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Abstract

Recent technological advances enable the acquisition of diverse datasets that

demand data-driven analysis. In this context, we seek to take advantage of di-

verse data modalities to explore the links between childhood development, struc-

ture and function of the brain. We deploy a data fusion model using coupled

matrix-tensor decomposition of electroencephalography (EEG), structural mag-

netic resonance imaging (sMRI), and phenotypic score data to investigate how

functional, structural, and phenotypic variables reflect development in young

children with epilepsy. Our model is based on Canonical Polyadic Decompo-

sition and optimised with grid search to predict developmental scores of pre-

school children. The model is promising and able to show relationships between

modalities that agree with clinical expectations. The score prediction yields a

high similarity at the group level and potential to predict laborious and time-

consuming developmental scores from routinely collected sMRI and/or EEG

data, thus becoming a stepping-stone towards more efficient clinical assessment

of brain development in young children.
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1. Introduction

Due to recent advances in medical technology, it is now possible to record

multiple sources of information from patients. Clinicians are expected to pro-

vide better care and more accurate diagnosis from these rich data. However,

one of the difficulties is how to find a method to combine and analyse data5

from different sources. A particularly relevant example is the case of the hu-

man brain, especially the developing brain of children, as childhood is a critical

developmental period and the foundation of a child’s future development and

health [1, 2, 3]. Clinicians can acquire information about the brain function and

structure through different modalities, such as electroencephalography (EEG)10

or magnetic resonance imaging (MRI). They usually expect that patterns in

the anatomy and function would reflect changes in the clinical scores used to

diagnose and monitor disease. In this context, this paper presents a novel data

fusion algorithm for combining brain function, structure, and phenotypic data

with regards to the development of preschool children.15

The EEG can record fast changes in the electrical activity of the brain using

multiple electrodes attached on the scalp [4]. The EEG is a standard clinical

tool to assess the functional activity of the brain and helps to diagnose a number

of conditions [4]. The advantage of EEG is its high temporal resolution, which

is capable of detecting changes in brain activity in the range of milliseconds.20

However, the downside is its low spatial resolution, in the range of centimetres.

Furthermore, it is difficult to perform accurate EEG signal source localisation

due to the ill-pose nature of the inverse problem [5].

Another standard tool used in the clinic is MRI. Among other MRI modali-

ties, structural MRI (sMRI) allows us to study the anatomy of the brain. sMRI25

provides sliced images of the brain from which a three-dimensional volume can

be reconstructed. Clinicians use sMRI to inspect the physical appearance of the

brain [6]. The advantage of sMRI is its precise spatial resolution, in the range of
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millimetres. However, sMRI capture brain image at a specific time, so it lacks

the ability to acquire temporal functional information [7].30

Both modalities have complementary advantages considering the high tem-

poral resolution of the EEG and the detailed anatomical images of the MRI.

They both are commonly used in epilepsy diagnosis [8]. Epilepsy is a chronic

neurological disease associated with unprovoked epileptic seizures. It can start

at any point in life, as early as an infant. Children with early-onset epilepsy35

(CWEOE) are prone to be cognitively and behaviourally impaired compared to

healthy children of the same age [9, 10]. These deficits occur in 20% to 57% of

CWEOEs, and cause more disabilities to their life than the seizures themselves

[10, 11, 12, 13, 14].

Early diagnosis of those developmental deficits is pivotal to the child’s quality40

of life. The clinical gold-standard entails the use of paper questionnaires to

appraise potential impairment in children. However, such questionnaires are

time-consuming and labour-intensive [15]. Moreover, the tests only detect the

deficits after they show their signs. During the diagnosis of epilepsy, EEG and

sMRI are acquired from CWEOEs. Therefore, exploiting those already existing45

data to estimate the risk of developmental impairment at each CWEOE is an

appealing proposition.

To that end, we propose a new approach to predict developmental scores

in CWEOE by combining EEG, sMRI, and phenotypic data through coupled

tensor-matrix-matrix decomposition [16]. We consider phenotypic scores – in-50

cluding age, cognitive and behavioural scores – and analyse the changes in func-

tion and structure of the brain that may relate to such deficits. We then use

that model to predict the score of the new diagnosis CWEOEs. Our approach

is further validated using publicly available dataset from healthy children [17].

We present our main contributions below.55

• We explore, for the first time, links between phenotypic scores, EEG,

and sMRI data in very young CWEOEs by extending a recent model [18]

to fuse data via a tensor-matrix-matrix decomposition. In comparison
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with the previous state of the art, we include the third modality (sMRI)

and behaviour scores into the decomposition. This extends our feasibility60

study in [19], where the preliminary results showed changes in the volume

of brain regions related to changes in scores that were in agreement with

previous clinical studies [20, 21, 22]. We also include a larger dataset and

healthy participants.

• We improve the initialisation step of the joint decomposition in comparison65

with [19] to reduce model cost and improve stability.

• We investigate the variability across subjects in the results of the de-

composition. We analyse the change in the model when one subject is

removed from the population and inspect which subjects contribute to

larger changes in the model.70

• We present how to use the data fusion model to further perform develop-

mental score prediction. We show that developmental score prediction can

be determined from the components estimated of the data fusion model

through linear projection from the joint decomposition of three modali-

ties. In addition, we exploit the common interactions between data modes75

[23, 24, 25] to predict phenotypic scores in cases where patients may only

have one type of data available.

2. Background

A widespread way to fuse data from different modalities is to carry out joint

factorisation of data arrays representing such data. The main premise of this80

approach is that the joint analysis allows us to decompose the data into common

factors. In this way, we can reveal complementary profiles from multiple data

sources [26]. Several research studies have successfully performed joint matrix

factorisation on EEG and MRI. To this end, EEG has been jointly analysed with

functional MRI (fMRI) using, for example, independent component analysis85

(ICA) [27], joint ICA, and independent vector analysis (IVA) [28]. In [29],
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ICA and canonical correlation analysis (CCA) were used. There have also been

successful attempts to fuse the three modalities of EEG, fMRI and sMRI, for

instance, using joint ICA and transpose IVA [30] or multi-set CCA (MCCA)[31].

In these approaches, feature data are put into separate matrices, or concatenated90

into a single matrix. Then, the algorithms proceed to decompose those matrices.

However, a matrix form may not be the most appropriate way to represent

data related to brain structure and function [32]. This is particularly the case

for EEG data, which naturally have more than two ways. That is, EEG samples

can be indexed according to space (e.g., EEG channel), time and/or frequency,95

and subject, among others. Unfolding the data for using matrix decomposition

can result in the loss of its multi-way properties. In addition, when applying

matrix decompositions, one has to apply additional constraints to achieve the

unique results in the factorisation [33, 34, 35]. Therefore, coupled matrix-tensor

decompositions have recently been proposed as a more compatible model for100

fusing data that has more than two ways without destroying the structure of

higher-order dataset. In this context, tensor decomposition allows us to study

multi-way data arrays without disrupting the natural organisation and depen-

dencies in the data. This can facilitate the extraction of shared information

between domains [36].105

Coupled matrix-tensor factorisations decompose high-order data (tensors)

with two-way data (matrices) so we can analyse the common relationships be-

tween them. A number of studies have carried out coupled matrix-tensor decom-

positions of EEG and MRI data successfully. Simultaneous recording EEG and

fMRI were jointly analysed based on canonical polyadic decomposition (CPD),110

also known as PARAFAC [37], in [38, 39, 40, 41] to study neural activity. CPD

was also used to fuse EEG and fMRI with the purpose of characterising neuro-

logical disease such as schizophrenia [42] and epilepsy [43, 44]. CPD was further

used to fuse more modalities of fMRI, sMRI, and EEG in the study of biomarkers

in schizophrenia [16, 45]. Other factorisation approaches such as PARAFAC2115

are used to combine measures of brain function – EEG and fMRI – in [46, 47, 48]

and block term decomposition (BTD) [49, 50] has been implemented to study
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epilepsy in [43].

In this paper, we focus on a tensor-matrix-matrix factorisation model to

jointly analyse EEG and sMRI in order to predict the developmental scores120

of children with epilepsy. We choose EEG and sMRI because these two data

modalities are acquired during the epilepsy diagnosis, as described in Section 1.

Moreover, previous studies suggested relationships between either of EEG or

sMRI and developmental scores. For example, correlations between EEG fea-

tures and cognitive scores were reported in [51, 18]. A reduction in thalamic125

volume (sMRI) in epileptic children with cognitive problems was found in [20]

and correlations between sMRI and behavioural scores have been reported too

[52]. In this context, we consider phenotypic information including age, cogni-

tive score, and behavioural score as a third data modality in the analysis. In

this way, we seek to explore links between cognitive and behavioural scores and130

brain data. To the best of our knowledge, this is the first time EEG, sMRI and

these type of phenotypic scores from very young CWEOEs are combined for the

analysis through tensor-matrix-matrix decomposition.

