
Grasping force estimation using state-space model and
Kalman Filter

DUTRA, B. G.1, SILVEIRA, A. S.1, PEREIRA, A.1

aFederal University of Pará, Belém, 66075-110, Brazil

Abstract

The grip force required to handle an object depends on the object’s mass and
the friction coefficient of its surface. The control of grip force in myoelectric
prosthesis is crucial for handling objects adequately. In the current paper we
propose a new method for improving the proportional and continuous grasping
force estimation to improve control systems for myoelectric prosthesis based on
surface electromyography (sEMG) recordings. For this purpose, we develop an
approach based on multivariable system identification in the state-space (SS) and
continuous force estimation with Kalman Filter (KF). The sEMG recordings of ten
healthy individuals performing a grip task were used as data set for model identi-
fication. The root mean square (RMS), the mean absolute value (MAV), and the
waveform length (WL) extracted from the sEMG signals were used at the model’s
input while the measured grasping force was the output. The performance of the
method was evaluated with the normalized root-mean-squared-error (NRMSE)
and the square of the Pearson’s correlation coefficient (R2). We found the R2

and NRMSE values were 0.92± 0.0319 and 0.723± 0.0563, respectively. The
performance of the proposed technique was superior to the results obtained with
other regression models, such as the recurrent nonlinear autoregressive exogenous
(NARX)-based neural network, the multi-layer perceptron (MLP) network and the
linear discriminant analysis (LDA) with a quadratic polynomial fitting (QPF). The
results confirm that the method is adequate for real-time applications with myo-
electric hand prostheses.

Keywords: Electromyography, Grasping force, Kalman Filter, State-space
identification
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1. Introduction

Surface electromyography (sEMG) is a noninvasive recording method which
can be used for the implementation of prostheses controlled by muscles of the
residual limb [1]. More recently, research on this subject has focused on im-
proving prosthesis control and make it more intuitive to patients [1, 2, 3]. Ideally,
prosthetic systems aimed for upper limb replacement should allow subjects to pre-
cisely control their grasping force when manipulating objects. Thus, it is first nec-
essary to estimate the user’s grasping force from electrophysiological recordings
from units in the descending motor pathways and use it to control the prosthesis.

The force required to grasp an object is proportional to the energy of sEMG
signals in a group of forearm muscles [4, 5]. However, crosstalking interference
makes it difficult to directly relate the signals recorded from a specific muscle with
grasping force [6]. Also, the structural and physiological differences among users
is a complicating factor regarding the accurate estimation of grasping force.

Several studies focused on improving estimations of grasping force from sEMG
recordings from arm muscles. In those attempts, researchers have relied on math-
ematical methods based on biomechanics [7, 8, 9], polynomial equations [10, 11],
machine learning techniques [12, 13, 14, 15] and system identification [16, 17].
For instance, Castellini and coworkers (2009) obtained 90% accuracy in force es-
timation with the use of a support vector machine (SVM) based on inputs from
six sEMG channels [18]. Potluri and coworkers (2015) used an optimized linear
model fusion algorithm for continuous force estimation from 3 sEMG channels
and obtained an average correlation of 85, 6% with the original force value to
provide closed-loop feedback control for a robotic finger [19].

In a recent study, Ohno and coworkers (2017) utilized the nonlinear autore-
gressive exogenous (NARX) model to estimate the grasping force and the angle
of the wrist from sEMG signals with high accuracy even under different sam-
pling rates [17]. Li and coworkers (2018) proposed a system for the control of
grasping force based on dimensionality reduction with principal component anal-
ysis (PCA) and estimation of sEMG energy with a neural network (NN). The
authors obtained an average accuracy of 95% for eight levels of grip strength [20].
In another study, Wang and coworkers (2019) used linear discriminant analyses
(LDA) with a quadratic polynomial model to reduce the dimensionality of multi-
channel sEMG recordings and showed that it provided continuous estimation of
the grasping force with a goodness-of-fit of 82.05% for real-time implementation

(SILVEIRA, A. S.), apereira@ufpa.br (PEREIRA, A.)
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[21]. Ma and coworkers (2020) compared the performance of a gene expression
programming (GEP) algorithm with a multi-layer perceptron (MLP) for estimat-
ing grasping force from inputs from 16 sEMG channel recordings and found the
GEP’s performed best [22].

