)
and crossover rate of (CR) need to be selected properly to get opti-
mal performance [49]. The selection of all these control parameters
(usually, done by the hit and trial approach) is very crucial to ensure
the efficacy of the search algorithm. Also sometimes, this becomes
time-consuming and may lead to inaccurate solutions. While GWO
can be regarded as a parameter-less algorithm in which all the inter-
nal control parameters are updated automatically using two vectors ~r1

and ~r2 selected randomly between 0 to 1 which further reduces manual
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interventions [19].

• To justify the consideration of the GWO approach, extensive experi-
ments are carried out on several CT and MR-T2 image pairs wherein
the source images were subjected to fusion using the proposed method
with PSO, DEO and GWO techniques. For each optimization tech-
nique, same fitness function, number of search agents (50) and max-
imum number of iterations (12) are considered. The visual results
obtained for all the cases were found approximately similar. Further-
more, all objective measures are computed in each case and their av-
eraged values are tabulated in Table 2 from which it is observed that
all three optimization techniques give similar fusion performance and
achieve approximately the same optimal solution.

• Moreover, another comparison is made among the optimization time
taken by each technique and presented in Table 3. From the results, it
is observed that for the same number of search agents and iterations,
GWO takes 10% less time as compared to other algorithms which
helps in improving the computational efficiency of the proposed fusion
approach.

Based on the above discussion, GWO offers optimal performance along with
reduced computational complexity and manual intervention as compared to
others. Therefore, GWO has been selected for the present study.

Table 2: Averaged performance analysis of different optimization algorithms for CT-MR
image fusion

Performance
Metrics

Optimization Algorithm
PSO DEO GWO

EN 4.959 ± 0.285 4.964 ± 0.284 4.943 ± 0.283
SD 83.757 ± 4.666 83.720 ± 4.660 83.960 ± 4.593
SF 7.178 ± 0.619 7.181 ± 0.621 7.186 ± 0.621
MI 3.203 ± 0.235 3.202 ± 0.237 3.224 ± 0.258
QRS/F 0.588 ± 0.043 0.588 ± 0.042 0.588 ± 0.044
QNICE 0.808 ± 0.001 0.808 ± 0.001 0.808 ± 0.001
Q 0.826 ± 0.028 0.826 ± 0.028 0.826 ± 0.028
QC 0.710 ± 0.055 0.710 ± 0.055 0.710 ± 0.055
QY 0.778 ± 0.051 0.778 ± 0.050 0.779 ± 0.054
QCB 0.633 ± 0.064 0.631 ± 0.064 0.633 ± 0.064

R
F/RS
Q 0.351 ± 0.007 0.351 ± 0.007 0.351 ± 0.007

After selection of GWO as an optimization technique, another challenge
is to decide a suitable termination criterion for the GWO algorithm. Decid-
ing the number of iteration k is a very crucial step to maintain a balance
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Table 3: Average run-time analysis of different optimization algorithms for CT-MR image
fusion

Optimization
Schemes

Average running
time (seconds)

PSO 436.07 ± 8.71
DEO 435.39 ± 6.80
GWO 392.44 ± 3.67

between the algorithm’s computational efficiency and optimization perfor-
mance. For a proper selection of maximum iteration number, extensive
experiments were carried out to analyze the effect of iterations on a fitness
function. Out of them, some results are presented in Fig. 4 (a)-(f). From
Fig. 4, it is observed that the optimizer search converges at the 8th iteration
for some cases while in few cases (refer Fig. 4 (d)-(f)), the fitness improves
up to the 10th iteration but does not improve further by a notable gain. Sim-
ilar kinds of observations were made for the rest of the fusion cases. Thus,
based on the experimental results, maximum iterations k = 12 is considered
for the GWO while implementing the proposed fusion method.

For GWO algorithm, the search variables are initialized to ( ~Xp) to
(0, 0, 0, 0, 0, 0, 0, 10) with an upper bound of (1, 1, 1, 1, 1, 3, 1, 20). ~a is set to
2 and decreases further up-to 0 at the end of the maximum iteration while
~r1 and ~r2 denote random vectors and hence selected randomly between 0 to 1
[19]. The maximum iteration nmax = 150 andW = [0.707 1 0.707; 1 0 1; 0.707 1 0.707]
are chosen for BISFNN model.

