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Abstract

Background and Objective

Automated skin lesion analysis for simultaneous detection and recognition is still chal-

lenging for inter-class homogeneity and intra-class heterogeneity, leading to low generic ca-

pability of a Single Convolutional Neural Network (CNN) with limited datasets.

Methods

This article proposes an end-to-end deep CNN-based framework for simultaneous de-

tection and recognition of the skin lesions, named Dermo-DOCTOR, consisting of two en-

coders. The feature maps from two encoders are fused channel-wise, called Fused Feature

Map (FFM). The FFM is utilized for decoding in the detection sub-network, concatenating

each stage of two encoders’ outputs with corresponding decoder layers to retrieve the lost

spatial information due to pooling in the encoders. For the recognition sub-network, the

outputs of three fully connected layers, utilizing feature maps of two encoders and FFM, are

aggregated to obtain a final lesion class. We train and evaluate the proposed Dermo-Doctor

utilizing two publicly available benchmark datasets, such as ISIC-2016 and ISIC-2017.
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Results

The achieved segmentation results exhibit mean intersection over unions of 85.0 % and

80.0 % respectively for ISIC-2016 and ISIC-2017 test datasets. The proposed Dermo-DOCTOR

also demonstrates praiseworthy success in lesion recognition, providing the areas under the

receiver operating characteristic curves of 0.98 and 0.91 respectively for those two datasets.

The experimental results show that the proposed Dermo-DOCTOR outperforms the alterna-

tive methods mentioned in the literature, designed for skin lesion detection and recognition.

Conclusion

As the Dermo-DOCTOR provides better-results on two different test datasets, even with

limited training data, it can be an auspicious computer-aided assistive tool for dermatolo-

gists.

Keywords: Malignant melanoma, Skin lesion detection and recognition, Convolutional

neural networks, Dual encoder networks, ISIC skin lesion datasets.

1. Introduction

1.1. Problem Presentation

Cancer is an abnormal and uncontrolled growth of dividing cells, damaging different body

cells and contributing to the world’s second-leading cause of death [76]. Although melanomas

constitute less than 5.0 % of all skin cancers, they make up about 75.0 % of deaths related to

skin cancer in the United States (US) alone [18]. Age-standardized melanoma rates of the

top 20 countries [9] is presented in Fig. 1. According to the world health organization, 466914

new cases of skin cancer will be diagnosed in 2040 (54.27 % men and 45.73 % women), and

105904 (58.14 % men and 41.86 % women) will die. The five-year survival rate of melanoma,
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Figure 1: A world heat map of the age-standardized rates per 1.0 million population of the top 20 countries

with the highest skin melanoma rates in 2018 [9], displaying highly skin cancer affected regions.

the deadliest variety of early detection, is as high as 99.0 %, but delayed diagnosis leads

significantly to a colorectal survival rate decrease of 23.0 % [84]. However, reliable early

identification is highly imperative as the five-year survival rate will be increased by 90.0 %

approximately [23]. Dermatologists generally examine images via naked-eye through visual

examination, requiring a high level of expertise and focus. The manual inspection by derma-

tologists is often very tiresome, time-consuming, subjective, and fault-prone. The precision

of skin lesions’ diagnosis by the dermatologists suffers from inter-class homogeneity and

intra-class heterogeneity. Moreover, the ratio of dermatologists per 1.0 million population in

the US, South Australia, and Europe are respectively 34.0, 26.0, and 59.34, which are very

low compared to the required numbers [15, 16, 26]. However, an automated Computer-aided

Screening (CAS) system has become popular among dermatologists to alleviate the above

limitations, reduce the working burden of dermatologists, and accelerate diagnosis rates [50].

Such CAS systems essentially consist of several integral parts, where the segmentation for

Region of Interest (ROI) extraction and the classification for lesion recognition. However,
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image-based automated CAS systems are highly challenging for the following hurdles:

• Wide range of intra-class variance in colors, textures, edges, and shapes and homo-

geneity in inter-classes.

• Sometimes, low contrasts and unclear boundaries (edges) in the malignant and other

class images.

• Lesion ROI frequently shares similar visual characteristics and subtle distinctions due

to lighting, perspective, and spatial information within an image.

• The appearance of different artifacts, such as natural (hairs, veins) or synthetic (air

bubbles, ruler lines, color balance charts, marker signs, paint, ink color, artificial ob-

jects, etc.), LED lighting, darker border (microscopic effects), and non-uniform vi-

gnetting, as depicted in Fig. 2.

• Lesion ROI only covers a small proportion of local, subtle grain, and global context

information.

• Unavailability of a large number of manually annotated images, which is the core

requirement of the supervised learning systems.

Hair Dark corners Ink color

Ruler

Object Led illumination

Non-uniform 

Vignetting Water BubbleMarker Sign Gel

Figure 2: An example of the challenging dermoscopic images in ISIC dataset [13, 29] with different artifacts

[35].
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1.2. Recent Methods

The state-of-the-art methods for skin lesion segmentation and recognition are reviewed

and described in the following two subsections.

1.2.1. Methods for Lesion Segmentation

A multi-stage Fully Convolutional Network (mFCN) with parallel integration was intro-

duced by Bi et al. [8]. During the training process, mFCN learned from both the training

data and the coarse results obtained from the previous (m-1)FCN stage. The summation of

the earlier results with the current result had two benefits: boost the training data and opti-

mize lesion boundary learning. Navarro et al. [62] proposed a superpixels adaptation-based

segmentation approach to get tight-to-boundaries of the skin lesions. The authors applied

the Scale-Invariant Feature Transform (SIFT) [54] and Gaussian distribution to detect the

feature points and place these points to the initial centers. Finally, they applied the simple

linear iterative clustering technique to these points for generating the final lesion masks.

An encoder-decoder network was built by Sarker et al. [71], called SLSDeep. The encoder

in SLSDeep was dilated residual network-based design, while the decoder had a pyramid

pooling network. Additionally, they proposed a combined negative log-likelihood and end-

point error-based cross-entropy loss function. Jahanifar et al. [45] developed an improved

saliency detection supervised method for the lesion segmentation, which was designed based

on the discriminative regional feature integration. They used a thresholding algorithm for

generating a new pseudo background region. Goyal et al. [27] designed an automatic ensem-

ble of DL methods, such as DeeplabV3+ [19] and Mask R-Convolutional Neural Network

(R-CNN) [38], for generating the precise lesion boundaries. They combined the result of

two models in three ways: a combination of both masks, picking the larger segmented area

from the output of both methods, and picking a smaller area from those outputs. Finally,

the authors discovered that the first method outperforms the other ensembling methods.