In the present work, we present a new method for the real-time estimation of
grasping force from sEMG measurements from upper limb muscles aimed at the
real-time control of a hand prosthesis. Thereby, the main contribution of this paper
is the proposal of a new model for proportional and continuous grasping force
estimation to improve myoelectric control systems. The proposed model is based
on multivariable system identification in the state-space (SS) with a Kalman Filter
(KF) tuned to exploit optimal results in the minimum variance sense and improve
both system identification and the the acquisition of dynamic information based
on process uncertainties [23, 24]. We propose a MISO (Multiple-Inputs Single-
Output) model for grasping-force estimation that uses the energy characteristics
of the sEMG signals as input. To demonstrate the validity of the method, we
compare its performance to other methods proposed in the literature, such as the
nonlinear MLP model, the recurrent NARX model based on NN, and the LDA
method with a quadratic polynomial fitting (QPF).

Our results show that:

• The proposed model is stable and accurate, with low volatility during the
real-time estimation of the grasping force based on sEMG inputs.

• The proposed model has the highest Normalized-Root-Mean-Squared-Error
(NRMSE) and a higher square of Pearson’s correlation coefficient (R2) than
the MLP, the NARX model, and the LDA/QPF model.

• Both the computational cost and the memory requirements of the model
are relatively low and provide a good option to be implemented with low-
end microcontrollers for real-time applications with myoelectric prosthetic
systems.

2. Materials and Methods

2.1. sEMG and force data acquisition
The system used for datalog and real-time visualization is shown in Fig. 1.

The MYO armband (Thalmic Labs, Kitchener-Waterloo, Canada) was used to
record sEMG signals from the upper limb. The MYO has eight sEMG input chan-
nels, wireless communication via Bluetooth protocol, sampling rate of 200 Hz
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and 8-bit resolution. Also, a force-sensitive-resistor (FSR) (Model 402, Interlink
Electronics, Inc.) was used for force measurement with sensitivity from 1N to
50N. The FSR was inserted in an anti-stress ball and its inputs were fed into an
Arduino-based data-acquisition (Daq) device, with a 10-bit analog-to-digital res-
olution. The datalog devices communicate with a Windows PC running Python
for real-time visualization and data storage.

Figure 1: Experimental Setup.

2.2. Experimental process
The experimental procedures were approved by the local ethics committee of

the Federal University of Pará (82131517.1.0000.0018). A total of 10 healthy
voluntaries (four females and six males, with 24 ± 4 years old) were selected for
the grasping force estimation study and signed an informed consent. The MYO
device was placed in the same forearm location for each subject. Channel 4 was
used as reference and was positioned in the extensor digitorum muscle, as shown
in Fig. 2. The location of superficial electrodes over forearm muscles is detailed
in Table 1.
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At the beginning of the experiment, each participant received the following
command: ”Position the ball with the sensor facing the palm, then press the ball
three times. The first time squeeze it with a small force, the second time with
a medium force, and the third time with the highest force. Pay attention to the
commands to start and end the movement”. The sEMG and the force exerted
by each volunteer were simultaneously recorded within the 0-100 % range of the
maximum voluntary contraction (MVC), as shown in Fig. 3.

Figure 2: Reference electrode and channels numbers of MYO.

Localization Muscle name
(1) Pronator Teres
(2) Brachioradialis
(3) Extensor Carpi Radialis
(4) Extensor Digitorum Cummunis
(5) Exstensor Carpi Ulnaris
(6) Flexor Carpi Ulnaris
(7) Palmaris Longus
(8) Flexor Carpi Radiallis

Table 1: Distribution of the electrodes on the forearm muscles.

2.3. Feature selections
Some sEMG features can be correlated with the magnitude of the grasping

force [25, 5]. In this paper, we chose three sEMG features to assess the accuracy
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Figure 3: Data log of MVC grasping force and sEMG signals from volunteer 10.

of grasping force prediction in the time-domain: The mean absolute value (MAV),
the root mean square (RMS), and the waveform length (WL).

The MAV provides an energetic estimate of sEMG by averaging the sum of
all x(k) samples within a range of N samples:

MAV =
1

N

N∑
k=1

|x(k)| (1)

where x(k) is the sEMG signal at time k andN is the number of samples obtained
in the window interval.