Figure 4: Fitness value vs iteration count of GWO for different CT-MR image pairs.
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Figure 5: Source (a) CT images, (b) MR images, and (c) Fused images obtained by our
proposed fusion method.

4.4. Results and Analysis

4.4.1. Experiment 1

In this experiment, the fusion performance is analyzed for CT and MR-
T2 image dataset out of which nine CT-MR image pairs are shown in Fig.
5(a) and Fig. 5(b), respectively. The corresponding fused images obtained
by the proposed method are shown in Fig. 5(c). From the results shown in
Fig. 5(c), it is observed that the fusion method integrates the complemen-
tary information present in the source images. The fused images demarcate
the skull boundaries and also preserve the edges and contrast of soft tissues
effectively. Moreover, the fused image carries composite information of both
the source images that can lead to more factual interpretations and accurate
clinical diagnosis. To validate the visual performance, objective evaluation
metrics are evaluated and presented in Table 4 from which it is observed
that the proposed fusion method yields significant values for all aforemen-
tioned quantitative measures. Furthermore, another comparison is shown in
Fig. 6 to quantify the fusion results between fused and source CT−MR-T2
images in terms of EN , SD, and SF values illustrated in Figs. 6(a), 6(b)
and 6(c), respectively. To give a better insight into the overall performance
of the proposed fusion algorithm, averaged values of EN , SD and SF are
presented in Table 5. The proposed fusion method gets approx. 61.27% and
27.4% higher EN , 0.06% and 41.46% higher SD, 36.40% and 13.51% higher
SF values than the source CT and MR-T2 images, respectively. Higher EN
values indicate that the fusion results carry more diagnostic information
than an individual source image. Higher SD and SF show that the fused
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Table 4: Performance evaluation metrics obtained by the proposed method for the fused
images shown in Fig. 5

Performance Image Pairs
Metrics #1 #2 #3 #4 #5 #6 #7 #8 #9
EN 5.392 4.929 4.864 5.384 4.96 4.651 4.572 4.901 4.831
SD 81.74 78.44 88.83 79.96 85.78 82.51 93.15 82.26 82.99
SF 6.651 7.457 6.757 8.410 7.691 6.392 6.816 7.175 7.320
MI 3.710 3.328 2.840 3.039 3.132 3.224 3.488 3.067 3.187
QRS/F 0.592 0.624 0.522 0.573 0.581 0.603 0.600 0.664 0.530
QNICE 0.809 0.807 0.806 0.806 0.807 0.807 0.808 0.806 0.807
Q 0.819 0.857 0.774 0.804 0.823 0.858 0.826 0.856 0.810
QC 0.820 0.748 0.611 0.707 0.710 0.699 0.688 0.698 0.703
QY 0.848 0.817 0.668 0.794 0.791 0.758 0.743 0.824 0.760
QCB 0.500 0.681 0.600 0.585 0.625 0.702 0.681 0.685 0.635

R
F/RS
Q 0.352 0.357 0.340 0.346 0.354 0.360 0.348 0.360 0.342

image has better contrast and clarity which makes the fused images visually
better than both the source CT and MR-T2 images. From the experimental
results, it is concluded that the proposed method can improve the visual-
ization of the fused images with better contrast and clarity than the source
images.

Figure 6: Bar graph illustrating the performance of the proposed method compared with
the reference CT and MR for (a) EN (b) SD (c) SF
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Table 5: Averaged performance metrics (mean ± standard deviation) of source CT, MR
and the fused images obtained by the proposed method.

Source
Images

Performance Metrics
EN SD SF

CT 3.065 ± 0.304 83.908 ± 5.495 5.268 ± 0.678
MR 3.880 ± 0.337 59.351 ± 4.984 6.331 ± 0.852
Proposed 4.943 ± 0.283 83.960 ± 4.593 7.186 ± 0.621

4.4.2. Experiment 2

In this section, a comparative analysis is done to highlight the efficacy of
the proposed fusion method compared to nine other state-of-the-art fusion
approaches in the terms of both qualitative and quantitative performance.
For comparison, five pairs of source CT and MR-T2 images are shown in
Figs. 7−11 (a) and (b), respectively. Moreover, two zoomed regions are
presented to visualize a clear demarcation between the performance of the
proposed and other existing fusion methods. The results of fusion per-
formance obtained by the proposed fusion method are compared with the
following nine state-of-the-art fusion approaches,

Method 1: Convolutional sparse representation (CSR) based fusion method
proposed by Liu et al. (2016) and discussed in [35]. Base layers are fused
using an averaging scheme. Detail layers are fused by first obtaining their
sparse coefficient maps using the CSR model followed by choose max rule.