Al-Masni et al. [2] proposed a Full Resolution Convolutional Network (FrCN) for the skin

lesion segmentation, which learns full resolution features from each pixel of an input im-

age. A segmentation method is realized by Hawas et al. [36] for the neutrosophic graph
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cut algorithm. The initial clusters were obtained using Histogram-based Clustering Esti-

mation (HBCE) with the corresponding centroids. The genetic algorithm was applied to

optimize the HBCE for getting the optimal threshold. Then, the Neutrosophic C-means

(NCM) mapped the lesions into a Neutrosophic Set (NS) domain. Finally, for the lesion

segmentation, the graph cut algorithm was a cost function. Amin et al. [5] segmented the

lesion in two steps. In the first step, the authors performed preprocessing to resize the

images to 240 × 240 × 3 and convert the RGB into Lab to select the luminance channel.

Finally, in the second step, biorthogonal 2D wavelet transform and OTSU algorithm were

applied for the lesion segmentation. Xie et al. [86] produced a deep CNN, called mutual

bootstrapping deep CNN (MB-DCNN). MB-DCNN has three networks, such as a coarse

segmentation network (coarse-SN), a mask-guided classification network (mask-CN), and

an enhanced segmentation network (enhanced-SN). Coarse-SN was used to roughly segment

the lesion and feed the label region to mask-CN to boost the classification task. Al Nazi

and Abir [4] compared the performance of two variations of the UNet [70] model for the

lesion segmentation, such as UNet without spatial dropout and UNet with spatial dropout.

In the end, the authors showed that augmentation and dropout, as regularization methods,

with UNet, had less prone to overfitting and provided better-segmented lesion masks. Pour

and Seker [67] offered a segmentation model based on CNN with CIELAB color space and

transformed domain feature extraction. The authors initially implemented a scratch model

inspired by UNet and FCN, then gradually improved the model by injecting features from

the transformed domain and adding the input image color model CIElab. They succeeded in

coping with the constraints that included small data set, removal of artifacts, excessive data

increase, and contrast stretching. They also confirmed that the CNN model’s performance

with a domain transfer feature is better than the CNNs with a deep layer network.

1.2.2. Methods for Lesion Recognition

Many image analysis-based methods have already been proposed and developed by the

researchers for dermoscopic image recognition, where the algorithms generally depend on

the detection and extraction of low-level handcrafted features, such as colors, shapes, tex-
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tures, and etc. Cheng et al. [11] extracted different features from the first-order histogram

probability such as area, roundness (thinness), mean, standard deviation, skew, energy, and

entropy. Finally, the authors applied different classifiers, namely quadratic discriminant

analysis and Multilayer Perceptron (MLP), on the selected features by the Principal Com-

ponents Analysis (PCA) [55]. Different visual cues, such as ABCD (Asymmetry, Border,

Color, and Differential structures) rule of dermoscopy [61], texture (neighboring gray-level

dependence matrix, angular second-moment, and kinetics of skin lesions) were extracted by

Maglogiannis and Doukas [56]. The authors also selected the features using the sequential

backward floating selection, PCA, and generalized sequential feature selection algorithms.

Finally, they employed MLP and Support Vector Machine (SVM) [21] for the lesion classi-

fication. Oliveira et al. [64] computed different local features employing the bag-of-features

[25] approach and texture features, where the authors selected the subset of features using a

heuristic search approach. In the end, they applied SVM, Bayesian network, Decision Tree

(DT) [1], and Artificial Neural Network (ANN) as classifiers. Hameed et al. [31] developed

an intellectual Multi-Class Multi-Level (MCML) classification algorithm employing two ap-

proaches, such as traditional machine learning and deep learning. In the former method,

they applied preprocessing, segmentation, extraction of features, and classification. As a

preprocessing, they removed the hair, black frames, and circle. Finally, the authors classi-

fied the texture and color features employing the ANN. Mporas et al. [60] applied a median

filter followed by bottom-hat filtering to detect natural hair or similar to hair artifacts. They

segmented the ROIs using the active contour model on the grayscale image. Finally, they

extracted different color-based features for classification using the MLP and other Machine

Learning (ML) algorithms.

However, as described earlier, the lesion classification algorithms are very complex as they

essentially rely on the handcrafted features extraction method, requiring prior knowledge

[20] and lots of parameter tuning. Extensive feature engineering is the key to achieving

better-performance from them, which is often impossible due to the presence of different

artifacts in the dermoscopic images (see in Fig. 2). The development of various CNN-based

classifiers has achieved a remarkable result on the ImageNet dataset [14]. Nowadays, in many

7



computer vision problems, the contribution of both CNNs and DL techniques are undeniable

[28]. CNN is an excellent feature extractor, which necessarily alleviates the manual feature

engineering as in the algorithms mentioned above, therefore applying it to recognize medical

images [87]. Mahbod et al. [57] presented an ensemble-based model for CNNs that combines

inter-and intra-architecture network fusion. The authors applied the fine-tuning of pre-

trained VGGNet, AlexNet [48], and two types of ResNet. Finally, the average prediction

probability classification vectors from different sets were fused to provide the final prediction.

Brinker et al. [10] exercised ResNet-50 with transfer learning [82]. For the optimization of

the model, they adopted three techniques. Firstly, they exclusively trained the adapted last

layer, then fine-tuned all layers’ parameters, and finally, a sudden increment of the learning

rate at specific time steps during fine-tuning. Zhang et al. [91] presented an Attention

Residual Learning (ARL) CNN model for the skin lesion recognition, which was composed

of multiple ARL blocks, a global average pooling, and a classification layer. Each ARL

block employed residual learning and novel attention learning mechanisms to improve its

capability for discriminative representation. The authors proposed the attention learning

mechanism, which aimed to utilize the intrinsic self-attention ability of DCNNs, i.e., using

the feature maps learned from a high layer to generate a low-layer attention map instead of

applying extra learnable layers. An integrated framework for skin lesion boundary detection

as well as for skin lesions classification was described by Al-Masni et al. [3]. Firstly, a

deep learning method, named FrCN, was used for the lesion boundary extraction. Then,

geometric augmentation and transfer learning were integrated with four CNN networks,

such as Inception-V3 [79], ResNet-50, Inception-ResNet-V2, and DenseNet-201 [42] for the

lesion classification. They also showed that segmented lesions improve lesion classification

results. Yilmaz and Trocan [88] implemented three deep CNN models named AlexNet,

GoogLeNet, and ResNet-50. They compared classification performance as well as time

complexity of the implemented models. For data augmentation, a style-based Generative

Adversarial Network (GAN) architecture was proposed by Qin et al. [68]. In the end, the

authors applied ResNet-50, with transfer learning, for the lesion classification. Khan et al.