The RMS is also an energetic estimate of the sEMG. It is a feature related to
the magnitude of the sEMG and is calculated by the root-mean-square of x(k)
samples:

RMS =

√√√√ 1

N

N∑
k=1

x2(k) (2)

WL gives information about the complexity of the signal in a window by sum-
ming the numerical derivative of the sample window [4]. This is represented by
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the cumulative length of the waveform over the time segment defined as:

WL =
N∑
k=1

|x(k)− x(k − 1)| (3)

We used a pre-processing window to extract the sEMG features. The win-
dow length directly affects the performance and the stability of the grasping force
estimation [26]. However, for real-time applications, the window length update
should be less than 300 ms to meet delay requirements [4]. Therefore, we used an
overlapping window of 400 ms with an increment of 125 ms.

3. Grasping force model

3.1. State-Space identification
We used the recursive least squares (RLS) algorithm to estimate the grasping

force from sEMG signals with the following state-space model:

x(k) = Ax(k − 1) +Bu(k − 1) + Γw(k − 1) (4)

y(k) = Cx(k) + v(k) (5)

where x(k) is the state vector, u(k) is the input of the system, y(k) is the output
of the system and k is the discrete-time domain variable. A is the state matrix,
B is the input weighting matrix, Γ is the state matrix related to the Gaussian
noise, w(k) is the process noise, C is the matrix that associates the states with the
measured output of the process, and v(k) is the measurement noise.

The input u(k) and output y(k) are the variables used to identify the model and
the state variable x(k) can be estimated using the subspace method, given that all
state variables are measurable [27, 28]. Assuming that the measured output y
correspond to the state variable x1, the estimation of the next state, x2, can be
calculated by the backward difference of x1, and so on. For a higher-order model
the other state variables can be calculated by the approximation of the discrete
derivative of the previous state variable as a function of time, as below:

x1(k)
x2(k)

...
xn(k)

 =


y(k)

x1(k)−x1(k−1)
Ts...

xn−1(k)−xn−1(k−1)
Ts

 (6)
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Considering a generic SS model with order n, i inputs and j outputs x1(k)
...

xn(k)


︸ ︷︷ ︸

x(k)

=

 a11 · · · a1n
... . . . ...
an1 · · · ann


︸ ︷︷ ︸

A

 x1(k − 1)
...

xn(k − 1)


︸ ︷︷ ︸

x(k−1)

+

 b11 · · · b1i
... . . . ...
bn1 · · · bni


︸ ︷︷ ︸

B

 u1(k − 1)
...

ui(k − 1)


︸ ︷︷ ︸

u(k−1)

+

 γ11 · · · γ1n
... . . . ...
γn1 · · · γnn


︸ ︷︷ ︸

Γ

 w1(k − 1)
...

wn(k − 1)


︸ ︷︷ ︸

w(k−1)

(7) y1(k)
...

yj(k)


︸ ︷︷ ︸

y(k)

=
[
Ij×j 0j×(n−j)

]︸ ︷︷ ︸
C

 x1(k)
...

xn(k)


︸ ︷︷ ︸

x(k)

+

 v1(k)
...

vj(k)


︸ ︷︷ ︸

v(k)

(8)

and knowing that y(k), x(k) and u(k) are available, the estimated parameters
matrix can be defined as:

θ̂ =


a11 · · · a1n

... . . . ...
an1 · · · ann︸ ︷︷ ︸

A

b11 · · · b1i
... . . . ...
bn1 · · · bni︸ ︷︷ ︸

B

γ11 · · · γ1n
... . . . ...
γn1 · · · γnn︸ ︷︷ ︸

Γ


T

(9)

The future observation vectors are organized by the following vector of re-
gressors:

φT (k) = [xT (k − 1)uT (k − 1) wT (k − 1)] (10)

where the vectorwT (k), related to the process noise, is calculated for every instant
k by the RLS algorithm estimation error and has null values as initial conditions.