Notations and definitions in this paper follow the descriptions in [23]. Bold

lowercase, such as a, represents 1-way tensors or vectors. The outer product135

between vector a and b appears as a ◦ b. Matrices, or 2-way tensors, are

represented by bold uppercase letters, X = [a1,a2, · · · ,aJ ] ∈ RI×J . A mul-

tiway data array, so-called tensor, is denoted by calligraphic upper case letter

X ∈ RI×J×···×N . Khatri-Rao product between two matrices is represented as

A�B.140

3. Methods

3.1. Dataset

This study used two complementary datasets that are analysed separately

to enhance the replicability of our approach. One contains data from CWEOE

and the other one includes healthy subjects. They are described in the following145

subsections.
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3.1.1. Child Mild Institute

Data of 35 healthy children aged 5-6 years-old with completed phenotypic

data are selected from the public available dataset provided by Child Mild In-

stitute - Healthy Brain Network (CMI) [17]. Resting state brain activity are150

recorded from high-density 111-channel EEG. MRI T1-weighted image are ac-

quired from three different MRI machines, 1.5T Siemens Avanto, 3T Siemens

Trim Trio and 3T Siemens Prisma. For CMI, we chose four developmental

scores which available for every subjects and try to account for cognitive and

behavioural ability. Wechsler Individual Achievement Test-III (WIAT) [53] and155

Clinical Evaluation of Language Fundamentals (CELF) [54] were chosen to rep-

resent the cognitive ability while Child Behaviour Checklist (CBCL) [55] and

Strengths and Weaknesses Assessment of ADHD and Normal Behavior (SWAN)

[56] were chosen to represent the behaviour of the children. The number of the

subjects categorised by their developmental score are presented on Table 1.160

Note that two out of three subjects have mild cognitive deficit, as indicated

by at least one of the cognitive assessments. For example, two subjects had

mild impairments in behaviour, as indicated by the SWAN, but not according

to CBCL.

3.1.2. NEUROPROFILE165

A prospective population-based study [57] provided a clinical data of 30 pre-

school children (<5 y.o.) who were diagnosed with epilepsy. This dataset is

recorded as part of the patient’s clinical care across NHS Fife and Lothian, UK

with the written consent to study their data from patient’s parents. Resting-

state EEG recorded at 20 scalp electrodes and average referenced. The signal170

are processed to be seizure free for the analysis. Structural MRI T1-weighted

image are recorded from 1.5T Siemens Espree. Children also participated in cog-

nitive assessment with Bayley Scales of Infant and Toddler Development-Third

Edition (Bayley-III) [58] and behavioural assessment with Adaptive Behavior

Assessment System-General Adaptive Composite (ABAS-GAC) [59]. The total175

number of the subjects according to their psychometric score are showed on
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Table 1: Grouping of healthy control (n = 35) according to their level of cognitive and

behavioural impairment.into normal (±1 SD), mild/moderate (−1 to −2 SD) and severe

(< −2 SD) impairment.

Behavioural score (SWARN and CBCL)

Normal Mild Severe

Normal 29 1 1

Cognitive score Mild 3 1 0

(WAIT-III and CELF) Severe 0 0 0

Table 2: Grouping of the CWEOE (n = 30) according to their level of cognitive and be-

havioural impairment into normal (±1 SD), mild/moderate (−1 to −2 SD) and severe (< −2

SD) impairment.

Behavioural score (ABAS-GAC)

Normal Mild Severe

Normal 11 3 2

Cognitive score Mild 4 2 1

(Bayley III) Severe 0 2 5

Table 2.

3.2. Data Preparation and Tensor Construction

This section describes how data were prepared. Figure 1 illustrates the tensor

and matrices construction to be used in this work. In order to perform data180

fusion, we need at least one shared domain across the modalities. By aligning

the data in the same subject order, the [Subject] mode is treated as shared,

which means data from different modality are matched and can be linked across

the subjects.

Both datasets were processed as similarly as possible. The sampling rate185

of resting-state EEG from CMI and NEUROPROFILE are 500 Hz and 511

Hz, respectively. The reference and auxiliary channels are removed from the

analysis, result in 111 channels for CMI and 20 channel for Neuroprofile. The

data was filtered from 0.5Hz to 45Hz to remove power line noise. Manual and

automatic rejection from Fieldtrip toolbox [60] are performed to remove other190

artefacts. Then, the EEG signals are split into non-overlap two-second long
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trials. The frequency spectrum was calculated and averaged over the trials to

provide a general spectral profile of the resting-state EEG. Subsequently, tensor

is constructed to store all EEG data in modes [Subject] × [Spectral] × [Channel]

with size 35× 81× 111 for the CMI and 30× 79× 20 for the NEUROPROFILE195

data.

Due to the different scales in the developmental scores, we standardise them

by converting them into z-score before placing in the phenotypic matrix together

with the age of participants. The matrix construct in the same subject order

as EEG tensor with mode [Subject]×[Score]. For CMI, age, WIAT-III, CELF,200

SWARN, and CBCL are arranged into a score matrix at the size of 35× 5. For

the NEUROPROFILE, a score matrix size 30 × 3 is arranged by order of age,

Bayley-III, and ABAS-GAC.

For MRI data, T1-weighted images from both datasets were processed and

their quality was manually assessed using FMRIB Software Library (FSL) 5.0205

[61]. After removing children data with severe motion artefacts, MRI sequences

were segmented into eight brain regions following the study in [20], by FMRIB’s

Integrated Registration and Segmentation Tool (FIRST) [62] in FSL. We cal-

culate the volume of the following eight segmented regions, which are the left

and the right thalamus, caudate, putamen, and pallidum. Then each regions210

are normalised by head size of the subjects to be in the same standard space.

Then MRI data are stored in the same order as EEG and score in a matrix

with mode [Subject]×[Region] at the size of 35× 8 for the CMI and 30× 8 for

NEUROPROFILE.

Figure 1: Joint coupled tensor-matrix representation used in this work. The data are linked

across the subject domain through three different modalities.
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3.3. Data Fusion and Tensor-matrix-matrix Decomposition215

In order to fuse the EEG tensor with the MRI and phenotypic score matrices,

we adapt a tensor factorisation model coined Joint EEG-Development Inference

(JEDI) [18]. JEDI is a matrix-tensor factorisation model based on CPD that

can preserve multi-dimensional relations in the data and can work with different

type of data expressed as either matrix or tensor. In previous JEDI work, the220

model combined EEG and cognitive attributes of healthy pre-adolescent children

(<11 y.o.). In this work, we decrease the age of subject to preschool children

(<7 y.o.) on healthy cohorts and having clinical children (<5 y.o.) with record

of epilepsy. Reducing age plays an important role in assist early detection of

impairment.225

To perform the fusion of three data types all at once, CPD [37] is chosen. The

coupled tensor-matrix-matrix factorisation between EEG, phenotypic score, and

sMRI will consider the EEG tensor X ∈ RI×J×K , the score matrix S ∈ RI×N ,

and the sMRI matrix M ∈ RI×M . The score matrix S is decomposed into

component factors A ∈ RI×R, and D ∈ RN×R, respectively, and S ≈ ADT .230

Similarly, the MRI volume matrix M has component factors A ∈ RI×R, and

E ∈ RM×R, respectively, and M ≈ AET , where subject domain A is a shared

mode among all three modalities.

CPD is a commonly used tensor decomposition model that decomposes a

tensor into a sum of rank-1 tensors and has the advantage of being unique235

under mild constraints [63]. CPD is widely used in brain signal analysis [23, 24]

and has been proven to extract developmental profiles in children’s brain activity

[24, 51, 18]. For example, in the CPD model, the three-way tensor X ∈ RI×J×K ,

with rank R can be written as

X ≈
R∑

r=1

ar ◦ br ◦ cr, (1)

where r = 1, 2, · · · , R with ar ∈ RI , br ∈ RJ , cr ∈ RK . This can also be written240

as

xijk =
∑

airbjrckr + εijk, (2)
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where i = 1, · · · , I; j = 1, · · · , J ; k = 1, · · · ,K; r = 1, · · · , R with xijk, air, bjr,

ckr, and εijk as element of X , domain A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, and

residual ε ∈ RI×J×K , respectively

The coupled tensor-matrix-matrix decomposition was carried out with the245

structured data fusion (SDF) framework [36] implemented in Tensorlab [64]

in Matlab. JEDI initialised EEG and score factor components using multi-

linear SVD [64] and randomly, respectively. In contrast, we initialise the factor

components in the coupled CPD via ordinary CPD method [65] to increase the

fitness. The initialised step firstly compute CPD of EEG tensor X to obtain250

initial value for factor A, B, and C. The remaining factor D, and E are

computed by matrix multiplication with previously obtained factors A.