[47] proposed a model for the lesion classification, which included the localization of lesion
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ROI via faster region-based CNN, feature extraction, and feature selection by iteration-

controlled Newton-Raphson method. The ABC-based method was first used for contrast

stretching and then used for lesion segmentation. DenseNet-201, via transfer learning, was

used to extract deep-level features, and those features were classified using an MLP. Gessert

et al. [24] ensembled different DL methods, such as EfficientNets [80], SENet [41], and

ResNeXt, by a selection strategy. They used multi-resolution input by multi-crop evaluation

and two different cropping strategies. The encoding of metadata as a feature vector was

concatenated with the dense (fully connected) neural network. Valle et al. [83] optimized

the hyperparameter of two deep CNN models, ResNet-101-V2, and Inception-V4 employing

transfer learning with data augmentation. They select the best performing classifier using the

ANOVA test [73]. Finally, the authors concluded that the transfer learning and ensembling

model is a better choice for lesion classification.

1.3. Our Contribution

The above-discussions on the automatic skin lesion diagnosis methods confirm that the

deep CNN approaches are commonly applied nowadays than the different systems relying

on handcrafted features. The former approaches provide good reproducibility of results

and boost diagnostic procedures’ speed while being end-to-end methods. However, the

CNN-based skin lesion analysis methods suffer from data scarcity to evade overfitting. The

ensembling of different CNN architectures can mitigate those CNN’s limitations, as proven

by Harangi [32]. In many articles [24, 27, 30, 32, 51, 58, 66, 75], the authors first trained

different CNN models independently and then aggregated their outputs for developing en-

sembling models. Such an ensembling is tedious and time-consuming, leading to massive

time and resources for training and testing. However, to eradicate those limitations, an

end-to-end ensemble approach for skin lesion analysis without compromising state-of-the-

art outcomes is highly essential. With the aforementioned thing in mind, this article aims

to provide the following contributions:

• Develop an end-to-end ensembling model with dual encoders in our Dermo-DOCTOR

framework, concatenating two different feature maps from those two encoders to
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broaden the lesion’s depth information. Such a proposed network with two differ-

ent encoders with the same input is likely to learn more discriminating features with

limited training samples.

• Incorporate segmented lesion ROIs for the recognition as ROIs enable the classifier to

learn the abstract region and detailed structural description while avoiding surrounding

healthy regions.

• Apply geometry- and intensity-based image augmentations and transfer learning to

alleviate overfitting; the class rebalancing techniques to protect the classifier from

being biased towards any particular class with more samples.

• Develop and compare two other networks for detection (UNet and FCN8s) and recog-

nition (ResNet-50 and Xception [12]) under the same experimental settings.

• Demonstrate state-of-the-art lesion detection and recognition results, to our best knowl-

edge, on two IEEE International Symposium on Biomedical Imaging (ISBI) datasets,

such as ISIC-2016 and ISIC-2017, having a different number of classes.

• Implement a possible application of our Dermo-DOCTOR, deploying its trained weights,

which runs in a web browser (see in YouTube2).

The rest of the paper is structured accordingly. We explain the design of the Dermo-

DOCTOR framework and datasets in section 2. The results and discussions of the extensive

experiments, with the proper interpretation, are reported in section 3. Finally, we conclude

the article in section 4.

2. Materials and Methods

This section manifests the materials and methods, describing the proposed Dermo-

DOCTOR pipeline in Section 2.1. We explain the utilized datasets, integral preprocessing,

2Dermo-DOCTOR App: https://bit.ly/Dermo-DOCTOR
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and the proposed network in Subsections 2.1.1, 2.1.2, and 2.1.3, respectively. Sections 2.2

and 2.3 respectively describe our web application and network’s training protocol.

2.1. Proposed Framework

The overall Dermo-DOCTOR framework is illustrated in Fig. 3. We utilize two different

Preprocessing

CNN

Nev Mel

ISIC-2016

Nev SK Mel

ISIC-2017

I1

I2

P1

P2

O1

Augmentation

Rebalancing

Predicted Mask Query Image

ISIC Datasets

O2

Result

Figure 3: The proposed pipeline for concurrent detection and recognition systems, where the preprocessing

has incorporated with the proposed network to build a precise diagnostic system. An input I1 or I2 generates

two outputs O1 and O2, where O1 and O2 respectively denote the segmentation and recognition results.

input types (either I1 or I2), where I1 or I2 is a binary or a multi-class categorization task.

An input, either I1 or I2, generates two different outputs, such as segmentation (O1) and

recognition (O2). The outputs O1 and O2 are then processed to provide lesion detection and

recognition results. We process the predicted lesion masks to generate the bounding box

around the lesion, naming lesion detection. However, different crucial integral parts of the

Dermo-DOCTOR are explained in the following subsections.

2.1.1. Datasets

Two different datasets, such as ISIC-2016 [29] and ISIC-2017 [13], are used to validate

our proposed pipeline, whose class-wise distributions are presented in Fig. 4. The ISIC-

2016 contains a binary class, aiming to classify as either Nevus (Nev) or Melanoma (Mel),

explicating that class samples are imbalanced (4.2 : 1 for Nev : Mel). On the other hand,

the ISIC-2017 is a multi-class categorization task, intending to classify as either Nevus

(Nev), or Seborrheic Keratosis (SK), or Melanoma (Mel). The distribution of ISIC-2017
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Figure 4: The distributions of the utilized ISIC datasets, where (a) is for ISIC-2016 and (b) is for ISIC-2017.

The validation set for the ISIC-2016 is not available publicly (see in the left figure).

also tells that class samples are highly imbalanced, where Nev : SK : Mel in the training

set is 11.8 : 2.8 : 1. The training samples’ imbalanced distribution makes the classifier

biased towards the particular class with more samples, mitigated in the proposed pipeline

by adopting two techniques (see in subsection 2.1.2).

2.1.2. Preprocessing

We have applied class rebalancing and different image augmentations (both geometry-

and intensity-based) as a preprocessing, which are concisely explained as follows:

Rebalancing. The class imbalance is a common phenomenon in the medical imaging

domain as manually annotated images are very complex and arduous to achieve [32]. Such a

class imbalance can be partially overcome using two commonly used approaches, such as the

data-level method and algorithmic level method [37]. We have combined additional images

to the underrepresented class from the ISIC archive [44] and weighted the loss function. For

weighing the loss function, we apply Wi = Ni/N , where Wi, N , and Ni are the weight for

ith class, the total sample numbers, and the sample numbers in the ith class, respectively.