Equation (10) allows the recursive identification of θ̂. Then, in an interactive
way with the data, the estimated states are calculated by

x̂(k) = ϕT (k)θ̂(k − 1). (11)

Next, the estimated model output is calculated by

ŷ(k) = Cx̂(k), (12)
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and then the prediction error is obtained as follows:

e(k) = x(k)− x̂(k). (13)

The estimator gain is given by

K(k) =
P (k − 1)ϕ(k)

1 + ϕT (k)P (k − 1)ϕ(k)
, (14)

which allows the matrices of parameters to be updated by

θ̂(k) = θ̂(k − 1) +K(k)e(k). (15)

Based on the estimation uncertainties, the process noise is obtained by

w(k) = x(k)− ϕT (k)θ̂(k). (16)

Similarly, the measurement noise is:

v(k) = y(k)− ŷ(k). (17)

The covariance matrix of the estimator is updated by

P (k) =
[
I −K(k)ϕT (k)

]
P (k − 1), (18)

and Eqs. (11) to (18) are solved recurrently for each increase in time instant k
until the end of the data log. θ̂(0) can be initialized experimentally with low val-
ues and was adjusted to 0.3 for its elements. P (0) was initialized by P (0) =
mI(2n+i)× (2n+i), where m is a high value (m ≈ 103 or even higher), assuming
that the power of the initial uncertainty is sufficiently larger than the steady-state
uncertainty obtained after the RLS algorithm has converged to the optimal param-
eters.

The steps of the RLS algorithm until the convergence of parameters and update
of the matrix θ̂, are presented as a flowchart in Figure 4.

3.2. Kalman Filter
The Kalman Filter can estimate the full state variables, provide data fusion,

filtering, and minimum variance approximation [23, 29, 28]. The KF is based on
the SS model presented in (4) and (5).
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Figure 4: Flowchart of RLS algorithm to obtain the matrix θ̂.
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As a dynamical system, the KF can be related to the following state estimator
structure [29]:

x̂(k) = (A− LC) x̂(k − 1) +Bu(k − 1) + Ly(k − 1) (19)

yKF (k) = Cx̂(k) (20)

where x̂(k) is the estimated state vector and yKF (k) is the KF estimated output.
The optimal gain

L = APKFC
T
(
CPKFC

T +RKF

)−1
, (21)

can be obtained offline, for the non-adaptive case, by iterating the estimator Ric-
cati difference equation [29, 30] and calculating the covariance matrix

PKF (k + 1) = APKF (k)AT − APKF (k)CT(
CPKF (k)CT +RKF

)−1
CPKF (k)AT +QKF ,

(22)

that minimizes the estimation error given by eest = x(k) − x̂(k), based on the
result of PKF := PKF (k →∞), starting with a high magnitude PKF (0).

With KF’s optimal estimation and minimum variance approximation, it is pos-
sible to mitigate identification errors and to filter out noise components so that the
state variables have the best possible correction, while reducing the mean squared
error. For the minimum variance case, the KF weighting matrices QKF and RKF

are tuned according to the covariance of the process noise and the covariance of
the measurement noise [29], respectively:

QFK = ΓQΓT , (23)

RFK = R, (24)

where Q = diag( σ2
w1
· · · σ2

wn
), R = diag( σ2

v1
· · · σ2

vj ). The matrix
describing the Gaussian noise input, Γ, is estimated together with matrices A and
B, since these matrices are included in the matrix θ̂ shown in (9). The estimation
of Γ occurs iteratively, with the RLS algorithm, through estimation of the process
noise w(k), as shown in (16).

3.3. Force model identification
To establish the state-space model, we used the sEMG features, MAV, RMS,

and WL as inputs and the measured grasping force as the model’s output, all
normalized from 0 to 1. Thus, for the grasping force model’s identification, the
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system’s order and the number of inputs are defined based on the number of sEMG
channels multiplied by the number of features used per channel.

We selected the sEMG channels corresponding to the superficial muscles Flexor
Carpi Ulnaris, Palmaris Longus, and Flexor Capri Radiallis (6, 7, and 8, respec-
tivelly). Thus, with three channels and three features (MAV, RMS, and WL) per
channel, the system with nine inputs and one output is represented by the MISO
model shown in Fig. 5, where its structure is composed by the schematic diagram
of the deterministic parameters of the state-space model presented in (4) and (5),
and by the schematic diagram of the Kalman filter presented in (19) and (20).

Figure 5: Structure of the state-space MISO grasping force model with Kalman Filter.