We set the subject domain [Subject] A ∈ RI×R as a shared domain for the

SDF. Additionally, to improve the interpretation and ground the factors into the

realistic boundary, we impose a non-negative constraint to every domain of EEG255

tensor and MRI matrix, A, B, C, D. As the subject domain A is an overlap

domain, this non-negativity also affects the subject domain of the score matrix.

Next, we imposed regularisation to all the modes of tensors and matrices in order

to reduce the overfitting. L1 regularisation was set on [Subject] modes across the

domain to promote sparse responses. L2 regularisation was set on the domains260

other than [Subject]. Relative weights λ1−5, also called hyperparameters, were

set to define the contribution of EEG tensor X , MRI matrix M, score matrix

S, L1, and L2 regularisation toward the SDF structure. We impose all these

hyperparameters to minimise the cost function which extended from [18] and

can be written as265

min
A,B,C,D,E,R

(λ1/2)||X − MCPD(A,B,C, R)||2F +

(λ2/2)||S − MCPD(A,D, R)||2F +

(λ3/2)||M − MCPD(A,E, R)||2F +

(λ4/2)(||vec(B)||2F + ||vec(C)||2F +

||vec(D)||2F + ||vec(E)||2F ) +270

(λ5/2)||vec(A)||1, (3)

where A, B, C, D, E, are the component factor of each mode that previously
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mentioned. R and MCPD represent the number of components and refer to joint

CPD decomposition, respectively. The hyperparameters λ1−3 are the relative

weights for increase the fittings to X , S, M while λ4 and λ5 are L2 and L1275

regularisation, respectively.

The optimum values of λ1−5 are explored within the optimisation process.

The value of hyperparameter λ1, λ4 and λ5 are set to varied from 0.01 to 100.

While λ2 and λ3 are varied from 0.1 to 10 then multiplied by λ1 to prevent

tensor or matrices to overwhelm the fusion. Moreover, we also varied number of280

components R from 2 to 6. The hyperparameter λ1−5 and R with lower costs

are recorded to further evaluate the ability to predict the developmental score.

3.4. Variability across subjects

We also investigate the variability that affects the decomposition result due

to changes in subjects within the population. We use a leave-one-out setting to285

assess that variability. This allows us to investigate the effect of having one of the

subjects left out of the group used to compute the components. We hypothesise

that the factor values will not change considerably due to this change in the

composition of the dataset used in the decomposition and that the components

will maintain the main trends. In particular, we remove one subject out from290

the decomposition at a time, then proceed with the same set of hyperparameters

resulted from grid search, and compute the decomposition. Thus, we have a total

of 35 new runs for CMI and 30 new runs for NEUROPROFILE, each of which

has one corresponding subject left out of the analysis. Due to the fact that the

order of the factors may vary from run to run, the components are manually295

matched into the same order obtained from the decomposition of the whole

dataset (order shown in Fig. 3). The subject mode is rearranged by shifting the

subject that was left out. Once the components have matched, the mean and SD

of each component for each factor are calculated and plotted separately to assist

visualisation. We also compute the average correlation coefficient across all300

components extracted from the complete dataset and from the factors computed

in the leave-on-out procedure.
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Figure 2: Visual presentation of score prediction through coupled tensor-matrix-matrix de-

composition. Step 1.) Perform tensor-matrix-matrix decomposition of the training dataset

and obtain training components Atr, Btr, Ctr, Dtr, and Etr. Step 2.): Case A Both EEG

and sMRI available from new patients. Perform tensor-matrix decomposition of the tested

dataset by fixing mode Bnew, Cnew, Enew to be the same value as Btr, Ctr, Etr, to get Anew

that holds the information of new patients. Step 2.): Case B When only EEG is available

from new patients. We apply tensorial algebra to project Anew by fixed mode Bnew, and

Cnew, to be equal to Btr, and Ctr. Step 2.): Case C Only sMRI is available from new

patients. Similarly to case B, we fixed mode Enew to be equal to Etr. Then perform matrix

multiplication with the pseudo-inverse to get Anew that hold the information of new patients.

Step 3.) Once Anew is known, the score matrix Snew of the new patients can be estimated

from Snew = AnewDT
tr

13



3.5. Score Prediction

3.5.1. Prediction via tensor-matrix-matrix factorisation

In this study, we predict the developmental score of the new children from305

three possible cases. First, when both EEG and MRI are available, and then

where only one of them is known.

Assume that we have data from subjects for whom we know the develop-

mental scores. This data can be considered as the training set: Xtr, Mtr and

Str. Applying the data fusion model, we can estimate training components Atr,310

Btr, Ctr, Dtr, and Etr. Once new unseen (e.g., test) data is available, Xnew

and Mnew, the goal is to predict the developmental scores from only the EEG,

only the MRI, or both EEG and MRI. We assume that the new kids are part of

the same population as our trained dataset. Thus when new kids are added to

the trained dataset and jointly decomposed, the factorised components are as-315

sumed to stay the same and be equal across the old and new datasets. Therefore,

Btr = Bnew, Ctr = Cnew, Dtr = Dnew, Etr = Enew since common interactions

held within [Spectral], [Channel], [Score] and [Volume] domains remain. With

this assumption, developmental score matrix of the new kids can calculated in

the following cases.320

Firstly, when both sMRI and EEG are available for new subjects, Xnew and

Mnew will be integrated into a CPD data fusion model without the score matrix

and perform tensor-matrix decomposition with B, C, E fixed as Btr, Ctr, and

Etr. The cost function will be similar to the full decomposition equation but

without the score matrix and its regularisation. The equation can be written325

as:

min
A,B,C,E,R

(λ1/2)||Xnew − MCPD(Anew,Btr,Ctr, R)||2F +

(λ3/2)||Mnew − MCPD(Anew,Etr, R)||2F +

(λ4/2)(||vec(Btr)||2F + ||vec(Ctr)||2F +

||vec(Etr)||2F ) +330

(λ5/2)||vec(Anew)||1, (4)
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The model will estimate Anew that hold the information of the new subjects

in the context that other modes are the same as the training population. Then,

we can estimate the unknown score matrix as Snew = AnewD
T
tr, as visually335

demonstrated in Fig. 2, case A.

In the case only one of the new data was available, for example, the EEG,

the training data are firstly decomposed in the same way as the previous case.

Then, the weight W for [Subject] domain to determine the predicted score can

be calculated from training EEG data Xtr unfolded along the subject domain,340

as:

Xtr = Atr(Btr �Ctr)T (5)

Xtr = AtrW, (6)

where W is a weight matrix for [Channel]×[Frequency]. Then, to get the es-

timated [Subject] domain Anew for score prediction, we calculate non-negative

least square projection (NN(·)) between W and the unfolded new EEG Xnew345

along with the subject domain as:

Xnew = Anew(Bnew �Cnew)T (7)

Anew = NN(XnewW), (8)

where Anew is an estimation of the new subject component for this case. The

NN(·) is used instead of standard regression because we assume non-negativity

in extracted modes. Then Anew can be multiplied with the transposed factor350

matrix [score] from the training session to get the predicted score as Snew =

AnewD
T
tr. Fig. 2, case B illustrated this case where only EEG are available.

The similar approach can be applied if only the sMRI is available and rep-

resent in Fig. 2, case C. The training sMRI Mtr is unfold into AtrE
T
tr with the

weight matrix W = ET
tr. Then, Anew can be calculated from NN(MnewW).355

The predicted score is Snew = AnewD
T
tr.
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3.5.2. Evaluation of score prediction

As a benchmark, we used a support vector machine (SVM) [66] to predict

scores from EEG and/or sMRI data. SVM is a supervised machine learning

algorithm used in many fields for classification and regression analysis, and re-360

cently used in the analysis of epileptic EEG and MRI [67, 68, 69]. Therefore,

SVM is adopted as a benchmark for out proposed CPD model. In this paper,

we focus on the predictive ability of SVM regression in order to compare with

the predicted result from the proposed model. We fit a SVM regression model

into a ten-fold cross-validation setting to perform score prediction [70]. EEG365

tensor was unfolded along subject dimension into matrix size 30 × 8991 and

30 × 1580 (subjects × channel by frequency combinations) for CMI and NEU-

ROPROFILE, respectively. Then, the unfolded EEG is concatenated along the

subject domain with MRI matrix to create a trained matrix for SVM before

performing score prediction. The parameters used in SVM were determined370

through automatic hyperparameter optimisation to find the best fit.

Moreover, we also tested the JEDI model as another benchmark for predic-

tion. We also used grid search in this case to determine the optimal hyper-

parameters for JEDI, when only EEG is available as described in [18]. The

SVM, JEDI, and our CPD model were compared using the same ten-fold cross-375

validated set-up, which will be described in section 3.6. Thus each fold can be

compared side by side for their predictive performance.