Augmentation. One of the crucial challenges in the medical imaging domain is coping

with the small datasets, such as in the ISIC datasets [32]. However, we have applied differ-

ent augmentations based on geometric transformations, such as rotation, flipping, shifting,
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zooming, and image processing functions, such as gamma, logarithmic, sigmoid corrections,

and stretching, or shrinking the intensity levels.

However, the input I1 or I2 produces the lesion recognition output by applying two

preprocessing types: the P1 : only segmentation and the P2 : rebalancing and augmentation

with segmentation.

2.1.3. Proposed Network

Nowadays, CNN-based methods outperform the radiologists with high values of balanced

accuracy as proven in [46, 69]. Nevertheless, they trained the models with an enormous

number of annotated images. However, CNNs may be obliquely limited when employed

with highly variable and distinctive image datasets with limited samples and having inter-

class homogeneity and intra-class heterogeneity, as in dermoscopic ISIC datasets [13, 29].

Ensembling the network is likely to alleviate data scarcity limitation for the CNN training

[17, 32, 49, 59, 72]. In this context, we propose a CNN-based end-to-end ensemble network

for simultaneous lesion detection and recognition, consisting of two encoders, a decoder, and

three Fully-connected Layers (FCLs), as shown in Fig. 5. The different parts of the proposed

dual encoder network are explained in the following paragraphs.

Encoder-1. The first encoder (f en−1) in the proposed network is presented in Fig. 6.

It includes Identity (Iden) and Convolutional (Conv) blocks, applying the skip connections

[40] in both blocks. There are two main advantages of such a skip connection. Firstly, the

lack of regularization of the new layers does not affect their performance, and secondly, the

new layers are not nil even when they are regulated. In encoder-1, an input convolution

is adopted before Iden and Conv blocks, followed by a max-pooling. By stacking these

blocks on top of each other, encoder-1 has been designed for getting a lesion feature map

(see in Fig. 6). The output feature map of the encoder-1 is defined as Xen−1 = f en−1(Iin),

where Xen−1 ∈ RB×H×W×D, and B, H, W , D, and Iin respectively denote the batch size,

height, width, depth (channel), and input batch of images. The encoder-1 is divided into

five sub-blocks (E1n and n = 1, 2, ..., 5), while the input image resolutions in each sub-block

are down-sampled in half of the input resolutions. In the segmentation sub-network, each
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Figure 5: The proposed network for the Dermo-DOCTOR application, where the first encoder-decoder

sub-network is applied for the lesion segmentation, while the second sub-network is employed for the lesion

recognition. The segmented lesion masks are used for ROI extraction for further classification and detection

utilizing the bounding boxes around the lesions.

sub-block’s outputs (E1n and n = 1, 2, ..., 5) will be used as an input for the skip connections

to regain the lost spatial information due to pooling in the encoders.

Encoder-2. Within the encoder-2 (f en−2), three block components are employed, such

as entry flow, middle flow, and exit flow [12]. Fig. 7 depicts the constructional details of the

encoder-2. The batch of input images firstly passes through the input flow, then the central

flow, repeated eight times (8×), and finally through the exit flow. All flows employ Depth-

wise Separable Convolution (DwSC) [12] and residual connections. The former has been
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Figure 7: The encoder-2 of the proposed network, where depth-wise separable convolutions [12] were em-

ployed instead of traditional convolutions to make it lightweight for real-time applications.
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used to create a lightweight network, while the latter has the advantages discussed earlier in

encoder-1. The output feature map of the encoder-2 is defined as Xen−2 = f en−2(Iin), where

Xen−2 ∈ RB×H×W×D, and B, H, W , D, and Iin respectively denotes batch size, height,

width, depth (channel), and input batch of images. The encoder-2 is also divided into five

sub-blocks (E2n and n = 1, 2, ..., 5), in which input resolutions are also down-sampled into

half the resolutions of each sub-block. Every sub-blocks (E2n and n = 1, 2, ..., 5) are then

used as the skip connections, when it is decoded in the detection sub-network.

Detection Sub-Network. The decoder semantically projects the salient features of

lower resolution from the encoders onto the pixel space having a higher resolution to achieve

a semantic lesion pixel label [22, 53, 70]. The reduced feature maps (to attain spatial

invariance) from the encoder often cause a loss in spatial resolution, bringing zigzag edge

information, coarseness, checkerboard artifacts, and over- and under-segmentation in the

segmented masks [33, 35, 53, 63, 70]. Although there are many approaches to alleviate these

problems in the segmentation [2, 6, 33, 35, 53, 63, 70], there is still room for performance

improvement. In our detection sub-network, the obtained outputs from two encoders are

concatenated channel-wise for enlarging the depth representation of the feature map, which

is named as a Fused Feature Map (FFM), where FFM ∈ RB×H×W×2D. We have applied

skip connections, inspired by the UNet, to tackle the subsampling limitations. The FFM ∈
RB×H×W×2D is an input to the decoder of our detection sub-network (see in Fig. 8). Unlike

the earlier networks, we skip the features from two different encoders to recover the lost

spatial information (see in Fig. 8). The channel-concatenation in each stage of decoder is

presented as [E1n ++E2n ++Dn], where E1n, E2n, Dn, and ++ respectively denote skipped

feature maps from encoder-1 and encoder-2, decoder feature map (at nht stage), and channel

concatenation. E1n, E2n, and Dn are the same scaled feature maps and n = 4, 3, ..., 1. Such

a dual encoder skipped feature has enhanced depth information, which is likely to improve

the segmentation accuracy by better retrieving the lost spatial information. Besides, we

employ batch normalization [43] to overcome the internal covariate shift in the training

phase. We also compact our network’s design, employing a DwSC [12] in place of standard

convolution. We decrease the parameters by a factor of (1/N + 1/K2) for each convolution
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Figure 8: The decoder of the proposed detection sub-network for reconstructing a segmentation mask with

the input resolution from the encoders’ low-resolution features.

in our Dermo-DOCTOR, where N and K respectively indicate the filter number and kernel

size [34].

Recognition Sub-Network. Different feature maps from the encoder-1, encoder-2,

and FFM are classified into desired categories applying the FCLs. We employ a Global

Average Pooling (GAP) layer [52] before the FCL for vectorizing the 2D feature maps into

a single long continuous linear vector, as it improves generalization and prevents overfitting

[52]. Additionally, each FCL layer is followed by a dropout layer [78] as a regulariser, where

we randomly set 50.0 % neurons of the FC layer to zero during the training. However, the

two different feature maps of two different encoders are utilized to recognize the Lesion Type

(LT) separately using the two FCLs, termed as LT-1 and LT-2 (see in Fig. 5). Besides, the

FFM also generates LT-3, as explicated in Fig. 5. Finally, the output probability (Oj=1,2)

is the average of the LT-1, LT-2, and LT-3. The output (Oj=1,2) lies in N -dimensional

space, where O1 ∈ RN=2 and O2 ∈ RN=3 respectively for the inputs I1 or I2 by applying

the proposed preprocessing (either P1 or P2). It is noteworthy that the output lesion class

(Oj=1,2) is obtained from the end-to-end training.
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2.2. Designing of Web Application

The proposed web application named Dermo-DOCTOR, for the end-users, is depicted

in Fig. 9. We utilize browser-supported languages such as Hypertext Markup Language

Figure 9: The dermo-DOCTOR prototype, where the user can select or drag a dermoscopic image (png, jpg,

bmp, or jpeg) as an input. The desired number of output classes also can be selected in the input panel.