The order of the model was defined by the residual variance error combination
and the model order, with the Akaike Information Criterion (AIC) method [31],
as follows:

AIC =

(
1 +

2p

N

) N∑
k=1

[y(k)− ŷ]2, (25)

where N is the number of observations and p is the number of parameters esti-
mated by the model [31].

The AIC indicates the best order among the estimated models based on the
lowest estimation residue associated with the goodness-of-fit of the estimated pa-
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rameters data [31, 32]. Based on AIC for the order n assessed from 1 to 12, verify
that from the fourth-order onwards (n ≥ 4), there was no significant decrease in
the AIC index.

We used 50% of the data set in the identification procedure, leaving the other
50% for the validation stage.

3.4. Realization of existing grasping force methods
This subsection presents the utilization approach of the MLP network, the

NARX model, and the LDA algorithm with a quadratic polynomial fitting, present
in the existing methods in the literature, such as in [13], [14],[16], [17], [15] and
[21], in order to assess the performance and compare to the proposed approach.

3.4.1. MLP model
The MLP network is a feed-forward network with at least three layers: an

input layer, a hidden layer, and an output layer [33].
The MLP structure is shown in Fig. 6 and the hidden and output layers are

defined by:

y
(1)
j = f(

Ni∑
i=0

uiwji)

j = 1, 2, 3 . . . Nn

(26)

y
(2)
n = g(

No∑
j=0

y
(1)
j wnj)

n = 1, 2, 3 . . . No

(27)

where Ni is the number of neurons in the input layer, bias is an activation thresh-
old added to input 0, ui is the input vector, w(1)

ji is the synaptic weight of the
connections from the input layer to the hidden layer, f(.) is the activation func-
tion of the hidden layer, Nn is the number of neurons in the hidden layer, y(2)

j is
the output vector of the hidden layer, No is the number of neurons in the output
layer, g(.) is the activation function of the output layer, w(2)

nj is the synaptic weight
of connections from the hidden layer to the output layer, and y(2)

n is the vector of
outputs.

The same input and output vectors used with the SS model were used to train
the MLP network. To identify the grasping force model with the MLP network,
we used three layers, and the sigmoid and linear activation functions, respectively,
for the hidden and output layer. For the training of the neural network, we used

13



Outputs

Output Layer

Hidden Layer

Input Layer

Inputs

bias

�

�2

�3

�j

�
2

�2
2

�n
2

2

�

�

�2

�

j=1

�

j=2

�

j=3

�

j=�	

j=1

j=2

j=�


	

	

	�

	2

	3

Figure 6: Structure of the MLP network.

the backpropagation algorithm optimized by the RMSprop method [34], with a
maximum number of epochs equal to 1000 and mini-batch equal to 1. The mean
square error (MSE) was set as a cost function, and the number of neurons in the
hidden layer is equal to the order of the SS model (Nn = 4).

3.4.2. NARX model
The discrete-time NARX model shows a good performance in modelling non-

linear systems and time series [35, 33]. This model can be mathematically repre-
sented as:

y = f (u(k), u(k − 1), · · · , u(k − nu), y(k − 1), · · · , y(k − ny)) (28)

where y(k) and u(k) represent the input and output at discrete time step k; nu

and ny represent, respectively, the input- and the output-memory, and f(.) is a
nonlinear function.

In the present work, the NARX model is a recurrent dynamic neural network,
which uses the structure of the MLP to find the nonlinear function f that corre-
lates the input u and output y of the model, as shown in Fig. 7. To estimate the
grasping force with the NARX-NN, we used the same parameters of the MLP net-
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work. Furthermore, the number of delays of the input signals and the delays of
the model’s output feedback signals were set equal to the order of the SS model.

3.4.3. LDA model
LDA is a well-known machine learning algorithm for classification and di-

mensionality reduction [36]. The basic idea of LDA is to find a projection matrix
W based on a linear combination of features, that transforms the original vector-
matrix into a lower-dimensional space, which can separate and characterize two
or more classes by simultaneously minimizing the within-class distance and max-
imizing the between-class distance [37, 21]. The mathematical formulation of the
LDA algorithm was described by [36]. The dimensionality reduction projection
is represented by:

y = W Tx (29)

where the matrix y is the projected vector in lower-dimensional space and x is the
vector-matrix in the original dimension space.