In addition to the benchmark models; SVM and JEDI, a two-tailed t-test

with a 5% significance level is tested to check the mean distribution of actual

and predicted score.380

3.6. Model Optimisation

In our experiments, the hyperparameters resulting in the least cost are se-

lected to explore the common interaction between modalities. Grid search was

adopted to explore the combination of hyperparameters λ1−5 and number of

components R from equation 3.3. We fixed a regularisation to subject λ5 = 1.385

Then λ1 and λ4 are varied from 0.01 to 100 in nine logarithmic steps while λ2
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and λ3 are varied from 0.1 to 10 in 5 logarithmic steps then multiplied by λ1

followed [18].

For the score prediction process, we adopted a ten-fold nested cross-validation

[71], which was divided into outer and inner cross-validation. In outer cross-390

validation, ten percent of all data is considered a new test dataset with unknown

developmental score and the rest of the dataset is assigned to the inner cross-

validation. Then another ten and ninety percent of the remaining data in inner

cross-validation are considered as validation and training, respectively. In this

setting, the optimum hyperparameters yielding the most accurate score predic-395

tion from the inner training to validation is then transferred to compute the

developmental score for new patients.

For model evaluation, JEDI is set to use the same grid search and cross-

validation setting as our CPD model. Likewise, SVM is set to the same cross-

validation. However, SVM cannot predict the whole score matrix all at once.400

Therefore each score is predicted separately before merge into the predicted

matrix for later evaluation.

4. Results and Discussion

4.1. Profiles of the components

The component factors with the lowest cost from grid search is plotted in405

Fig. 3. The grid search resulted in optimal values of R = 6, λ1−5 = 100,

316.2278, 10, 0.01, and 1, respectively, for CMI dataset with cost = 0.2403; and

R = 6, λ1−5 = 100, 31.6228, 10, 0.1, and 1, respectively, for the NEUROPRO-

FILE with cost = 0.2368. Interestingly, both hyperparameter sets are nearly

identical. The only difference is the relative weight imposed on the score matrix,410

316.2278 for CMI and 31.6228 for the NEUROPROFILE. The higher value in

score matrix weight in CMI indicated that the model needs higher weight to

achieve a similar low cost. This may occur due to the fact that CMI have little

number of subjects with score deficits when compare to NEUROPROFILE. By

improving the initialisation step as mentioned in 3.3, the NEUROPROFILE415
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Figure 3: Plots of the components extracted by our data fusion model. The components in

the left graph were retrieved from the CMI dataset by using hyperparameters R = 6, λ1−5 =

100,316.23,10,0.1,1, respectively. The components in the right graph are from the NEURO-

PROFILE dataset using hyperparameters R = 6, λ1−5 = 100,31.623,10,0.1,1, respectively.

(a.) Components for the subject mode ordered in the horizontal axis from youngest to oldest.

(b.) Phenotypic components ordered in the x-axis as age, followed by the psychological scores.

(c.) Components for the volume of eight brain regions: Thalamic (L,R), caudate (L,R), puta-

men (L,R), and pallidum (L,R), as indicated on the horizontal axis. (d.) Components for the

frequency spectrum (in Hz. (e.) Components corresponding to the EEG channels.

Figure 4: CMI topoplot of 111 EEG channels from channel factor components. (This is an

alternative representation to panel e) on the left part of Fig. 3.)
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Figure 5: NEUROPROFILE topoplot of 20 EEG channels from channel factor components.

(This is an alternative representation to panel e) on the right part of Fig. 3.)

lowest cost was reduced from 0.3906 [19] to 0.2368. Moreover, this initialised

resulted in better stability. The cost variability was tested in the same manner

as in [19], where we fixed the hyperparameters achieving from grid search and

compute the resulting cost 200 times. The result shows the improvement in

mean cost and overall cost compared to [19], where cost range from 0.3906 and420

can spike up to 2.500 on NEUROPROFILE data. The cost is more stable with a

lower value and has no abrupt higher cost. The cost for the NEUROPROFILE

dataset ranges from 0.2368 to 0.3287, while CMI ranges from 0.2403 to 0.3504.

Fig. 3 (a.) shows components for the subject mode, with increasing age on

the x-axis. There is no trend associated with increased age in the profile com-425

ponents of CMI dataset. However, the yellow component on NEUROPROFILE

demonstrates the component increasing with age.

Fig. 3 (b.) shows the components associated with the mode of the pheno-

typic scores as shown on the x-axis. The first value represents the age in the

phenotypic score, which, in CMI, indicates that a green component is associ-430

ated with age. However, when tracing back to Fig. 3 (a.), the green line does

not show the obvious increasing trend when the children where ordered from

younger to older. When looking at the age position on the x-axis in NEURO-

PROFILE, a yellow component is also associated with age. Now, when tracing
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back to section (a.), we can see the increasing trend with age in this case. The435

difference in both datasets’ age gap may be the reason for the different trend in

section (a.) because CMI subjects consist of 5-6 y.o., while NEUROPROFILE

has children from 0.2-5 y.o., thus accounting for a broader age range.

The remaining positions of the x-axis of Fig. 3 (b.) feature developmen-

tal scores. The children are considered as normal, having better than normal440

performance, and impaired, when the graph lies around zero, positive, and neg-

ative values, respectively. For CMI, Fig. 3 (b.) WIAT and CELF are cognitive

scores, and SWARN and CBCL represent behavioural scores. The yellow and

purple components are associated with subjects who generally perform well in

all developmental tests, with yellow suggesting that subjects have better cogni-445

tion as of CELF and purple with slightly better behaviour in SWARN. The red

component is associated with subjects with mild cognitive impairment indicated

only by CELF but who perform well in other scores. The light blue component

accounts for subjects with poor SWARN but in normal range with CBCL and

perform well in cognitive test. The blue component represents subjects with450

poor CBCL but not in SWARN for behavioural ability, with slightly low in cog-

nitive ability indicated by CELF. The green component represents subjects with

lower cognition in WIAT but who appear normal in other scores. However, this

component is heavily associated with age. For CMI, these components make

sense because the majority of the subjects are in normal or better range of de-455

velopmental scores resulting in better performance of different scores going into

the same direction. Only a handful subjects indicated to be deficit by either

one of the scores in cognitive or behavioural field and rarely both, making the

graph only associate the deficit of each score separately.

When compared to NEUROPROFILE, where more subjects are labelled to460

have deficits in either or both developmental scores, we see a nearly parallel line

in several components on Bayley and ABAS scores on Fig. 3 (b.) The yellow

component represents subjects with normal developmental score and associated

with age. The purple component represents subjects with normal developmen-

tal scores. The blue component represents subjects with normal cognitive score465

20



and who perform well in behavioural score, similarly to green component that

represents normal behaviour and better scores in cognition. The red compo-

nent represents subjects with behavioural impairment but normal in cognitive

ability while light blue component represents subjects who have developmental

impairment in both fields.470

Fig. 3 (c.) illustrates the sMRI volume factors in eight regions. We can see

similar trends in brain regional factors from both dataset, especially in the CMI

green component and NEUROPROFILE yellow component. Both components

are associated with volumes in thalamus, caudate and putamen that change

with age when traced back to Fig. 3 (b.), something that agrees with previous475

studies [3, 72]. In CMI, the green component is also associated with lower

cognitive ability from WIAT-III but with the heavily link to age. Therefore, it

is hard to assume that this component can fully represent cognitive impairment.

Thus, we focus on the yellow and red components which represent subjects

who perform well and poorly in the language assessment CELF in CMI. In480

Fig. 3 (c.), the decomposition points out that cognitive ability is associated with

differences in volume between right thalamus [72], caudate [73] and left putamen

[21, 74]. Components blue and light blue represent behavioural impairment

indicated by SWARN and CBCL, respectively. Both graphs are similar across

the sMRI volume factor in Fig. 3 (c.), with differences only in right putamen,485

which follows the study [75] that found that children with ADHD or behavioural

problems often have different volumes between left and right putamen. Finally,

we compare this with the purple graph that represents subjects with normal

behaviour and specifically good in SWARN. We can see that there is a volume

different in thalamus [76], and right putamen [75] in subjects with deficits.490

With the same context for NEUROPROFILE, we compare the blue and

red components for better and worse behaviour as indicated by ABAS-GAC.

Fig. 3 (c.) shows behavioural deficits associated with mainly lower volume

in thalamus [76], and followed by caudate [77]. Then, we compare the green

and light blue components for better and worse cognition in the Bayley score.495

Fig. 3 (c.) shows different in every brain regions except pallidum and signif-
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icantly different in thalamus which is known to be associated with cognitive

ability [20, 72]. The purple component that associated with subjects who are

in normal range in both scores shows a very similar trajectory with the red

component.500

Fig. 3 (d.) illustrates the components for the frequency spectrum mode.