The processing and output panels are dedicated to select the process types and display the recognized class

with the probabilities.

(HTML), Cascading Style Sheets (CSS), and Javascript, etc. for developing the Dermo-

DOCTOR application. A python web framework package, called Flask, is used for developing

an application by deploying our proposed CNN-based detection and recognition models and

their trained weights. We apply HTML and CSS to design a graphical user interface with

three panels, such as an input panel, a processing panel, and an output panel (see in Fig. 9).

The user can select the query image (drag-and-drop or direct upload) and the number of

query classes (both binary and multi-class) in the input panel. Then, the user can also start

the process or reset the selections in the processing panel. The return results from the host

machine are displayed in the output panel.
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2.3. Training Protocol

The encoder kernels are initialized with the pre-trained ImageNet weights, whereas the

decoder kernels are initialized with the “he normal” distribution [39]. The Aspect Ratio

(AS) distribution tells that most of the images in ISIC-2016 and ISIC-2017 datasets have an

AS of 3 : 4. Therefore, we resize all the images to 192×256 pixels using the nearest-neighbor

interpolation for the detection. Again, the AS distribution of both datasets’ extracted lesion

ROIs reveals that most of the ROIs have an AS of 1 : 1. Hence, we again resize the lesion

ROIs to 192 × 192 pixels using a nearest-neighbor interpolation for the recognition. Addi-

tionally, we have standardized and rescaled the training images to [0 1] for both detection

and recognition. We employ Eq. 1 as a loss function and intersection over union as a metric

for training the detection sub-network of the proposed Dermo-DOCTOR.

L (y, ŷ) = 1−

N∑
i=1

yi × ŷi

N∑
i=1

yi +
N∑
i=1

ŷi −
N∑
i=1

yi × ŷi

− 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)], (1)

where y and ŷ, N respectively denote the true and predicted label, the total pixel numbers.

In Eq. 1, log ŷi and log(1− ŷi) are the estimation of log-likelihood of pixel being lesion or not,

respectively. The product of y and ŷ in Eq. 1 is the estimation of similarity (intersection)

between true and predicted lesion masks. We employ categorical cross-entropy as a loss

function and accuracy as a metric for training the recognition sub-network.

3. Results and Discussion

This section bestows different lesion detection results and subsequent recognition in

Subsections 3.1 and 3.2, respectively. The segmented lesion masks are utilized for ROI

extraction to classify and detect the bounding boxes around the lesions.

3.1. Results for Detection

Firstly, we exhibit the quantitative and qualitative segmentation results, applying the

proposed Dermo-DOCTOR and two other well-known networks: the UNet and the FCN8s.
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Secondly, we compare our outcomes with several state-of-the-art results utilizing the same

datasets. To quantify the segmentation correctness, we use mean Recall (mRc), mean Speci-

ficity (mSp), and mean Intersection over Union (mIoU), which are defined in Eq. 2.

mRc =
1

M ×N

N∑
i=1

M∑
j=1

TPij

TPij + FNij

,

mSp =
1

M ×N

N∑
i=1

M∑
j=1

TNij

TNij + FPij

,

mIoU =
1

M ×N

N∑
i=1

M∑
j=1

TPij

TPij + FNij + FPij

,

(2)

where M and N denote the pixel and sample numbers, whereas TP , TN , FN , and FP

indicate true positive (lesion as a lesion), true negative (background as a background), false

negative (lesion as a background), and false positive (background as a lesion), respectively.

Table 1 confers the segmentation results of three methods on two separate datasets: the

ISIC-2016 and the ISIC-2017. The mean overlapping between the actual and predicted masks

Table 1: Quantitative segmentation results on ISIC-2016 and ISIC-2017 test datasets using the Dermo-

DOCTOR, UNet, and FCN8s. The winner metrics for the ISIC-2016 are presented in bold font, whereas

they are underlined for the ISIC-2017.

Performance metricsTesting

datasets
Models

mRc mSp mIoU

Dermo-DOCTOR 0.92± 0.13 0.97± 0.07 0.85± 0.12

UNet 0.86± 0.13 0.98± 0.04 0.83± 0.13ISIC-2016

FCN8s 0.84± 0.15 0.98± 0.05 0.80± 0.14

Dermo-DOCTOR 0.86± 0.17 0.97± 0.07 0.80± 0.17

UNet 0.83± 0.21 0.97± 0.07 0.76± 0.21ISIC-2017

FCN8s 0.86± 0.18 0.93± 0.10 0.71± 0.17

are as high as 85.0 % and 80.0 % for the ISIC-2016 and ISIC-2017. The Dermo-DOCTOR

mIoU beats nearby UNet by the margins of 2.0 % and 4.0 % accordingly for the ISIC-2016
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and ISIC-2017 datasets. The mean type-I and type-II errors for ISIC-2016 of the Dermo-

DOCTOR are 3.0 % and 8.0 %, respectively, outperforming the UNet by a margin of 6.0 %

concerning the type-II error, while defeated by a margin of 1.0 % for type-I error. However,

1.0 % error in mSp is quite acceptable in segmentation as the lesion edge information will

be preserved with less over-segmentation. Similarly, for ISIC-2017, the Dermo-DOCTOR

exceeds UNet by a border of 3.0 % for type-II error, while they have similar type-I errors.

For both the datasets, the FCN8s is a defeating method as it produces low metrics than the

other two methods (see in Table 1). In contrast, the proposed Dermo-DOCTOR provides

better-segmented masks, leading to better lesion detection and recognition.

Fig. 10 depicts several qualitative results from the proposed Dermo-DOCTOR, UNet,

and FCN8s. The segmented lesions from FCN8s suffer from checkerboard artifact, providing

zigzag lesion boundaries (see in Fig. 10). The possible cause of such poor results is that the

low-resolution features across the high-resolution feature map are not constant due to the

non-divisible upscaling factor, generating checkerboard artifacts in the lesion masks [33, 35].

