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Abstract

Multiparametric Magnetic Resonance Imaging (MRI) is the most sensitive

imaging modality for breast cancer detection and is increasingly playing a

key role in lesion characterization. In this context, accurate and reliable

quantification of the shape and extent of breast cancer is crucial in clinical

research environments. Since conventional lesion delineation procedures are

still mostly manual, automated segmentation approaches can improve this

time-consuming and operator-dependent task by annotating the regions of

interest in a reproducible manner. In this work, a semi-automated and in-
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teractive approach based on the spatial Fuzzy C-Means (sFCM) algorithm is

proposed, used to segment masses on dynamic contrast-enhanced (DCE) MRI

of the breast. Our method was compared against existing approaches based

on classic image processing, namely (i) Otsu’s method for thresholding-based

segmentation, and (ii) the traditional FCM algorithm. A further compar-

ison was performed against state-of-the-art Convolutional Neural Networks

(CNNs) for medical image segmentation, namely SegNet and U-Net, in a 5-

fold cross-validation scheme. The results showed the validity of the proposed

approach, by significantly outperforming the competing methods in terms of

the Dice similarity coefficient (84.47 ± 4.75). Moreover, a Pearson’s coeffi-

cient of ρ = 0.993 showed a high correlation between segmented volume and

the gold standard provided by clinicians. Overall, the proposed method was

confirmed to outperform the competing literature methods. The proposed

computer-assisted approach could be deployed into clinical research environ-

ments by providing a reliable tool for volumetric and radiomics analyses.

Keywords: Semi-automated segmentation, Breast cancer,

Unsupervised fuzzy clustering, Spatial information,

Computer-assisted lesion detection, Magnetic Resonance Imaging

1. Introduction

Breast cancer is the most common cancer among women worldwide [1]

and persists as the second leading cause of cancer death [2]. The importance

of screening programs based on imaging, such as mammography, has been

widely acknowledged for early cancer detection [3]. Indeed, early breast5

cancer diagnosis showed to be associated with better outcomes [4].
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Along with mammography and ultrasound (US), which are the most com-

monly used modalities for breast cancer detection and diagnosis, Magnetic

Resonance Imaging (MRI) is playing an increasing role in the detection and

characterization of breast cancer [5], irrespective of breast density. The main10

indications for a breast MRI examination are screening to detect possible

occult breast cancer in women at increased risk, pre-operative assessment of

the disease extent in women with confirmed breast cancer, and assessment of

treatment response to neoadjuvant chemotherapy [6]. Especially, multipara-

metric MRI is the most sensitive imaging modality to detect breast cancer,15

including ductal carcinoma in situ (DCIS) [5]. In recent years, the trend

of implementing Computer-Assisted Diagnosis (CADx) systems for breast

lesions embraces all imaging modalities, with a variety of approaches that

show the interest from the research community [7]. In fact, CADx systems

can potentially speed up the reading/interpretation process and reduce the20

amount of lesions that might be misinterpreted or overlooked by radiologists

during breast MRI screening, particularly in the case of Dynamic Contrast-

Enhanced (DCE-MRI) [8, 9]. Moreover, Diffusion-Weighted Imaging (DWI)

has also been increasingly used on breast lesion detection and characteriza-

tion, with particular interest in the Apparent Diffusion Coefficient (ADC)25

maps by exploiting the restricted diffusion in regions of high cellular density,

generally caused by the proliferation of glandular tissue [10].

In clinical routine, the radiologists’ workflow is based on descriptors de-

rived from medical images to identify and characterize the lesions. In particu-

lar, the American College of Radiology (ACR) Breast Imaging Reporting and30

Data System (BI-RADS) [11] aims at standardizing the categories of imag-
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ing features that commonly characterize breast lesions on imaging, such as

calcifications and lesion morphology on mammography [12] or kinetic curve

type on DCE-MRI. By doing so, radiologists can provide a single malignancy

descriptor for each lesion [13].35

Accurate and reliable quantification of the shape and extent of the breast

cancer has a vital role in clinical applications [13]. In this scenario, lesion

detection and segmentation can affect predictive and classification models.

In the case of radiomics analyses [14, 15], the quality of the extracted fea-

tures and, consequently, the performance and generalization abilities of the40

developed models. As a matter of fact, manual breast lesion segmentation

is a labor-intensive task and, even more importantly, is highly affected by

operator-dependence [16].