Focusing on the frequency range 5-10 HZ in both groups of children, the healthy

controls in the CMI have higher relative amplitude than CWEOE. The frequency

profiles show most of the activity in low frequency band. This is in agreement

with the fact that we have analysed EEG resting state activity from young505

children [78]. The components can be related to cognition and behaviour more

clearly in the sMRI mode due to previous literature on the topic [20]. However,

the inclusion of EEG allows us to evaluate their score predictive ability as it

will be shown in the next subsection.

Fig. 3 (e.) demonstrates the profile the components in the channel mode.510

We plot the factors as topographic maps using the EEGlab toolbox[79] and

match them with the colour line graph to assist the analysis. Fig. 4 depicts the

topoplot of 111 channels from CMI data and Fig. 5 illustrates the 20 channels

from the NEUROPROFILE data.

4.2. Variability Across Subject515

We hypothesised that removing one subject from the population and then

performing tensor-matrix-matrix decomposition with the same hyperparameters

as in the previous section would yield a similar decomposition profile. This

allows us to analyse the variability across each subject. The mean and SD

graphs from these variability test for the CMI factors are plotted on Fig. 6 -520

10, while the NEUROPROFILE factors are plotted on Fig. 11 - 15. The order

of the factor component 1-6 follows the colour blue, red, yellow, purple, green

and light blue of the component profile plots from Fig. 3. The major trends in

the mean factor component graphs resemble those of Fig. 3, with some shifts in

shape and intensity in some components. For both datasets, volume and score525

factor components are the closes resemble to the trend in Fig. 3, followed by
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Figure 6: Mean and SD of CMI subject mode from the subject variability analysis.

subject, frequency and channel components.

The association between factors components linked in section 4.1 mostly

remain the same. For CMI, blue (factor 1), yellow (factor 3), green (factor 5)

and light blue (factor 6) have subtle change in trend from the mean variability530

graph. However, the association with developmental deficits and differences in

brain volume remain the same as discussed in section 4.1. The red component

(factor 2) remains representing children with poor language ability (CELF)

and normal in other scores, but now only obviously associate with difference

in caudate region. The volume difference in thalamus and putamen are not as535

noticeable when compared to the normal children on yellow (factor 3) component

on Fig. 8. The purple component (factor 4) remained the same on volume

trend in Fig. 8. However, instead of representing children with normal score in

general, the mean graph is now bending toward lower WIAT on Fig. 7, factor

4. For NEUROPROFILE, all factor components in Fig. 12 represent the same540

developmental deficits as in previous section 4.1. The trend in MRI volume on

Fig. 13 also stayed the same with slightly shift in Y-axis. However, this shift
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Figure 7: Mean and SD of CMI score mode from the subject variability analysis.

Figure 8: Mean and SD of CMI regional volume mode from the subject variability analysis.
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Figure 9: Mean and SD of CMI frequency mode from the subject variability analysis.

Figure 10: Mean and SD of CMI channel mode from the subject variability analysis.

25



Figure 11: Mean and SD of NEUROPROFILE subject mode from the subject variability

analysis.

Figure 12: Mean and SD of NEUROPROFILE score mode from the subject variability anal-

ysis.
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Figure 13: Mean and SD of NEUROPROFILE regional volume mode from the subject vari-

ability analysis.

Figure 14: Mean and SD of NEUROPROFILE frequency mode from the subject variability

analysis.
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Figure 15: Mean and SD of NEUROPROFILE channel mode from the subject variability

analysis.

Figure 16: Correlation coefficients between the CMI whole dataset and the components esti-

mated in the leave-one-out procedure.

Figure 17: Correlation coefficients between the NEUROPROFILE whole dataset and the

components estimated in the leave-one-out procedure.
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did not affect the interpretation.

The mean frequency components showed trends in the same frequency ranges

as in Fig. 3 for both dataset, with the change in intensity. The intensity change545

is more obvious in the mean channel components. For CMI, factor 3 and fac-

tor 4 from Fig. 10 showed the lowest and highest deviation, respectively. For

NEUROPROFILE, factor 3 and 6 showed lower deviation while factor 4 showed

higher variation in Fig. 15. The deviation happened because the factor com-

ponents are matched base on their trended shape across five modes without550

regarding the intensity of the graph.

To further investigate the variability across subjects and how it affected the

components, we calculated the correlation coefficients between the components

computed from the whole dataset and the ones estimated during the leave-one-

out procedure. We then plotted the average of the correlation coefficients against555

each subject left out of the data fusion decomposition as a way of visualising the

effect of removing each subject from the decomposition. The CMI correlation

coefficient is plotted on Fig. 16, and NEUROPROFILE on Fig. 17.

Overall, CMI had lower correlation coefficients, ranging from 0.64 to 0.88,

compared to the NEUROPROFILE dataset whose coefficients ranged from 0.77560

to 0.95. There was no clear association of the highest or lowest average correla-

tion coefficient values with either children with or without deficits in any of the

datasets. This means that the high correlation coefficient does not depend on

the children developmental scores, and it is not associated with increasing age

either. The subtle problems in CWEOE may lead to a higher correlation which565

needs further investigation.

4.3. Developmental score prediction

The predicted scores resulting from each fold are converted from z-score to

the same standard space of mean 100 and standard deviation 10 to assist the

analysis and visualisation. The overall percentage error of score prediction of570

each outer cross-validation fold are contained in Table 3.
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Table 3: Predicted error of each validation folds

Model\Fold 1 2 3 4 5 6 7 8 9 10

CMI dataset

SVM EEG prediction 9.5719 14.7207 11.5529 10.3688 11.2068 19.3905 21.2143 10.3974 13.0083 9.7004

SVM MRI prediction 12.64507 14.5719 13.2557 8.9693 10.6705 18.6596 21.4091 9.5546 11.1205 10.4657

SVM EEG/MRI prediction 9.3347 14.4806 11.3950 10.0944 11.2877 19.1832 21.1527 10.9920 13.1007 9.7145

JEDI prediction 12.0745 16.8612 15.0429 11.7953 15.9561 19.2568 16.0751 13.8068 12.4169 16.3152

Proposed model

CMI EEG prediction 13.0641 20.7133 12.5610 16.4141 11.4748 19.0361 19.0869 10.2391 12.4695 13.1405

CMI MRI prediction 15.6760 15.0177 13.5070 8.6404 9.31443 18.0369 21.1521 8.8519 10.1490 10.1490

CMI EEG/MRI prediction 11.8388 12.5724 16.1760 9.0825 16.1360 15.5695 20.1891 10.9429 13.6734 11.0067

NEURPROFILE dataset

SVM EEG prediction 24.1413 15.7197 13.9533 27.5374 17.8762 21.1055 9.7579 34.8469 23.4999 12.3570

SVM MRI prediction 25.8194 18.5142 14.0955 28.8177 21.8298 20.1382 9.3017 36.4359 22.2666 13.0785

SVM EEG/MRI prediction 24.3616 15.8613 14.559 27.4186 20.5457 21.6128 9.9125 34.6633 23.7996 12.1532

JEDI prediction 40.4933 8.8701 33.8156 39.4693 11.8312 16.1594 16.8124 21.3984 54.0610 16.5694

Proposed CPD model

EEG prediction 27.4442 7.1149 17.2356 27.8665 10.5909 17.6620 9.6584 25.8922 39.0765 19.9491

MRI prediction 33.2168 8.1200 15.0377 19.9426 11.1727 16.1544 9.3504 15.8859 37.9849 14.5687

EEG/MRI prediction 30.7246 5.1344 12.1597 21.5247 9.9495 18.4134 10.1526 19.1759 48.6983 15.1373

For the CMI dataset, all three models have similar performance when com-

paring the percentage error. The percentage error of SVM ranged from 9.5719-

21.2143%, 8.9693-21.4091% and 9.3347-21.1527% for the prediction from EEG,

MRI, and both respectively. JEDI performed well with the CMI dataset. Note575

that this refers only to the use of EEG data to predict scores, as JEDI does not

allow the inclusion of MRI. It yielded a percentage error from 11.7953-19.2568%.