To estimate the grasping force, we used an approach where the LDA is used
to reduce the dimension of the feature’s input vector (MAV, RMS, and WL) to a
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one-dimensional vector-matrix. Subsequently, the QPF is used to find a poly-
nomial model, which represents the relationship between the one-dimensional
vector-matrix and the continuous grasping force, as proposed in [21].

4. Experimental results and discussion

4.1. Evaluation metrics
To evaluate estimation errors and the performance of the force estimation al-

gorithms, the following indicators were used: Normalized-Root-Mean-Squared-
Error and the square of the Pearson’s correlation coefficient:

NRMSE = 1−

√
N∑
k=1

[y(k)− ŷ(k)]2√
N∑
k=1

[y(k)− ȳ]2

, (30)

R2 = 1−

N∑
k=1

[y(k)− ŷ(k)]
2

N∑
k=1

[y(k)− ȳ]
2 , (31)

where ȳ is the mean of N identification samples and ŷ(k) is the estimated output.
We considered values of R2 above 0.80 to indicate a good representation of

measured data by the model, with R2 = 1 indicating its exact representation. For
the NRMSE, the goodness of fit of the model has a maximum value of 1.

4.2. Continuous estimation and analysis of grasping force
The Fig. 8.A shows that the parameters MAV, RMS, and WL have similar

results for R2 and NRMSE metrics, with a mean of 0.796 ± 0.0611 to the R2

and 0.547 ± 0.0733 to the NRMSE. Thus, it can be seen in Fig. 8.B, that the SS
model, in comparison with the direct usage of the presented parameters, shows
an improvement in the multiple correlation index (R2 = 0.9066 ± 0.044) and
in the normalized-root-mean-squared-error (NRMSE = 0.7 ± 0.0718). Fur-
thermore, the KF corrects the estimation errors and increases the performance
of the SS model on estimating the continuous grasping force, improving the av-
erage and the standard deviation (SD) of the metrics results (R2 = 0.9212 ±
0.0319, NRMSE = 0.7227± 0.0563).

From Fig. 9 it is possible to observe that the proposed model has a good
performance on estimating the grasping force from sEMG features.
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4.3. Performance comparison of the SS model with other methods
We compared the performance of the SS model with the MLP, NARX and

LDAQPF algorithms, which are commonly used in similar studies present in liter-
ature [13, 14, 16, 17, 15, 21]. The results shown in Fig. 10 and Table 2, indicate
that the models MLP, NARX, LDAQPF , and the SSKF had similar results, with
R2 above 0.9 and NRMSE above 0.7. However, the SSKF had the highest R2 and
NRMSE. Moreover, both the R2 and NRMSE of the SSKF model had the lowest
variance, confirming the fact that the SSKF model was more precise and provided
the lowest estimation error in our experiments.

The presented results indicate that the proposed SSKF model had the best per-
formance and accuracy when estimating grasping force due to its low estimation
error, low volatility and high precision. Despite all four models could be accepted
as good choices for this estimation problem, the Figure 11 and Table 2 indicates
that the SSKF model has a better goodness of fit compared to the LDAQPF , NARX
and MLP models.

Table 3 shows that the SSKF model has the fastest training time and both
SSKF and LDAQPF stood out for having the lowest loop execution times, with
a loop runtime average below 0.01 ms, for working with real-time applications,
proving to be models of low computational complexity. Also, our proposed model
is advantageous because it is best suited for analysis based on control systems the-
ory. Thus, with the possibility to assess stability issues by means of the identified
models and their pole locations into the unitary circle, proving the technique to be
based on stable, controllable and observable systems.

4.4. Real-time implementation
For implementation in prosthetic systems, the proposed model can be embed-

ded in mini computer systems such as the raspberry PI and microcontrollers, with
minimum requirements for computational power. The estimated grasping force
can also be visualized in real-time for use in rehabilitation and diagnostic sys-
tems. In this section, we show the results of proof-of-concept experiments.

In the experimental tests, a total processing time of 127.5 ms was observed
for windowing, feature extraction, and grasping force estimation, as shown in Fig.
12. In a time interval of 300 ms, the system can provide up to two grasping force
estimations. Thereby, a prosthetic device based on the proposed model can allow
the user to handle objects in daily life activities without noticeable operational
delay.