Method 2: Convolutional neural network (CNN) based medical image fusion
method presented by Liu et al. (2017) as discussed in [37] in which weight
map and local energy map are calculated after decomposing the source im-
ages using Laplacian pyramid.

Method 3: NSST domain adaptive PCNN based fusion model proposed by
Yin et al. (2018) as described in [25]. Source images are decomposed using
3-level NSST and the adaptive PCNN is used further to fuse high-frequency
suubands. For PCNN W = [0.5 1 0.5; 1 0 1; 0.5 1 0.5] and nmax = 110

Method 4: Fusion approach proposed by Ramlal et al. (2018) [13] in which
images are first subjected to 3-level NSST. Low-frequency subbands are
fused using choose max rule based on regional energy followed by consistency
verification and high-frequency subbands are fused using PCNN activated
by morphological gradients of coefficients. The PCNN has fixed parame-
ters as W = [0.707 1 0.707; 1 0 1; 0.707 1 0.707] , nmax = 150, αL = 0.3,
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Figure 7: Visual comparison of (a) CT image (b) MR image and fused images obtained
by (c) Liu et al. (2016) [35] (d) Liu et al. (2017) [37] (e) Yin et al. (2018) [25] (f) Ramlal
et al. (2018)[13] (g) Ganasala et al. (2019) [15] (h) Zhu et al. (2019) [10] (i) Li et al.
(2020) [11] (j) Tan et al. (2020) [14] (k) Panigrahy et al. (2020) [31] (l) Proposed method

αT = 0.1, β = 0.2, VL = 1 and VT = 10.

Method 5: Fusion approach presented by Ganasala et al. (2019) [15] in the
SWT domain. Source images are subjected to three-level SWT. Approxi-
mate subband coefficients are fused based on texture energy features, while
detail subband components get fused using maximum selection rule.

Method 6: NSCT domain fusion method presented by Zhu et al. (2019)
[10]. 3-level NSCT decomposition is performed on the source images. Low-
frequency subbands are fused taking into account the local Laplacian energy.
High-frequency subbands fusion is based on local phase congruency, sharp-
ness, and energy.

Method 7: Fusion approach by Li et al. [11] (2020) in which source im-
ages are decomposed using 3-level NSCT. Low-frequency subbands are fused
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Figure 8: Visual comparison of (a) CT image (b) MR image and fused images obtained
by (c) Liu et al. (2016) [35] (d) Liu et al. (2017) [37] (e) Yin et al. (2018) [25] (f) Ramlal
et al. (2018)[13] (g) Ganasala et al. (2019) [15] (h) Zhu et al. (2019) [10] (i) Li et al.
(2020) [11] (j) Tan et al. (2020) [14] (k) Panigrahy et al. (2020) [31] (l) Proposed method

using regional standard deviation. High-frequency subbands are fused us-
ing coefficient activated PCNN.The PCNN uses fixed parameters as W =
[0.707 1 0.707; 1 0 1; 0.707 1 0.707] , nmax = 150, αL = 0.3, αT = 0.1,
β = 0.2, VL = 1 and VT = 10.

Method 8: NSST domain fusion approach given by Tan et al. [14] (2020) .
Low-frequency coefficients are fused with the help of energy attributes and
high-frequency coefficients are fused using bounded measure PCNN. The
PCNN has fixed parameters as nmax = 200, αL = 0.02, αT = 3, β = 3,
VL = 1, VT = 20 and the size of W is 7x7 .

Method 9: A parameter adaptive Fusion approach presented by Panigrahy
et al. [31] (2020) in the NSST domain. 4-level NSST decomposition is per-
formed on the source images. Low-frequency coefficients are fused using
multi-scale morphological gradient and high-frequency coefficients are fused
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Figure 9: Visual comparison of (a) CT image (b) MR image and fused images obtained
by (c) Liu et al. (2016) [35] (d) Liu et al. (2017) [37] (e) Yin et al. (2018) [25] (f) Ramlal
et al. (2018)[13] (g) Ganasala et al. (2019) [15] (h) Zhu et al. (2019) [10] (i) Li et al.
(2020) [11] (j) Tan et al. (2020) [14] (k) Panigrahy et al. (2020) [31] (l) Proposed method

using parameter adaptive dual-channel PCNN.W = [0.5 1 0.5; 1 0 1; 0.5 1 0.5]
and nmax = 150 is used For PCNN.