Our CPD-based model achieved an error range from 13.0641-20.7133%, 8.6404-

21.1521% and, 9.0825-20.1891% for prediction from EEG, MRI, and both re-

spectively.580

For the NEUROPROFILE dataset, SVM achieved the percentage error rang-

ing from 9.7579-34.8469%, 9.3017-36.4359%, 9.9125-34.6633% for prediction

from EEG, MRI, and both modalities, respectively. JEDI yielded the high-

est overall error of all model ranging from 8.8701-54.0610%. The CPD model

yielded error of 7.1149-39.0765%, 8.1200-37.9849%, and 5.1344-48.6983% for585

prediction from EEG, MRI, and both respectively. SVM and the CPD model

achieved similar percentage error, with SVM having a slightly narrower gap of

error. The CPD model could achieve lower error, while JEDI had the broader

gap and highest error compared to the other two models.
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We further investigated the predicted performance at the individual level590

of the scores by calculating the absolute difference between real and predicted

scores from SVM and CPD model then plot on Fig. 18 and Fig. 19, respectively.

Then, we tested the difference between the mean distributions of actual and

predicted scores through a two-tailed Student’s t-test with a 5% significance

level. For the CMI dataset, all predictions from SVM are not significantly595

different mean from the real scores. In contrast, the CELF and SWARN scores

predicted with JEDI were rejected to have equal mean to the actual scores at

p = 0.0005 and p < 0.0001, respectively. The scores predicted from CPD model

are in the same distribution except SWARN and CBCL predicted using EEG

only. In these cases, the null hypothesis was rejected at p = 0.0389 and p =600

0.0057, respectively. This confirms the benefit of including both EEG and MRI

in a data fusion model based on tensor factorisation. For NEUROPROFILE,

all predictions from SVM were in the same mean as the real score. The JEDI

Bayley prediction was rejected to have the same mean at p = 0.038. In the

CPD model, t-test revealed that only the behaviour score prediction from EEG605

data alone yielded a significant difference at p = 0.0199. All other statistical

comparisons showed no significant differences between the predicted and actual

scores.

Figure 18: Absolute differences between real and predicted developmental scores from SVM

at an individual level of CMI dataset (left) with WIAT-III, CELF, SWARN and CBCL scores,

and NEUROPROFILE (right) with Bayley-III and ABAS-GAC scores. The score panels are

arranged from left to right by the source of score estimation, predict from: both EEG and

sMRI ( EM), only EEG ( E) and only sMRI ( M).
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Table 4: Standard deviation of real and predicted phenotypic scores.

CMI NEUROPROFILE

Scores WIAT CELF SWARN CBCL Bayley ABAS

Real score 17.757 17.459 14.939 17.912 17.638 17.406

SVM EEG prediction 7.411 6.416 5.479 6.637 2.137 2.705

SVM MRI prediction 1.684 1.723 1.071 1.052 1.629 2.231

SVM EEG/MRI prediction 7.479 6.362 5.365 6.412 2.245 3.211

JEDI 15.785 10.825 12.843 18.214 14.796 17.237

CPD EEG prediction 8.038 13.489 4.503 6.744 21.878 8.569

CPD MRI prediction 13.737 15.333 11.022 13.893 17.234 13.909

CPD EEG/MRI prediction 13.301 12.501 11.192 9.890 12.859 10.899

Figure 19: Absolute differences between real and predicted developmental scores from CPD

model at an individual level of CMI dataset (left) with WIAT-III, CELF, SWARN and CBCL

scores, and NEUROPROFILE (right) with Bayley-III and ABAS-GAC scores. The score

panels are arranged from left to right by the source of score estimation, predict from: both

EEG and sMRI ( EM), only EEG ( E) and only sMRI ( M).

When considering only the percentage error and mean values, SVM appears

to show the lowest error across the two datasets, and it seems to be a promising610

approach, followed by a slightly higher error from our CPD model. However, it

must be noted that the SVM results regressed toward the mean. This is demon-

strated in Fig. 20 and Fig. 21 when plotting the predicted and actual scores

side-by-side. This regression to the mean is more obvious in NEUROPROFILE

children (Fig. 20). Moreover, when we look at the SD of the real and predict615

scores show in Table4, the scores estimated from SVM were significantly lower

distribution compared to the real scores. This posts a problem when considering

using SVM for prediction developmental score, all subject with severe deficit are

predicted to be ‘normal’.
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The model estimated WIAT and CBCL scores with smaller distribution620

than the real scores in healthy subjects, but it was able to achieve a similar

distribution in others scores of both healthy and CWEOE as Fig. 21 shows.

The CPD model was quite stable when both EEG and sMRI are presented.

Even though the estimated score from CPD model can point some of the deficits

children out of the group and children who score ‘severely low’ can also be625

estimated by the model to be ‘below average’ or even ‘normal’. The score

prediction result from the CPD model is encouraging.

Figure 20: The scores predicted using SVM are plotted side-by-side with the real score on the

left, and predicted score on the right. Both scores are linked by the pink dash line at the indi-

vidual level. Left graph present the CMI dataset, while right graph present NEUROPROFILE

dataset.

Figure 21: The side-by-side plot of scores predicted from the CPD model with the real score on

the left, and predicted score on the right, linked by the pink dash line at the individual level.

Left graph present the CMI dataset, while right graph present NEUROPROFILE dataset.
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4.4. Limitations and future work

One can see opportunities to further refine and develop this model for clin-

ical use. This would enable the clinician to pinpoint children at risk of devel-630

opmental impairments at the time of epilepsy diagnosis without having to use

time-consuming questionnaires. It would also open up the opportunity to mon-

itoring changes over time in developmental status without concerning about the

learning effects of repetitively administering the same questionnaire to a child.

Obtaining complete multimodal datasets from very young children is chal-635

lenging. In this study, a proportion of data had to be excluded from analysis

because EEG, phenotypic scores and/or sMRI values were missing. This results

in limited sample sizes, which may affect the training process of score prediction.

Future work will also try to address this issue by including additional flexibility

in the model to consider missing data in some of the modalities.640

In this work, SVM regression was used as the benchmark model to compare

the performance of the score prediction. We let the parameters automatically

optimised through its built-in function without close observation. Together

with relatively small sample size, these factors might have affected the ability

to generalise of the SVM regression and resulted in the predicted score regressing645

to the mean.

Other data fusion tools such as Coupled Matrix and Tensor Factorization

(CMTF) [16] are interesting alternative options to explore and compare for

the tasks of component estimation and score prediction. Additionally, alter-

native optimisations other than grid search can be considered. This would be650

particularly useful to improve the computational cost of the estimation of the

hyperparameters. Moreover, the overall result seems to be affected by the strict

CPD model with the assumption that the components for subject domain shared

across modalities are identical, which may not be flexible enough for the nature

of the data. Taking this into account, adopting the soft coupled decomposition655

[47] to allow the subject mode to be slightly different in order to increase the

best fit of the model seem to be a promising next step.

Furthermore, this work aims to utilise existing data during the epilepsy
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diagnosis. Hence, we used resting-state EEG. However, our results show that

resting-state EEG may not be the best option since the component profile plots660

and direct projection in score prediction demonstrate that it relies on sMRI

more than the EEG. Further investigations are needed to confirm the use of

task-based EEG and more flexible model.

5. Conclusion

Our work jointly decomposed three modalities of resting-state EEG, sMRI,665

and phenotypic scores to analyse the relationship between modalities. It then

used this information to predict the developmental scores of unseen children.

This work is motivated by the need to detect children with developmental im-

pairments from routinely acquired clinical diagnostic modalities, thus avoiding

time-consuming paper questionnaires and helping to prioritise patients for clin-670

ical follow-ups. This is particularly relevant in CWEOE. The data fusion based

on the CPD decomposition revealed relationships that agreed with prior clinical

knowledge in a data-driven way. The score prediction result is promising but it

also points out the need for a bigger sample size with diverse distributions of de-

velopmental scores and the need for a more flexible data fusion model. However,675

this is a prominent first step toward the study between functional, structural,

and phenotypic data of pre-school children to benefit the developmental score

prediction from EEG and sMRI.
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[1] T. Gasser, R. Verleger, P. Bächer, L. Sroka, Development of the EEG

of school-age children and adolescents. I. Analysis of band power, Elec-690

troencephalography and Clinical Neurophysiology 69 (2) (1988) 91–99.

doi:10.1016/0013-4694(88)90204-0.

[2] R. J. Somsen, B. J. van’t Klooster, M. W. van der Molen, H. M. van

Leeuwen, R. Licht, Growth spurts in brain maturation during middle child-

hood as indexed by eeg power spectra, Biological psychology 44 (3) (1997)695

187–209.

[3] R. C. Knickmeyer, S. Gouttard, C. Kang, D. Evans, K. Wilber, J. K.

Smith, R. M. Hamer, W. Lin, G. Gerig, J. H. Gilmore, A structural MRI

study of human brain development from birth to 2 years., The Journal of

neuroscience 28 (47) (2008) 12176–82. doi:10.1523/JNEUROSCI.3479-08.700

2008.

[4] J. C. Henry, Electroencephalography: basic principles, clinical applications,

and related fields, Neurology 67 (11) (2006) 2092–2092.