However, the lesion masks from the UNet and Dermo-DOCTOR are blessed with smoother

lesion boundaries, which are the image-based classifiers’ salient features. The quantitative

and qualitative results of the UNet point that it undergoes from the additional false-negative

region, leading to under-segmentation. However, the proposed Dermo-DOCTOR achieves

lower false-positive and false-negative regions relative to the other implementations. As in

the proposed Dermo-DOCTOR, the dual encoders can learn more salient features compared

to the single encoder in UNet and FCN8s, especially when training with a small dataset.

Again, Fig. 11 illustrates the segmentation results of several challenging images on the ISIC-

2016 and ISIC-2017 datasets. The lesion segmentation results in Fig. 11 describe that the

segmented lesion masks are precise even the query images contain different artifacts (see in

Fig. 2), and even the ROIs are tiny in size. Although the extracted ROIs have few false-

positive regions (yellow color) with negligible false-negative regions (red color), it is not

surprising for further lesion classification, as they preserve the lesion boundaries.

Table 2 exhibits lesion segmentation results from the proposed Dermo-DOCTOR and

other state-of-the-art methods, trained and tested on the same ISIC datasets. The Dermo-
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Query Image FCN8s UNet Dermo-Doctor

Figure 10: Qualitative segmentation results using the FCN8s, UNet, and Dermo-DOCTOR networks. Green,

Red, and Yellow colors indicate the TP, FN, and FP regions, respectively. The top-right IoUs are given for

quantitative evaluation.

DOCTOR generates the best segmentation results for three out of the six cases while per-

forms as second-best for the remaining three cases. Our Dermo-DOCTOR outperforms the

DCL-PSI [7] for ISIC-2016 by a margin of 1.0 % for mSp, whereas it has been lost by 1.0 %

concerning mRc of DCL-PSI, while mIoU is constant for both methods. The current method

(HRFB) of Xie et al. [85] has 5.0 % and 1.0 % less mRc and mSp, respectively, for ISIC-2016,

while the mIoU is the same as our proposed method. It reveals that the proposed Dermo-

DOCTOR has 5.0 % and 1.0 % less type-II and type-I errors, respectively, in the segmented

lesion masks than HRFB. The Dermo-DOCTOR also defeats the other two methods, the

FCN ensemble [90] and Fusion Structure [81], for all metrics and mSp for the ISIC-2016
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Query Image Result Overlaid Query Image Result Overlaid

ISIC-2016 test dataset ISIC-2017 test dataset

Figure 11: Qualitative segmentation results on two different test datasets employing our Dermo-DOCTOR,

where the TP, FN, and FP regions are respectively denoted by the Green, Red, and Yellow colors. The

top-right IoU exhibits quantitative validation.

dataset. Moreover, the methods in Table 2 for the ISIC-2017 dataset have been defeated by

the proposed Dermo-DOCTOR for mIoU, where it beats the nearby HRFB and iFCN [65]

by a margin of 2.0 %. Regarding the mRc and mSp, the Dermo-DOCTOR has been lost by

1.0 % by the methods in [35, 65, 85] (see in Table 2). Still, the Dermo-DOCTOR performs

better as it has 2.0 % more mIoU than the nearby methods [65, 85] for the ISIC-2107 dataset.

However, the above-discussions quantitatively and qualitatively demonstrate that the

proposed Dermo-DOCTOR yields the most reliable skin lesion’s ROIs, which proves its

supremacy for lesion segmentation. Consequently, we will further utilize the proposed masks

for lesion ROI extraction to perform the lesion recognition in the next subsection.

23



Table 2: Comparative lesion segmentation results for the proposed Dermo-DOCTOR and other state-of-

the-art methods on both the ISIC-2016 and ISIC-2017 test datasets.

ISIC-2016 test dataset ISIC-2017 test dataset
Segmentation Methods

mIoU mRc mSp mIoU mRc mSp

FCN ensemble [90] 0.84 0.91 0.96 - - -

Fusion Structure [81] 0.85 0.92 0.96 - - -

DCL-PSI [7] 0.85 0.93 0.96 0.72 0.80 0.94

DSNet [35] - - - 0.77 0.87 0.95

HRFB [85] 0.85 0.87 0.96 0.78 0.87 0.96

iFCN [65] - - - 0.78 0.85 0.98

Proposed Dermo-DOCTOR (2020) 0.85 0.92 0.97 0.80 0.86 0.97

DCL-PSI: Deep Class-specific Learning with Probability based Step-wise Integration

HRFB: High-Resolution Feature Block

iFCN: improved Fully Convolutional Network

3.2. Results for Recognition

This subsection exhibits the quantitative and qualitative results for lesion recognition,

applying the proposed Dermo-DOCTOR and two other implemented well-known networks:

the ResNet-50 and the Xception. In the end, we compare our results with several state-

of-the-art results for those datasets. We utilize recall, precision, and F1-score to quantify

the recognition efficiency, where they respectively quantify the type-II error, the positive

predictive values, and the harmonic mean of recall and precision for revealing the trade-off

between them. Additionally, we also estimate the ROC curve and its corresponding AUC

value to evaluate any randomly elected query image’s prediction probability.

Table 3 gives the lesion recognition results, showing the outcomes for three networks

and two datasets. The weighted average of recalls for ResNet-50, Xception, and Dermo-

DOCTOR have been respectively improved by the margins of 4.0 %, 8.0 %, and 7.0 % for

ISIC-2016, when we employ the preprocessing P2 instead of baseline P1 (see in Table 3). The

highest possible recall (0.91) for ISIC-2016 is received from the proposed Dermo-DOCTOR

classifier, applying the proposed preprocessing P2 on the segmented masks from the pro-
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Table 3: The recognition results from numerous comprehensive experiments on the ISIC-2016 and ISIC-2017

test datasets on three separate networks, highlighting the weighted average metrics’ highest values.