A) Qualitative Analysis of CT and MR-T2 Neurological Images
The fused images (Fig. 7-11 (c)) obtained by Liu et al. (2016) [35]

method suffer from the limited contrast and so, it fails sometimes to present
a significant demarcation of the skull boundary and soft tissue structures.
Liu et al. (2017) [37] and Yin et al. (2018) [25] methods offer more preser-
vation of soft tissue edges depicted by Fig. 7-11 (d) and (e), respectively.
However, in some regions, the proposed method performs better (refer to
the zoomed regions and arrows marked in Figs. 7-11 (d), (e) and (l)). Ram-
lal et al. (2018) [13], Ganasala et al. (2019) [15] and Zhu et al. (2019)
[10] fusion methods also provide better hard tissue and soft tissue contrast
which can be visualized from Fig. 7-11 (f), (g) and (h). However, they lack
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Figure 10: Visual comparison of (a) CT image (b) MR image and fused images obtained
by (c) Liu et al. (2016) [35] (d) Liu et al. (2017) [37] (e) Yin et al. (2018) [25] (f) Ramlal
et al. (2018)[13] (g) Ganasala et al. (2019) [15] (h) Zhu et al. (2019) [10] (i) Li et al.
(2020) [11] (j) Tan et al. (2020) [14] (k) Panigrahy et al. (2020) [31] (l) Proposed method

to preserve the important diagnostic edge details present in source MR-T2
images. Moreover, the results obtained by Ramlal et al. (2018) [13] and
Zhu et al. (2019) [10] methods do not provide much clarity of textures
as compared to the proposed method that can also be visualized from the
zoomed version of the considered regions shown in Figs. 7-11, (f), (h) and
(l), respectively. Ganasala et al. (2019) [15] method gives fused images with
better contrast and clarity, but the sharp edges present in MR-T2 images
are reflected by the proposed method in a better way. From Fig. 7-11 (i)
and (j), it can be observed that the Li et al. (2020) [11] and Tan et al.
(2020) [14] methods can not reflect edge information and structural details
of the soft tissues available in the source MR images properly. Panigrahy
et al. (2020) [31] approach preserves the soft tissue structures well (refer
Fig. 7-11 (k)) but suffers from limited contrast in some cases and cease to
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Figure 11: Visual comparison of (a) CT image (b) MR image and fused images obtained
by (c) Liu et al. (2016) [35] (d) Liu et al. (2017) [37] (e) Yin et al. (2018) [25] (f) Ramlal
et al. (2018)[13] (g) Ganasala et al. (2019) [15] (h) Zhu et al. (2019) [10] (i) Li et al.
(2020) [11] (j) Tan et al. (2020) [14] (k) Panigrahy et al. (2020) [31] (l) Proposed method

demarcate the skull boundaries. From the comparative analysis and dis-
cussion of the aforementioned fusion performance, it can be inferred that
the proposed fusion approach outperforms the existing state-of-the-art fu-
sion methods developed recently and also is able to preserve the sharp edge
and the important diagnostic features with better local contrast and texture
clarity.

B) Qualitative Analysis − Visual Interpretation by the Radiologist
CT-MR image pair shown in Fig. 7 is a case of multiple infarcts wherein

infarct is noted in the right medial temporal lobe which is very well visu-
alized in the MR image due to the excellent soft tissue delineation in MR
images. However in the analogous section of CT images, the infarct is not
well visualized. In the fused image shown in Fig. 7 (l), the infarct can be
clearly detected. Fig. 8 presents a case of fatal stroke where both CT-MR
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images show large infarct with edema in the right temoporo parietal region
with mass effect in the form of shift of midline structure (midbrain) to the
left and effacement of the sulcogyral spaces. However, in the fused image
shown in Fig. 8 (l) the involved area is well delineated and the adjacent
structures are well seen. Fig. 9 shows a case of acute stroke presenting as
speech arrest. Here, the cortical involvement of the infarct in the left frontal
lobe which is very subtle to be picked up on CT, is very well visualized in
the fused image shown in Fig. 9 (l). Fig. 10 presents a case hypertensive
encephalopathy where areas of cortical hyperintensities are noted on MR
while these findings are not so clearly visualized on CT. The fused image
shown in Fig. 10 (l) is able to integrate source anatomical information very
well. The CT-MR pair shown in Fig. 11 is a case of acute stroke (writes
but cannot read). MR image shows an infarct involving the medial aspect
of occipital lobe and left side of splenium of corpus callosum which is very
well diagnosed with the help of the fused image shown in Fig. 11 (l).