In this work, a semi-automated approach based on spatial Fuzzy C-Means

(sFCM) clustering algorithm to segment masses on breast DCE-MRI images45

is proposed. The main contributions are related to:

• medical image analysis: the availability of an accurate segmentation

procedure reduces the radiologists’ time-consuming labor, as well as the

operator dependence, thus increasing result repeatability;

• DCE-MRI: only the time-point with the strongest enhancement phase50

is analyzed to provide an approach less dependent on acquisition pro-

tocols;

• precision oncology: automated and accurate segmentation methods

are beneficial to the downstream quantitative imaging analyses for de-

veloping reliable diagnostic and prognostic biomarkers [13].55
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This manuscript is organized as follows: Section 2 outlines the literature

concerning breast lesion segmentation on DCE-MRI. Section 3 introduces

the theoretical background of spatial FCM clustering. Section 4 presents the

characteristics of the processed DCE-MRI dataset, as well as the proposed

semi-automated segmentation method. Section 5 shows and discusses the60

achieved experimental results. Finally, Section 6 provides conclusive remarks

and future directions.

2. Related work

Automated segmentation tools could facilitate diagnosis and treatment

planning tasks, with reduced reporting times compared to the analogous65

manual procedure. Medical image analysis software, tailored to specific ap-

plications, enables the extraction and analysis of quantitative imaging fea-

tures, with the goal of gaining new insights into the disease under consider-

ation. This could optimize the whole clinical workflow for the development

of personalized therapies [17].70

Quantitative imaging methods, such as radiomics [18], require segmenta-

tion procedures that are reliable and repeatable, and thus operator-independent.

In the literature, there are several approaches for the assisted segmentation

of breast lesions: traditional techniques [19], machine learning [16, 20, 21],

and deep learning [9, 12, 22].75

In [16], the authors presented a method based on the Fuzzy C-Means

(FCM) clustering algorithm for breast lesion segmentation on DCE-MRI.

The approach consists of six consecutive steps: (i) manual Region of Interest

(ROI) selection; (ii) lesion ROI preprocessing; (iii) FCM clustering; lesion
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extraction; (iv) postprocessing; (v) object selection; (vi) hole filling. The80

algorithm was tested on an MRI dataset consisting of 121 primary lesions and

compared against a manual gold standard. Also in [20], the authors proposed

a two-stage approach exploiting the FCM clustering and Gradient Vector

Flow (GVF) snake algorithms for breast lesion segmentation on MR images.

Manual delineations, provided by expert MR radiologists, represented the85

reference to evaluate the computerized segmentation method. The approach

was also compared with the traditional FCM algorithm. Overall, a dataset of

60 mass-like lesions was used in the experimental trials. The morphological

and textural radiomic features, extracted from the segmented ROIs, were

used to classify the benign and malignant lesions.90

Among computational approaches, Deep learning approaches are gaining

ground in breast imaging by exhibiting a great potential [23]. Nevertheless,

several of them did not generalize well on unseen test data. On the other

hand, the conventional algorithms achieved robust and stable results, even

though they often require human interaction. Wang et al. [9] proposed a95

2D/3D mixed convolution module able to exploit the contexts between adja-

cent slices on 90 DCE-MRI studies. A multi-scale context extractor block—

consisting of convolutions with different sampling rates—was introduced to

extract multi-scale image features, essential to consider the diversity of shape

and size of breast lesions. Piantadosi et al. [22] proposed a multi-planar com-100

bination of U-Nets by fusing the projections and enabling multi-protocol ap-

plications. The experiments were performed on 109 DCE-MRI studies with

histopathologically proven lesions and two different acquisition protocols.

Classic machine learning represents a well-established class of algorithms,
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which provide the best compromise since (i) it is able to better manage the105

intrinsic variability of the signal, typical of biomedical images (for instance,

in the case of global thresholding [19, 24]), and (ii) does not require a large

amount of labeled data for training, such as in CNN-based architectures [25].

The current challenge for clinicians is two-fold: (i) early diagnosis of

the disease and (ii) personalized medicine, targeted to the specific clinical110

case. In order to guarantee these objectives, the support of computer-assisted

systems is valuable because, alongside the knowledge provided by clinicians,

it allows us to overcome the limitations of manual segmentation approaches.

3. The spatial FCM clustering algorithm

This section focuses on the spatial versions of the FCM clustering algo-115

rithm. For a detailed theoretical discussion, see Section S1 ‘Unsupervised

fuzzy C-Means clustering techniques’ of the Supplementary Materials.

The traditional FCM clustering algorithm does not take into account any

spatial relationship among pixels since all the samples are analyzed as in-

dependent points, making it sensitive to noise and other imaging artifacts120

[26, 27]. Accordingly, the integration of spatial information might be benefi-

cial.