[5] M. D. Holmes, D. M. Tucker, J. M. Quiring, S. Hakimian, J. W. Miller,

J. G. Ojemann, Comparing noninvasive dense array and intracranial elec-705

troencephalography for localization of seizures, Neurosurgery 66 (2) (2010)

354–362.

[6] T. M. Mayhew, D. R. Olsen, Magnetic resonance imaging (mri) and model-

free estimates of brain volume determined using the cavalieri principle.,

Journal of anatomy 178 (1991) 133–144.710

36

http://dx.doi.org/10.1016/0013-4694(88)90204-0
http://dx.doi.org/10.1523/JNEUROSCI.3479-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.3479-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.3479-08.2008


[7] S. Liu, W. Cai, S. Liu, F. Zhang, M. Fulham, D. Feng, S. Pujol, R. Kiki-

nis, Multimodal neuroimaging computing: a review of the applications in

neuropsychiatric disorders, Brain informatics 2 (3) (2015) 167–180.

[8] F. Cendes, W. H. Theodore, B. H. Brinkmann, V. Sulc, G. D. Cascino,

Neuroimaging of epilepsy, in: Handbook of clinical neurology, Vol. 136,715

Elsevier, 2016, pp. 985–1014.

[9] G. Motamedi, K. Meador, Epilepsy and cognition, Epilepsy & Behavior 4

(2003) 25–38.

[10] K. Rantanen, K. Eriksson, P. Nieminen, Cognitive impairment in preschool

children with epilepsy, Epilepsia 52 (8) (2011) 1499–1505. doi:10.1111/720

j.1528-1167.2011.03092.x.

[11] B. Hermann, J. Jones, R. Sheth, C. Dow, M. Koehn, M. Seidenberg, Chil-

dren with new-onset epilepsy: Neuropsychological status and brain struc-

ture, Brain 129 (10) (2006) 2609–2619. doi:10.1093/brain/awl196.

[12] M. P. Kerr, S. Mensah, F. Besag, B. De Toffol, A. Ettinger, K. Kanemoto,725

A. Kanner, S. Kemp, E. Krishnamoorthy, W. C. LaFrance Jr, et al., In-

ternational consensus clinical practice statements for the treatment of neu-

ropsychiatric conditions associated with epilepsy, Epilepsia 52 (11) (2011)

2133–2138.

[13] M. Yoong, Quantifying the deficit—imaging neurobehavioural impairment730

in childhood epilepsy, Quantitative imaging in medicine and surgery 5 (2)

(2015) 225–237.

[14] H. M. Braakman, M. J. Vaessen, P. A. Hofman, M. H. Debeij-van Hall,

W. H. Backes, J. S. Vles, A. P. Aldenkamp, Cognitive and behavioral com-

plications of frontal lobe epilepsy in children: a review of the literature,735

Epilepsia 52 (5) (2011) 849–856.

[15] S. Baxendale, Neuropsychological assessment in epilepsy, Practical Neurol-

ogy 18 (1) (2018) 43–48. doi:10.1136/practneurol-2017-001827.

37

http://dx.doi.org/10.1111/j.1528-1167.2011.03092.x
http://dx.doi.org/10.1111/j.1528-1167.2011.03092.x
http://dx.doi.org/10.1111/j.1528-1167.2011.03092.x
http://dx.doi.org/10.1093/brain/awl196
http://dx.doi.org/10.1136/practneurol-2017-001827


[16] E. Acar, Y. Levin-Schwartz, V. D. Calhoun, T. Adali, Acmtf for fusion of

multi-modal neuroimaging data and identification of biomarkers, in: 2017740

25th European Signal Processing Conference (EUSIPCO), IEEE, 2017, pp.

643–647.

[17] L. M. Alexander, J. Escalera, L. Ai, C. Andreotti, K. Febre, A. Mangone,

N. Vega-Potler, N. Langer, A. Alexander, M. Kovacs, et al., An open re-

source for transdiagnostic research in pediatric mental health and learning745

disorders, Scientific data 4 (2017) 170181.

[18] E. Kinney-Lang, A. Ebied, B. Auyeung, R. F. Chin, J. Escudero, Intro-

ducing the joint eeg-development inference (jedi) model: A multi-way,

data fusion approach for estimating paediatric developmental scores via

eeg, IEEE Transactions on Neural Systems and Rehabilitation Engineering750

27 (3) (2019) 348–357.

[19] N. Dron, E. Kninney-Lang, R. Chin, J. Escudero, Preliminary fusion of

eeg and mri with phenotypic scores in children with epilepsy based on the

canonical polyadic decomposition, in: 2019 41st Annual International Con-

ference of the IEEE Engineering in Medicine and Biology Society (EMBC),755

2019, pp. 3884–3887.

[20] M. Yoong, M. Hunter, J. Stephen, A. Quigley, J. Jones, J. Shetty, A. McLel-

lan, M. E. Bastin, R. F. Chin, Cognitive impairment in early onset epilepsy

is associated with reduced left thalamic volume, Epilepsy & Behavior 80

(2018) 266–271.760

[21] C. Garcia-Ramos, D. C. Jackson, J. J. Lin, K. Dabbs, J. E. Jones, D. A.

Hsu, C. E. Stafstrom, L. Zawadzki, M. Seidenberg, V. Prabhakaran, et al.,

Cognition and brain development in children with benign epilepsy with

centrotemporal spikes, Epilepsia 56 (10) (2015) 1615–1622.

[22] A. L. Krain, F. X. Castellanos, Brain development and adhd, Clinical psy-765

chology review 26 (4) (2006) 433–444.

38



[23] T. G. Kolda, B. W. Bader, Tensor Decompositions and Applications, SIAM

Review 51 (3) (2009) 455–500. doi:10.1137/07070111X.

[24] E. Kinney-Lang, L. Spyrou, A. Ebied, R. F. Chin, J. Escudero, Tensor-

driven extraction of developmental features from varying paediatric EEG770

datasets, Journal of Neural Engineering 15 (4). doi:10.1088/1741-2552/

aac664.

[25] J. Escudero, E. Acar, A. Fernández, R. Bro, Multiscale entropy analy-

sis of resting-state magnetoencephalogram with tensor factorisations in

alzheimer’s disease, Brain research bulletin 119 (2015) 136–144.775

[26] E. Acar, T. G. Kolda, D. M. Dunlavy, All-at-once optimization for coupled

matrix and tensor factorizations, arXiv preprint arXiv:1105.3422.

[27] V. D. Calhoun, T. Adali, G. D. Pearlson, K. A. Kiehl, Neuronal chronome-

try of target detection: fusion of hemodynamic and event-related potential

data, Neuroimage 30 (2) (2006) 544–553.780

[28] T. Adali, Y. Levin-Schwartz, V. D. Calhoun, Multimodal data fusion using

source separation: Two effective models based on ica and iva and their

properties, Proceedings of the IEEE 103 (9) (2015) 1478–1493.

[29] M. A. Akhonda, Y. Levin-Schwartz, S. Bhinge, V. D. Calhoun, T. Adali,

Consecutive independence and correlation transform for multimodal fusion:785

Application to eeg and fmri data, in: 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, pp.

2311–2315.

[30] T. Adali, Y. Levin-Schwartz, V. D. Calhoun, Multimodal Data Fusion Us-

ing Source Separation: Application to Medical Imaging, Proceedings of the790

IEEE 103 (9) (2015) 1494–1506. doi:10.1109/JPROC.2015.2461601.

[31] J. Sui, E. Castro, H. He, D. Bridwell, Y. Du, G. D. Pearlson, T. Jiang, V. D.

Calhoun, Combination of fmri-smri-eeg data improves discrimination of

39

http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1088/1741-2552/aac664
http://dx.doi.org/10.1088/1741-2552/aac664
http://dx.doi.org/10.1088/1741-2552/aac664
http://dx.doi.org/10.1109/JPROC.2015.2461601


schizophrenia patients by ensemble feature selection, in: 2014 36th Annual

International Conference of the IEEE Engineering in Medicine and Biology795

Society, IEEE, 2014, pp. 3889–3892.

[32] C. Stamile, F. Cotton, D. Sappey-Marinier, S. Van Huffel, Tensor Based

Blind Source Separation in Longitudinal Magnetic Resonance Imaging

Analysis, in: 2019 41st Annual International Conference of the IEEE En-

gineering in Medicine and Biology Society (EMBC), 2019, pp. 3879–3883.800

[33] O. Alter, P. O. Brown, D. Botstein, Generalized singular value decom-

position for comparative analysis of genome-scale expression data sets of

two different organisms, Proceedings of the National Academy of Sciences

100 (6) (2003) 3351–3356.

[34] E. F. Lock, K. A. Hoadley, J. S. Marron, A. B. Nobel, Joint and individual805

variation explained (jive) for integrated analysis of multiple data types,

The annals of applied statistics 7 (1) (2013) 523.