Table 6: Performance comparison of the proposed method with existing fusion methods
for CT-MR pair-1 shown in Fig. 7
Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.9006 5.3052 5.3538 5.3596 5.3683 5.1521 5.4769 5.3044 5.3619 5.384
SD 62.5036 80.4816 83.1894 83.8488 82.3326 83.0031 82.7233 79.5201 71.5075 79.9589
SF 7.5499 7.9461 8.2453 7.4394 8.4438 7.6880 8.0928 7.6753 8.4831 8.4105
MI 2.5390 2.6921 2.8574 2.8896 2.7449 2.7546 2.7775 2.7466 2.5922 3.0395
QRS/F 0.5535 0.5561 0.5402 0.5195 0.5159 0.5126 0.514 0.5311 0.5431 0.5739

QNICE 0.8053 0.8057 0.8061 0.8062 0.8058 0.8059 0.8059 0.8058 0.8054 0.8066
Q 0.7860 0.7442 0.7933 0.7440 0.7756 0.7542 0.7499 0.7659 0.7849 0.8048
QC 0.6125 0.5727 0.6357 0.6623 0.6519 0.6676 0.6501 0.6129 0.6591 0.7077
QY 0.7305 0.7177 0.7774 0.7348 0.7443 0.7446 0.7245 0.7490 0.7443 0.7943
QCB 0.5823 0.5572 0.5849 0.5390 0.5695 0.5582 0.5207 0.5599 0.5818 0.5850

R
F/RS
Q 0.340 0.3350 0.3414 0.3305 0.3367 0.3306 0.3348 0.3317 0.3405 0.3461

Table 7: Performance comparison of the proposed method with existing fusion methods
for CT-MR pair-2 shown in Fig. 8
Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.5888 4.7646 4.8911 4.9511 4.9458 4.8282 5.0727 4.9341 5.0098 4.9605
SD 66.8347 84.9477 89.1694 89.9994 87.675 88.731 88.5985 85.2121 76.0891 85.7764
SF 6.9852 7.3057 7.4909 6.4065 7.6857 7.1346 7.3393 7.0730 7.7719 7.6916
MI 2.6221 2.7690 2.9749 3.0434 2.8673 2.8893 2.9184 2.9048 2.6786 3.1321
QRS/F 0.5564 0.5624 0.5308 0.5025 0.5101 0.502 0.5080 0.5231 0.5463 0.5813

QNICE 0.8058 0.8062 0.8067 0.8069 0.8064 0.8065 0.8065 0.8065 0.8059 0.8072
Q 0.8194 0.8029 0.8085 0.7526 0.7913 0.7828 0.7744 0.7925 0.8018 0.8236
QC 0.6423 0.6167 0.6347 0.6369 0.6491 0.6001 0.6241 0.613 0.6643 0.7102
QY 0.7443 0.7505 0.7720 0.7099 0.7437 0.7173 0.7143 0.7566 0.7398 0.7915
QCB 0.6218 0.6222 0.6258 0.5757 0.5852 0.5908 0.5684 0.6068 0.6088 0.6254

R
F/RS
Q 0.3504 0.3476 0.3498 0.3359 0.3437 0.3414 0.3446 0.3407 0.3488 0.3548

C) Quantitative Analysis − Parametric Evaluation
To validate the visual performance, quantitative performance metrics

are evaluated for all aforementioned fusion approaches and presented in Ta-
bles 6-10 for fused images shown in Figs. 7-11, respectively. The proposed
method provides a significant increment in all quantitative measures and
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Table 8: Performance comparison of the proposed method with existing fusion methods
for CT-MR pair-3 shown in Fig. 9
Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.9485 5.1695 5.3476 5.3322 5.3618 5.3226 5.3751 5.2051 5.3280 5.3922
SD 66.3672 78.2407 85.3476 86.6213 83.042 85.7214 85.7797 83.3019 71.3589 81.7371
SF 6.0501 6.2222 6.4184 5.3791 6.6890 5.8447 6.0481 5.8022 6.8850 6.6516
MI 3.1407 2.8583 3.4355 3.319 3.2378 3.2705 3.3392 3.2757 3.2031 3.7108
QRS/F 0.5754 0.5391 0.5102 0.4566 0.4948 0.4436 0.4750 0.4980 0.5769 0.5925