The initial version of the sFCM algorithm was formulated as a regulariza-

tion term to penalize the traditional FCM objective function—which relies

on pixel values alone regardless of their location—by conveying spatial in-125

formation and constraining the behavior of the membership functions [28],

similarly to methods used in the regularization and Markov Random Field

(MRF) theory [29]. Thus, a fuzzy local similarity measure is integrated into
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its objective function, aiming at decreasing the sensitivity to noise, as well

as preserving image details [30]. Accordingly, the objective function of the130

robust Fuzzy Local Information C-Means (FLICM) algorithm aims at esti-

mating spatially smooth membership functions [31]:

JFLICM(U,V ;X) =
C∑
i=1

N∑
k=1

(uik)m · dik +Hik, (1)

where the fuzzy factor Hik acts as a regularizer:

Hik =
∑

j∈N (xk)

1

1 + djk
(1− uij)m · ‖xj − vi‖2. (2)

For instance, a 3D median

The sFCM, alternatively introduced by Chuang et al. [32], allows main-

taining the same formulation and objective function as the traditional FCM135

algorithm (described in Section S1 ‘Unsupervised fuzzy C-Means clustering

techniques’ of Supplementary Materials) by just modifying the update rules

with the local spatial content in the image. Aiming at exploiting the contex-

tual information, a spatial function is defined as [33, 32]:

hik =
∑

j∈N (xk)

ûij, (3)

where N is the neighborhood centered on the pixel xk.140

Basically, just like the membership function, the spatial function hij rep-

resents the membership degree of the pixel xi belonging to the j-th cluster:

the higher its values, the larger the number of neighbors belonging to the

same clusters. The incorporation of the spatial component considerably im-

proves the performance when segmenting noisy regions. In a homogeneous145
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region, the spatial functions emphasize the original membership, so the clus-

tering results are not affected. On the other hand, for noisy images, the

weighting of a noisy cluster by the labels of its neighboring pixels and the

misclassified pixels from noisy regions or spurious blobs may be corrected.

Formally, the spatial function modifies the membership function of a pixel150

according to the membership statistics of its neighbors as follows:

û′ik =
ûpik · hqik

C∑
j=1

ûpjk · hqjk
, (4)

where ûik is computed by the the traditional FCM clustering algorithm; fi-

nally, as in the case of the traditional FCM algorithm, the centroid vector is

updated. All the details are provided in Supplementary Section S1 ‘Unsu-

pervised fuzzy C-Means clustering techniques’.155

4. Materials and methods

This section presents the analyzed DCE-MRI series, as well as the pro-

posed segmentation method based on unsupervised fuzzy clustering. Lastly,

the evaluation methodology, along with the competing methods, are de-

scribed.160

4.1. Patient dataset composition

The study used MR images of patients recruited at the Breast Unit at

the Fondazione Istituto “G. Giglio” of Cefalù. In particular, 111 breast

DCE-MRI studies were acquired and then reported by consultant breast ra-

diologists. This retrospective study was approved by the local ethical review165

board.
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With the goal of achieving clinical feasibility, we analyzed the subtracted

images (obtained from two DCE-MRI time-points), which currently repre-

sent the routine examination on breast cancer patients [34, 35]. Aiming at

clinical and radiomic applications, to avoid considering lesions without suffi-170

cient informative content, only contrast-enhancing masses with a minimum

diameter of 0.5 cm were considered. Manual segmentations were performed

by a radiologist (by using a MatLab-coded custom tool), with more than

5-year experience on breast MRI, in consensus with a consultant breast ra-

diologist (with more than 30-year experience on breast imaging). Table 1175

shows the main characteristics of the used sequences. Figure 1 shows the

histopathologically proven sub-type distribution of the contrast-enhancing

masses that compose the analyzed breast DCE-MRI dataset.

Table 1: Characteristics of MR sequences used in this study.

DCE-MRI Characteristic Value

Sequence type DCE-MRI

Series description Ax VIBRANT mphase

Scanner model GE Signa HDxt (1.5T)

Repetition time (TR) 37.720 – 56.920 ms

Echo time (TE) 17.640 – 26.800 ms

Flip angle 10°

Matrix size 512 × 512 pixels

Slice thickness 2–3 mm

Spacing between slices 1 – 1.5 mm

Pixel spacing 0.6875 – 0.7422 mm
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Invasive ductal carcinoma 53.7 29 53.7