[35] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, T. Ristaniemi,

Tensor decomposition of eeg signals: a brief review, Journal of neuroscience

methods 248 (2015) 59–69.810

[36] L. Sorber, M. Van Barel, L. De Lathauwer, Structured Data Fusion, IEEE

Journal of Selected Topics in Signal Processing 9 (4) (2015) 586–600. doi:

10.1109/JSTSP.2015.2400415.

[37] R. A. Harshman, et al., Foundations of the parafac procedure: Models and

conditions for an” explanatory” multimodal factor analysis.815

[38] E. Martınez-Montes, P. A. Valdés-Sosa, F. Miwakeichi, R. I. Goldman,

M. S. Cohen, Concurrent eeg/fmri analysis by multiway partial least

squares, NeuroImage 22 (3) (2004) 1023–1034.

[39] S. Van Eyndhoven, B. Hunyadi, L. De Lathauwer, S. Van Huffel, Flexible

fusion of electroencephalography and functional magnetic resonance imag-820

40

http://dx.doi.org/10.1109/JSTSP.2015.2400415
http://dx.doi.org/10.1109/JSTSP.2015.2400415
http://dx.doi.org/10.1109/JSTSP.2015.2400415


ing: Revealing neural-hemodynamic coupling through structured matrix-

tensor factorization, in: 2017 25th European Signal Processing Conference

(EUSIPCO), IEEE, 2017, pp. 26–30.

[40] Y. Jonmohamadi, S. Muthukumaraswamy, J. Chen, J. Roberts, R. Craw-

ford, A. Pandey, Extraction of common task features in eeg-fmri data using825

coupled tensor-tensor decomposition, Brain Topography 33 (5) (2020) 636–

650.

[41] R. Mosayebi, G.-A. Hossein-Zadeh, Correlated coupled matrix tensor fac-

torization method for simultaneous eeg-fmri data fusion, Biomedical Signal

Processing and Control 62 (2020) 102071.830

[42] E. Acar, Y. Levin-Schwartz, V. D. Calhoun, T. Adali, Tensor-based fusion

of eeg and fmri to understand neurological changes in schizophrenia, in:

2017 IEEE International Symposium on Circuits and Systems (ISCAS),

IEEE, 2017, pp. 1–4.

[43] B. Hunyadi, P. Dupont, W. Van Paesschen, S. Van Huffel, Tensor decompo-835

sitions and data fusion in epileptic electroencephalography and functional

magnetic resonance imaging data, Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery 7 (1) (2017) e1197.

[44] S. Van Eyndhoven, P. Dupont, S. Tousseyn, N. Vervliet, W. Van Paesschen,

S. Van Huffel, B. Hunyadi, Augmenting interictal mapping with neurovas-840

cular coupling biomarkers by structured factorization of epileptic eeg and

fmri data, NeuroImage 228 (2021) 117652.

[45] E. Acar, C. Schenker, Y. Levin-Schwartz, V. D. Calhoun, T. Adali, Unrav-

eling diagnostic biomarkers of schizophrenia through structure-revealing fu-

sion of multi-modal neuroimaging data, Frontiers in neuroscience 13 (2019)845

416.

[46] S. Ferdowsi, V. Abolghasemi, S. Sanei, A new informed tensor factorization

41



approach to eeg–fmri fusion, Journal of neuroscience methods 254 (2015)

27–35.

[47] C. Chatzichristos, M. Davies, J. Escudero, E. Kofidis, S. Theodoridis, Fu-850

sion of eeg and fmri via soft coupled tensor decompositions, in: 2018 26th

European Signal Processing Conference (EUSIPCO), IEEE, 2018, pp. 56–

60.

[48] C. Chatzichristos, E. Kofidis, L. De Lathauwer, S. Theodoridis, S. Van Huf-

fel, Early soft and flexible fusion of eeg and fmri via tensor decompositions,855

arXiv preprint arXiv:2005.07134.

[49] L. De Lathauwer, Decompositions of a Higher-Order Tensor in Block

Terms—Part II: Definitions and Uniqueness, SIAM Journal on Matrix

Analysis and Applications 30 (3) (2008) 1033–1066. doi:10.1137/

070690729.860

URL http://www.siam.org/journals/ojsa.php

[50] C. Chatzichristos, E. Kofidis, M. Morante, S. Theodoridis, Blind fmri

source unmixing via higher-order tensor decompositions, Journal of neu-

roscience methods 315 (2019) 17–47.

[51] E. Kinney-Lang, L. Spyrou, A. Ebied, R. Chin, J. Escudero, Elucidat-865

ing age-specific patterns from background electroencephalogram pediatric

datasets via PARAFAC, in: 2017 39th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp.

3797–3800. doi:10.1109/EMBC.2017.8037684.

[52] A. Anderson, P. K. Douglas, W. T. Kerr, V. S. Haynes, A. L. Yuille, J. Xie,870

Y. N. Wu, J. A. Brown, M. S. Cohen, Non-negative matrix factorization of

multimodal mri, fmri and phenotypic data reveals differential changes in

default mode subnetworks in adhd, NeuroImage 102 (2014) 207–219.

[53] D. Wechsler, Wechsler Individual Achievement Test 3rd Edition (WIAT

III), London: The Psychological Corporation, 2009a.875

42

http://www.siam.org/journals/ojsa.php
http://www.siam.org/journals/ojsa.php
http://www.siam.org/journals/ojsa.php
http://dx.doi.org/10.1137/070690729
http://dx.doi.org/10.1137/070690729
http://dx.doi.org/10.1137/070690729
http://www.siam.org/journals/ojsa.php
http://dx.doi.org/10.1109/EMBC.2017.8037684


[54] E. H. Wiig, W. A. Secord, E. Semel, Clinical evaluation of language fun-

damentals: CELF-5, Pearson, 2013.

[55] T. M. Achenbach, Manual for the child behavior checklist/4-18 and 1991

profile, University of Vermont, Department of Psychiatry.

[56] J. Swanson, S. Schuck, M. Mann, C. Carlson, K. Hartman, J. Sergeant,880

R. McCleary, The swan rating scale.

URL http://www.adhd.net

[57] M. B. Hunter, R. Sumpter, K. Verity, M. Yoong, A. Mclellan, J. Shetty,

R. F. Chin, Neurodevelopment in Preschool Children Of Fife and Lothian

Epilepsy Study: Neuroprofiles-a population-based study, Developmental885

Medicine & Child Neurology (57) (2015) 56–57.

[58] N Bayley, Bayley scales of infant development: Manual, Psychological Cor-

poration.

[59] P. L. Harrison, T. Oakland, Adaptive Behavior Assessment System: Third

Edition, in: Encyclopedia of Clinical Neuropsychology, 2018, pp. 57–60.890

doi:10.1007/978-3-319-57111-9{\_}1506.

[60] R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip: Open

source software for advanced analysis of MEG, EEG, and invasive elec-

trophysiological data., Computational intelligence and neuroscience 2011.

doi:10.1155/2011/156869.895

[61] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, S. M.

Smith, FSL, NeuroImage 62 (2) (2012) 782–790. doi:10.1016/j.

neuroimage.2011.09.015.

[62] B. Patenaude, Bayesian Statistical Models of Shape and Appearance for

Subcortical Brain Segmentation, NeuroImage 56 (3) (2011) 907–922.900

[63] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decom-

positions, with application to arithmetic complexity and statistics, Linear

algebra and its applications 18 (2) (1977) 95–138.

43

http://www.adhd.net
http://www.adhd.net
http://dx.doi.org/10.1007/978-3-319-57111-9{_}1506
http://dx.doi.org/10.1155/2011/156869
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015


[64] N. Vervliet, O. Debals, L. De Lathauwer, Tensorlab 3.0—numerical opti-

mization strategies for large-scale constrained and coupled matrix/tensor905

factorization, in: 2016 50th Asilomar Conference on Signals, Systems and

Computers, IEEE, 2016, pp. 1733–1738.

[65] M. Sørensen, I. Domanov, L. De Lathauwer, Coupled canonical

polyadic decompositions and (coupled) decompositions in multilinear rank-

(l r,n,l r,n,1) terms—part ii: Algorithms, SIAM Journal on Matrix Analysis910

and Applications 36 (3) (2015) 1015–1045.

[66] C. Cortes, V. Vapnik, Support vector machine, Machine learning 20 (3)

(1995) 273–297.

[67] M.-P. Hosseini, T. X. Tran, D. Pompili, K. Elisevich, H. Soltanian-Zadeh,

Multimodal data analysis of epileptic eeg and rs-fmri via deep learning and915

edge computing, Artificial Intelligence in Medicine 104 (2020) 101813.
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