QNICE 0.8072 0.8063 0.8081 0.8076 0.8075 0.8075 0.8077 0.8076 0.8075 0.8094
Q 0.7912 0.6933 0.7986 0.7506 0.7782 0.7566 0.7648 0.7818 0.8271 0.8193
QC 0.5692 0.6042 0.7140 0.6902 0.7214 0.7078 0.7082 0.6508 0.7723 0.8208
QY 0.5938 0.6802 0.7887 0.7187 0.7542 0.7398 0.7417 0.7292 0.7993 0.8486
QCB 0.5202 0.4876 0.5019 0.4492 0.5063 0.4266 0.4328 0.5035 0.5252 0.5005

R
F/RS
Q 0.3459 0.3214 0.3334 0.3171 0.3316 0.3178 0.3255 0.3289 0.3452 0.3524

Table 9: Performance comparison of the proposed method with existing fusion methods
for CT-MR pair-4 shown in Fig. 10
Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.3929 5.1791 4.7765 4.8870 4.7964 4.7235 5.1546 4.9262 4.8533 4.9015
SD 65.0448 81.9095 84.2222 84.8278 83.9126 84.2902 83.9789 80.4735 74.1379 82.2559
SF 6.4130 6.7178 6.9094 6.4242 7.1225 6.4980 6.8482 6.4027 7.1553 7.1759
MI 2.7149 2.7873 2.9351 2.8880 2.8057 2.8596 2.8344 2.8423 2.7425 3.0672
QRS/F 0.6126 0.6348 0.6239 0.5870 0.6072 0.5888 0.5983 0.5908 0.6371 0.6649

QNICE 0.8058 0.8061 0.8064 0.8063 0.8061 0.8063 0.8062 0.8062 0.8059 0.8068
Q 0.8460 0.7687 0.8531 0.7998 0.8388 0.7927 0.7908 0.8016 0.8377 0.8564
QC 0.6132 0.5923 0.6839 0.7107 0.6374 0.6985 0.6642 0.6553 0.6425 0.6982
QY 0.7799 0.7818 0.7964 0.7624 0.7674 0.7483 0.7275 0.7454 0.7673 0.8246
QCB 0.6925 0.4957 0.6914 0.5983 0.6503 0.6517 0.6121 0.6093 0.6570 0.6851

R
F/RS
Q 0.3511 0.3494 0.3556 0.3426 0.3512 0.3453 0.3498 0.3423 0.3577 0.3602

Table 10: Performance comparison of the proposed method with existing fusion methods
for CT-MR pair-5 shown in Fig. 11
Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.5330 4.5116 4.9339 4.9513 5.0078 4.8911 5.1405 5.0030 5.0801 4.9296
SD 61.1048 76.0527 81.4663 81.8346 80.7566 80.1606 80.6482 78.0440 73.4009 78.4415
SF 6.8820 7.0924 7.2984 6.3162 7.5275 7.0613 7.1257 6.9457 7.5004 7.4579
MI 2.9251 2.9345 3.1462 3.1391 3.1125 2.9503 2.9998 3.0736 2.9927 3.3287
QRS/F 0.5812 0.5905 0.5648 0.5096 0.5605 0.4817 0.5177 0.5487 0.5854 0.6249

QNICE 0.8067 0.8067 0.8073 0.8073 0.8072 0.8067 0.8069 0.8071 0.8068 0.8079
Q 0.8514 0.8359 0.8370 0.7680 0.8290 0.7851 0.7806 0.8177 0.8249 0.8577
QC 0.7259 0.7011 0.5778 0.5854 0.6900 0.5290 0.5523 0.5365 0.6925 0.7482
QY 0.7906 0.8118 0.7845 0.7363 0.7767 0.6922 0.6927 0.7546 0.7667 0.8174
QCB 0.6851 0.7088 0.6695 0.5765 0.6328 0.6191 0.5872 0.6206 0.6544 0.6810