ResNet-50 Xception Dermo-DOCTOR

Preprocessing Preprocessing PreprocessingTest Dataset Class-wise Metrics

P1 P2 P1 P2 P1 P2

Nev 0.94 0.87 0.97 0.91 0.96 0.90

Mel 0.45 0.93 0.25 0.92 0.37 0.95Recall

W. Avg. 0.84 0.88 0.83 0.91 0.84 0.91

Nev 0.87 0.98 0.84 0.98 0.86 0.99

Mel 0.64 0.63 0.70 0.71 0.68 0.70Precision

W. Avg. 0.83 0.91 0.81 0.93 0.83 0.93

Nev 0.90 0.92 0.90 0.94 0.91 0.94

Mel 0.53 0.75 0.37 0.80 0.48 0.80

ISIC-2016

F1-score

W. Avg. 0.83 0.89 0.80 0.91 0.82 0.91

Nev 0.80 0.80 0.86 0.80 0.87 0.82

SK 0.59 0.80 0.66 0.83 0.66 0.82

Mel 0.45 0.59 0.42 0.53 0.50 0.62
Recall

W. Avg. 0.70 0.76 0.74 0.75 0.77 0.78

Nev 0.80 0.88 0.83 0.88 0.84 0.89

SK 0.64 0.59 0.61 0.52 0.65 0.65

Mel 0.43 0.56 0.52 0.62 0.58 0.57
Precision

W. Avg. 0.70 0.78 0.74 0.77 0.76 0.79

Nev 0.80 0.84 0.85 0.84 0.85 0.85

SK 0.61 0.68 0.63 0.64 0.65 0.73

Mel 0.44 0.57 0.46 0.57 0.53 0.59

ISIC-2017

F1-score

W. Avg. 0.70 0.76 0.74 0.76 0.76 0.78

P1: Segmentation; P2: Segmentation+Rebalancing+Augmentation; W. Avg.: Weighted Average

posed Dermo-DOCTOR segmentor. The rebalancing and augmentation, along with the

segmentation, in preprocessing P2 reduces the FN-rates (63.0 % to 5.0 %) of Mel class. It

also decreases the FP-rates (32.0 % to 30.0 %) for the same class while applying our pro-

posed Dermo-DOCTOR. Such reductions, in FN- and FP-rates, are praiseworthy of our pro-

posed preprocessing P2 and Dermo-DOCTOR comparing the baseline classifiers (ResNet-50
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and Xception) and preprocessing P1. Likewise, the weighted average of precision and F1-

score on ISIC-2016 are also respectively improved by 10.0 % and 9.0 % for the preprocessing

P2. Remarkably, the harmonic mean of recall and precision for the Mel class of ISIC-2016

has significantly strengthened by a margin of 32.0 % with preprocessing (P2) and Dermo-

DOCTOR. However, comparing all the experiments on the ISIC-2016, the proposed P2 and

Dermo-DOCTOR are the best preprocessing and classifier having a type-II error of 9.0 %

and positive predictive value of 93.0 %. Table 3 also notes that the weighted average of

recall, precision, and F1-score have the respective maximum values of 0.78, 0.79, and 0.78,

for the preprocessing P2 and proposed Dermo-DOCTOR on the ISIC-2017. The recall of

SK and Mel classes in the ISIC-2017 dataset, applying the proposed Dermo-DOCTOR and

preprocessing P2, have respectively updated by the margins of 16.0 % and 12.0 %. In com-

parison, it decreases by 1.0 % for the Nev class, which is acceptable in the medical diagnostic

system (as the positive class is significantly improved). A margin of 5.0 % has raised the

Nev class’s positive predictive value, whereas it is closer or equal for the other two classes

for the proposed Dermo-DOCTOR with P2. However, comparing all the experiments on the

ISIC-2017, the proposed P2 and Dermo-DOCTOR are the best preprocessing and classifier,

with a type-II error of 22.0 % and positive predictive value of 79.0 %.

The experimental lesion categorization results on ISIC-2016 and ISIC-2017 datasets

demonstrate that the two-classes’ (ISIC-2016) recognition performance is better than the

three-classes (ISIC-2017). The addition of SK class in ISIC-2017 reduces the weighted aver-

age recall, precision, and F1-score by the margins of 13.0 %, 14.0 %, and 13.0 %, respectively.

The higher similarity of SK with Nev and Mel classes is the possibility of such reduced ISIC-

2017 test results. Noticeably, more classes tend to bring complications to the classifiers,

especially when the training has fewer examples and inter-class similarities. The joining

of different heterogeneous samples to each class can enhance the categorization results in

ISIC-2017.

The further analysis of different classifiers and preprocessing have presented in the ROC

curves in Fig. 12, showing the highest possible AUC as 0.98 and 0.91 respectively for ISIC-

2016 and ISIC-2017. The rebalancing and augmentation employment with segmentation
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Figure 12: The ROC curves ((a) for ISIC-2016 and (b) for ISIC-2017) of skin lesion recognition, where we

have plotted the ROC for the proposed Dermo-DOCTOR and implemented ResNet-50 and Xception with

two different preprocessing (P1 and P2).

(P2) heightens AUC for both ISIC-2016 and ISIC-2017 datasets of all classifiers. The Dermo-

DOCTOR with P2 has beaten the baseline Xception and ResNet-50 respectively by 3.0 % and

3.0 % in terms of AUC for the ISIC-2016 dataset. Whereas it surpasses them by the margins

of 3.0 % and 4.0 % for AUC for the ISIC-2017 dataset. However, the earlier discussions for

the lesion recognition on ISIC-2016 and ISIC-2017 test datasets expose the supremacy of

the proposed Dermo-DOCTOR and preprocessing P2.

The detailed class-wise performances of the lesion recognition by the proposed Dermo-

DOCTOR and preprocessing P2 are exhibited in Table 4. The ISIC-2016’s confusion ma-

trix in Table 4 (left) shows that among 304-Nev samples correctly recognized samples are

273 (89.80 %), whereas barely 31 (10.20 %)-Nev samples are recognized as Mel (as FP). It also

reveals that among 75-Mel samples, rightly recognized samples are 71 (94.67 %), whereas only

4 (5.33 %)-Mel samples are improperly recognized as Nev (as FN). Again, the ISIC-2017’s

confusion matrix (see in Table 4 (right)) demonstrates that 81.68 %-Nev samples are cor-

rectly recognized as Nev class, while 18.32 %-Nev samples are wrongly recognized to other

classes as FP (5.85 % as SK and 12.47 % as Mel). Similarly, 17.78 % and 38.46 % samples

of the SK- and Mel-classes belong to FP and FN, respectively. Although the 38.46 % of
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Table 4: The confusion matrix for the ISIC-2016 with 379 samples (left) and ISIC-2016 with 600 samples

(right) test datasets, employing the proposed Dermo-DOCTOR and preprocessing P2

Actual

Nev Mel

Nev
273

89.80 %

4

5.33 %

P
re

d
ic

te
d

Mel
31

10.20 %

71

94.67 %

Actual

Nev SK Mel

Nev
321

81.68 %

10

11.11 %

28

23.93 %

SK
23

5.85 %

74

82.22 %

17

14.53 %
P

re
d
ic

te
d

Mel
49

12.47 %

6

6.67 %

72

61.54 %

the positive samples (Mel) are improperly recognized, it is still better than the baseline

58.0 % errors in the baseline (Xception with preprocessing P1). Fig. 13 bestows qualitative

results from the proposed Dermo-DOCTOR classifier and preprocessing P2 for the lesion

recognition into different, either two classes or three classes. For concurrent detection and

recognition, we utilize the segmented masks and categorized class for contouring the lesions

(green color) and label annotation on the image to help the dermatologists for further as-

sessment (see in Fig. 13). More concurrent results for all the test images are available on

YouTube (ISIC-20163 and ISIC-20174). However, the results in Fig. 13 illustrate a few chal-

lenging images, where we show some wrongly recognized images. Those qualitative results

depict that the detection and recognition are precise even the query test images contain

different artifacts (see in Fig. 2). Although the Dermo-DOCTOR incorrectly predicts some

images, they visually seem like a predicted class.