For grasping force control of prosthetic systems, the system can be imple-
mented according to the architecture presented in Fig. 13. In applications that
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Figure 10: Results of R2 and NRMSE to grasping force estimation from the models SSKF , MLP,
NARX and LDAQPF .

Voluntaries SS KF MLP NARX LDA
R² NRMSE R² NRMSE R² NRMSE R² NRMSE

V1 0.90617 0.6919 0.84759 0.60641 0.83113 0.58778 0.90513 0.69198
V2 0.91252 0.70311 0.87473 0.64598 0.87539 0.64521 0.88021 0.65197
V3 0.94191 0.75803 0.94277 0.76073 0.95003 0.77618 0.94686 0.76948
V4 0.8761 0.64634 0.885 0.66072 0.88386 0.65828 0.88641 0.66273
V5 0.86109 0.61933 0.83272 0.58468 0.8918 0.6686 0.82408 0.58055
V6 0.93978 0.7546 0.93401 0.7424 0.94219 0.75911 0.9639 0.80998
V7 0.95433 0.78678 0.952 0.78091 0.96634 0.81624 0.94259 0.76034
V8 0.93114 0.7368 0.93758 0.75016 0.95473 0.78723 0.92541 0.72669
V9 0.93607 0.74814 0.94734 0.77033 0.91806 0.71305 0.9337 0.74251

V10 0.95258 0.78181 0.9449 0.76526 0.9517 0.77961 0.92708 0.72984
Average 0.92126 0.72268 0.90986 0.70676 0.91652 0.71913 0.91354 0.71261

SD 0.0319 0.056333 0.04537 0.07440 0.04425 0.07571 0.041017 0.06701

Table 2: Metrics result of theR2 and NRMSE for each voluntary, obtained from the models SSKF ,
MLP, NARX, and LDAQPF .
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Figure 11: Grasping force estimation of voluntary 3, using the models MLP, NARX, LDAQPF

and SKF .

Model Training time (ms) Loop Runtime (ms) Controllable Observable Stable
SS KF 6.97 ± 3.11 0.00735 ± 0.0035 yes yes yes
NARX 26.5 ± 21.9 0.0338 ± 0.014 - - -
MLP 1572 ± 2106 0.010 ± 0.0033 - - -
LDA QPF 15.37 ± 10.6 0.00742± 0.0032 - - yes

Table 3: Results of training time, loop runtime, and the availability of assessing the properties of
controllability, observability and stability of the models SSKF , MLP, NARX, and LDAQPF
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Figure 12: Processing time of all techniques used in the grasping force system estimation.

Figure 13: Prosthesis’ grasping force control architecture.

require the direct use of estimated continuous and proportional grasping force, the
reference signal should not contain a spurious shape and a high level of volatility,
since these adversely affect the gain margin and the phase margin of the control
system. Thereby, the SS model with Kalman Filter proves to be more advanta-
geous because it presents an output with minimum variance and lower volatility,
as shown in Fig. 11 and Table 2, avoiding the use of post-processing filters that
can cause processing delays.

5. Conclusion

In the present work, we proposed a state-space model with a Kalman Filter
to continuously estimate grasping force and that could be used as input to control
the movement of a robotic hand during manipulation tasks. The performance of
the system was evaluated with data recorded from ten experimental subjects. The
sEMG signals of the subjects were recorded while they manipulated an object
with three different grasping force magnitudes. We used the RLS algorithm for
the identification of the state-space model. The SS model was able to estimate
the grasping force from an input array composed of the features MAV, RMS, and
WL from sEMG signals recorded from three forearm’s flexor muscles. Moreover,
the use of a Kalman Filter tuned with the minimum variance case improved the
performance of the SS model.
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In proof-of-concept experiments, the SS model with KF had satisfactory per-
formance results with a low computational complexity in real-time applications.
Thus, based on several performance indexes, the presented results indicate that the
proposed model is a better option for the real-time estimation of grasping force
from sMEG recordings than some regression methods, such as the MLP network,
NARX model, and the LDA algorithm with quadratic polynomial fitting.

The proposed system proved to be both stable and accurate for real-time ap-
plications and feasible for embedding in micro-controlled systems to work in my-
oelectric prosthesis.
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