R
F/RS
Q 0.3500 0.3481 0.3482 0.3336 0.3466 0.3379 0.3413 0.3418 0.3517 0.3576

ranks first in MI, QRS/F , QNICE , QC , QY and R
F/RS
Q which validates the

visual assessment of fusion results. For each performance measure, the best
performing method is indicated in bold and the second best is presented
as underlined. For some image pairs, Li et al. [11] gives higher values of
EN metric, but the proposed method performs much better in terms of
MI values alongwith the other quantitative metrics which indicates that
the proposed method performs better to reflect the ability for information
transfer from source to the fused images. Though Ramlal et al. [13] method
gains a higher SD values than the proposed method, still, the fused images
obtained by the proposed method are visually better alongwith higher edge
index QRS/F values. Panigrahy et al. [31] method gains higher SF values
but results in very lower values of SD, MI as compared to the proposed
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Table 11: Averaged performance analysis of the proposed and other existing fusion meth-
ods on CT-MR images (mean ± standard deviation)

Performance
Metrics

Fusion Methods
Liu et al. [35]

(2016)
Liu et al. [37]

(2017)
Yin et al. [25]

(2018)
Ramlal et al. [13]

(2018)
Gansala et al. [15]

(2019)
Zhu et al. [10]

(2019)
Li et al. [11]

(2020)
Tan et al. [14]

(2020)
Panigrahy et al. [31]

(2020)
Proposed
Method

EN 4.4758 ± 0.2984 4.7491 ± 0.3843 4.8155 ± 0.3749 4.7912 ± 0.4443 4.9207 ± 0.3113 4.7056 ± 0.4059 5.0784 ± 0.2605 4.9384 ± 0.2260 4.9726 ± 0.2531 4.9432 ± 0.2827
SD 65.265 ± 3.3174 81.859 ± 3.6427 86.525 ± 4.2333 87.272 ± 4.4150 84.0700± 2.7360 86.1372 ± 4.682 86.0755 ± 4.4990 82.5706 ± 3.806 73.633 ± 2.5304 83.961 ± 4.5926
SF 6.5898 ± 0.5392 6.9634 ± 0.5534 7.0386 ± 0.6130 6.2150 ± 0.6498 7.3420 ± 0.5657 6.6662 ± 0.5794 6.8624 ± 0.6549 6.6710 ± 0.5877 7.4144 ± 0.5414 7.1860 ± 0.6208
MI 2.7499 ± 0.2017 2.8752 ± 0.1788 3.0819 ± 0.1814 3.1004 ± 0.1537 2.9525 ± 0.2178 2.9719 ± 0.1458 3.0052 ± 0.1631 3.0077 ± 0.1764 2.8074 ± 0.2456 3.2243± 0.2582
QRS/F 0.5719 ± 0.0348 0.5745 ± 0.0384 0.5345 ± 0.0511 0.4949 ± 0.0472 0.5188 ± 0.0519 0.4805 ± 0.0554 0.4945 ± 0.0521 0.5309 ± 0.0405 0.5637 ± 0.0405 0.5883 ± 0.0439
QNICE 0.8062 ± 0.0006 0.8066 ± 0.0007 0.8071 ± 0.0007 0.8072 ± 0.0006 0.8068 ± 0.0008 0.8068 ± 0.0005 0.8064 ± 0.0007 0.8069 ± 0.0006 0.8069 ± 0.0008 0.8076 ± 0.0009
Q 0.8251 ± 0.0324 0.7970 ± 0.0573 0.8176 ± 0.0362 0.7731 ± 0.0361 0.8001 ± 0.0471 0.7825 ± 0.0342 0.7669 ± 0.0293 0.7927 ± 0.0304 0.8158 ± 0.0297 0.8258 ± 0.0283
QC 0.6627 ± 0.0620 0.6593 ± 0.0659 0.6085 ± 0.0624 0.6418 ± 0.0396 0.6594 ± 0.0511 0.6069 ± 0.0714 0.6056 ± 0.0584 0.5687 ± 0.0652 0.6817 ± 0.0441 0.7098 ± 0.0550
QY 0.7384 ± 0.0629 0.7694 ± 0.0505 0.7636 ± 0.0429 0.7382 ± 0.0378 0.7335 ± 0.0569 0.7169 ± 0.0385 0.6981 ± 0.0331 0.7366 ± 0.0335 0.7459 ± 0.0380 0.7786 ± 0.0537
QCB 0.6501 ± 0.0679 0.6256 ± 0.0935 0.6393 ± 0.0712 0.5907 ± 0.0822 0.6100 ± 0.0672 0.6029 ± 0.0793 0.5617 ± 0.0584 0.5959 ± 0.0466 0.6352 ± 0.0592 0.6330 ± 0.0644