Table 5 describes the comparison of the results of our Dermo-DOCTOR and other meth-

ods, which were trained and tested on the same ISIC datasets. The proposed Dermo-

DOCTOR produces the best recognition for two out of the six cases while performing

second-best with the winning methods on the other four cases (see in Table 5).

3ISIC-2016 (Detection & Recognition): https://bit.ly/Dermo-DOCTOR_ISIC_16
4ISIC-2017 (Detection & Recognition): https://bit.ly/Dermo-DOCTOR_ISIC_17
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ISIC-2016 test dataset ISIC-2017 test dataset

Figure 13: Example of several qualitative classification results of the challenging images of the ISIC-2016

and ISIC-2017 test datasets using the Dermo-DOCTOR, where the recognition has accomplished using the

segmented ROIs (green color) from the Dermo-DOCTOR.

Comparison of ISIC-2016. The proposed network produces the best results for the

AUC by beating the state-of-the-art of Yu et al. [89] with a 12.0 % border. Concerning the

type-II errors, Dermo-DOCTOR is behind the state-of-the-art (FPRPN) of Song et al. [77]

by a border of 8.0 %, but the Dermo-DOCTOR outperforms it by a 11.0 % border for the

positive predictive value. However, Dermo-DOCTOR beats the FPRPN by a 1.5 % perimeter

in terms of balanced accuracy. Whereas Dermo-DOCTOR also exceeds the FPRPN by a
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Table 5: The state-of-the-art comparison with proposed Dermo-DOCTOR, which had trained, validated,

and tested on the ISIC-2016 and ISIC-2017 datasets.

ISIC-2016 test dataset ISIC-2017 test dataset
Classification Methods

Recall Precision AUC Recall Precision AUC

ResNet-50 [10] 0.56 0.71 0.85 - - -

GR [74] - - - 0.15 - 0.91

ARLCNN [91] - - - 0.77 - 0.92

IR [3] 0.82 - 0.77 0.76 - -

FPRPN [77] 0.99 0.82 0.81 0.98 0.82 0.79

MFA [89] 0.60 0.69 0.86 - 0.72 0.90

Proposed Dermo-DOCTOR (2020) 0.91 0.93 0.98 0.78 0.79 0.91

GR: Gabor Wavelet-based CNN [74]

ARLCNN: Attention Residual Learning CNN (ResNet-14 & ResNet-50) [92]

IR: Inception-ResNet-V2 (ISIC-2016), ResNet-50 (ISIC-2017,ISIC-2018) [3]

FPRPN: Feature Pyramid Network (FPN) and Region Proposal Network (RPN) [77]

MFA: Multi-network based feature aggregation [89]

17.0 % margin for AUC.

Comparison of ISIC-2017. The Dermo-DOCTOR serves as the second-best results

concerning all the metrics, where it beats the state-of-the-art FPRPN [77] with a margin

of 12.0 % for AUC, although FPRPN has defeated it for balanced accuracy. The proposed

Dermo-DOCTOR has defeated ARLCNN [91] by a 1.0 % border concerning the recall, but

ARLCNN wins by a 1.0 % margin in AUC. However, the proposed Dermo-DOCTOR pro-

duces the second-highest results for recall by beating the third-best ARLCNN [91] with a

margin of 1.0 %. For precision, it performs so by vanquishing third-best MFA [89] with a

border of 7.0 %, and for AUC by beating third-best MFA with a margin of 1.0 %.

3.3. Applications

Fig. 14 illustrates the prototype of the developed web application deploying our Dermo-

DOCTOR, which runs in a web browser at “http://127.0.0.1:5000/” by accessing the CNN

environments of the local machine. The app takes a dermoscopic image (png, jpg, bmp,
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Figure 14: Our designed web application to detect and recognize skin lesions simultaneously. Dermatologists

can utilize this application by selecting or dragging the image as an input. The app will confer the lesion

detection and recognition results for either binary class or multi-classes.

or jpeg) as an input, displaying the user’s diagnosis result as soon as the back-end model

analyzes a given image. The recognized class with its probability is displayed in the output

panel, highlighting the lesion ROI by a green color bounding box. Therefore, it helps the

dermatologists focus on that detected area for cross-checking the predicted class. A real-

time utilization of the Dermo-DOCTOR has been uploaded to YouTube5, which confers less

time-latency of getting results. The reason for that is the app sends images to the host

and receives the host’s results through the internet and the time for prediction in the host

(higher traffic in the host will increase the latency). However, the dedicated machine with

GPU can alleviate this time-latency limitation. We have tested the app on our local machine

and could not make it public due to resource limitations.

5Dermo-DOCTOR App: https://bit.ly/Dermo-DOCTOR_App
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4. Conclusion

Despite the present colossal challenges due to high visual and intra-class variability,

inter-class similarity, and the presence of different artifacts, automated skin lesion detection

and recognition are incredibly crucial. However, this article proposed and developed an au-

tomated CNN-based lesion detection and recognition network, integrating ROI extraction

by segmentation, image augmentations, and class rebalancing. Our experimental results

demonstrated that the proposed Dermo-DOCTOR could detect and recognize the lesion

more accurately as we concatenated features from two different encoders. Such a concatena-

tion provides more prominent and discriminating feature maps of the skin lesions comparing

a single encoder. The segmented lesions rather than the whole images can provide more

salient and representative features from the CNNs, leading to improved lesion recognition.

Moreover, the rebalanced class distribution attained better performance of the recognition

as compared to the imbalanced distribution. Additionally, the augmentation led the CNN-

based classifier to be more generic as CNNs can learn from diverse training samples. Thus, it

achieved state-of-the-art performance to detect and recognize the lesions from two different

test datasets, such as ISIC-2016 and ISIC-2017. We will further explore and investigate the

effects of improved segmentation and weighting of the underrepresented classes in the future.

The deployment of our framework to a web application precisely detected and recognized

the lesions concurrently. The developed web application will be improved, making it more

user-friendly for dermatologists and deploying it to the google cloud platform for clinical

applications.
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