R
F/RS
Q 0.3461 ± 0.0072 0.3415 ± 0.0111 0.3421 ± 0.0092 0.3273 ± 0.0098 0.3378 ± 0.0107 0.3300 ± 0.0113 0.3340 ± 0.0111 0.3359 ± 0.0076 0.3458 ± 0.0086 0.3513 ± 0.0074

method. The proposed method gains higher EN and MI values than other
methods which indicate that our method produces higher information con-
tent in the fused images. Moreover, it is capable to reflect sharp edges and
visual features very well in the resultant fused images which are indicated

by higher SF , QRS/F and R
F/RS
Q values.

To present a concise representation and comparison of the overall fusion
performance, another comparison is made and averaged value of performance
metrics are presented in Table 11 from which it is observed that the proposed
method gets significant better quantitative results in terms of EN , SF , SD,

MI, QRS/F , QNICE , Q, QC , QY and R
F/RS
Q values. Based on the validation

results, the following are the observations,

1. The proposed method yields 17.25%, 12.14%, 4.61%, 3.99%, 9.2%,
8.49%, 7.29%, 7.2% and 14.84% higher values of MI as compared to
the aforementioned methods 1-9, respectively which reflect that the
fused images obtained by the proposed method contain more visual
information compared to the other methods.

2. The proposed fusion methods get 0.08% − 7.68% and 1.20% − 11.53%
higher Q and QY respectively which refers to its ability to preserve the
salient and complementary information present in source images more
efficiently as compared to other fusion methods.

3. The proposed fusion method gets 7.11%, 7.66%, 16.65%, 10.60%, 7.65%,
16.96%, 17.21%, 24.82% and 4.13% higher values of QC as compared
to the fusion methods 1-9, respectively. Higher QC metric value indi-
cates the presence of a higher correlation between the fused and source
images.

4. The proposed method gains 2.88%, 2.41%, 10.07%, 18.87%, 13.41%,
22.45%, 18.96%, 10.82% and 4.37% higher QRS/F values than the fu-
sion method 1-9, respectively. It indicates that the proposed method
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outperforms other methods in preserving the structural and edge in-
formation present in the source images.

5. The proposed method achieves an average increment of 1.51% − 7.33%

for R
F/RS
Q metric indicating that the sharp edges are preserved more

effectively compared to the other methods.

In addition to this, the proposed method provides significant EN , SD and
SF values which indicates that the fused images have better local intensity
and contrast and are more visually clear. Therefore, based on the experi-
mental results, it is concluded that the proposed method gives a consistently
good performance which is a clear advantage over the other state-of-the-art
methods. Also, the proposed fusion method outperforms both in subjective
and objective performance leading to give more informative fused images
with better preservation of structural and textural information.

5. Conclusions

This paper presents an optimized CT-MR image fusion framework based
on two-scale hybrid layer `1−`0 decomposition and BISFNN model using the
GWO technique. The detail and base layer obtained from the HLD model
provides an effective representation of structural and textural details present
in the source images. Fusion rules are framed individually for each layer fol-
lowing the nature of decomposed layers to maximize the preservation of
complementary information of CT and MR images. The BISFNN model
also helps to extract the features consistent with human visual perception
resulting in the fused images with better visual quality. Furthermore, all the
free model parameters of HLD and BISFNN are optimized to overcome the
manual intervention that also helps to maximize the preservation of sharp
edges and enhance the visual quality of the fused images. The superiority
of the proposed method is inferred from the experimental results in terms of
visual quality and edge preservation. The visual analysis is further validated
quantitatively based on different performance metrics which also indicates
an ability of the proposed method to preserve more significant information
compared to the state-of-the-art methods. Based on results, it is concluded
that the proposed fusion method efficiently integrates complementary diag-
nostic information and is helpful to the radiologist by achieving more factual
clinical interpretations.
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