Invasive lobular carcinoma 22.2 12 22.2

In situ ductal carcinoma with central necrosis 3.7 2 3.7

Atypical ductal hyperplasia 3.7 2 3.7

Low-grade intraductal carcinoma 9.3 5 9.3

Mucinous carcinoma 1.9 1 1.9

Tubular carcinoma 1.9 1 1.9

Malignant philloydes 1.9 1 1.9

Ductal carcinoma with mucinous aspects 1.9 1 1.9

Malignant masses (54) #VALUE! 54 48.65

Fibroadenoma 36.8 21 36.8
Adenosis 21.1 12 21.1
Usual ductal hyperplasia 8.8 5 8.8
Intraductal papilloma 7 4 7
Apocrine metaplasia 7 4 7
Corpuscular cyst 5.3 3 5.3
Mastitis 3.5 2 3.5
Intramammary lymph node 3.5 2 3.5
Benign philloydes 1.8 1 1.8
Fibrosis 1.8 1 1.8
Sclerosing adenosis 1.8 1 1.8
Columnar cell hyperplasia 1.8 1 1.8

Benign masses (57) #VALUE! 57 51.35

TOTALE MASSE #VALUE! 111 100
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Figure 1: Histopathologically proven sub-type distribution of malignant (n = 54) and

benign (n = 57) contrast-enhancing breast masses. The numbers denote percentage values.

4.2. The proposed contrast-enhancing mass segmentation method in DCE-

MRI180

Fig. 2 shows the overall processing pipeline for contrast-enhancing mass

segmentation in breast DCE-MRI, which consists of several steps. Only

the initial step (namely, ‘ROI selection’) requires user interaction, while the

subsequent steps are fully automated; moreover, the ‘ROI Refinements’ step

is optional.185

The proposed approach and the competing methods were entirely devel-

oped using the MatLab® R2018b (64-bit version) environment (The Math-
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Works, Natick, MA, USA). The tests were conducted on a Windows® 10

(Microsoft Corporation, Redmond, Washington, USA) computational plat-

form equipped with an Intel® Core™ i7@2.7 GHz CPU and 16 GB of RAM.190

Fig. 3 depicts the Graphical User Interface (GUI) of the implemented tool

based on the proposed approach.

4.2.1. DCE-MRI data preparation

The acquisition of DCE-MRI involves the administration of a Gadolinium-

based contrast agent, which aids depicting morphological/physiological char-195

acteristics of breast lesions. Since the examination includes various acquisi-

tions in well-defined time intervals, a DCE-MRI sequence can be analyzed as

a 4D volume, wherein each voxel can be characterized by a tuple (x, y, z, t),

consisting of three spatial and one temporal dimensions, respectively. Con-

sidering a specific position (xs, ys, zs) within the volume, each voxel has a200

Time Intensity Curve (TIC(t)), function of time, reflecting the signal inten-

sity variations due to the absorption/release of the contrast agent. The time

course of the TIC curves can help clinicians infer the type of disease (e.g., be-

nign/malignant). More recently, a CNN exploiting three time-points (3TPs)

was introduced in [36], which allowed for leveraging the contrast agent ef-205

fects on breast DCE-MRI by relying on the 3TP approach proposed in [37].

Unfortunately, such a choice is not straightforward and sometimes calibra-

tion maps have to be used to normalize the input data. In our work, relying

upon clinicians’ domain knowledge and previous literature [18], the strongest

enhancement phase was analyzed since it best reflects the tumor heterogene-210

ity and invasiveness [38]: this choice consistently resulted in a median phase

(i.e., time-point) φm = 3 and an interquartile range IQR = 1. The average
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acquisition delay (i.e., between two consecutive time-points) for the analyzed

DCE-MRI studies is 74± 7 s.

ROI Selection

ROI Interpolation

Mass Segmentation
based on sFCM 

DCE-MRI
images

·

final segmentation

interpolated ROIs

manual ROIs

ROI Refinements

START

STOP

Preprocessing

preprocessed
MR images

refined ROIs

original
MR images·

contrast-enhancing mass
on breast MR images

Input images

Semi-automatic step

Automatic step

Optional step

contrast-enhancing
mass

cluster

Postprocessing

Figure 2: Overall flow diagram of the proposed semi-automated approach for contrast-

enhancing mass segmentation on breast DCE-MRI. The color legend is reported in the

left bottom corner.
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Figure 3: The GUI of the implemented tool based on the proposed semi-automated ap-

proach for contrast-enhancing mass segmentation in DCE-MRI of patients with breast

cancer.

4.2.2. ROI selection215

The ROIs were delineated on the whole tumor on the DCE-MRI phase

with the strongest enhancement phase [18], where the ROI selection process

is inspired by our previous successful strategy [39].

After loading the DCE-MRI series to be processed, the operator must se-

lect the bounding region (i.e., ROI) containing the contrast-enhancing mass.220

Considering that only slices including the lesion have to be segmented, the

next step involves the specification of the [SI , SF ] range, which includes only

the slices containing the lesion. Assuming that the lesions are generally

round-shaped, it was decided to reduce the number of manually inserted

ROIs. In fact, ROIs are drawn manually every ∆ROI slices, where ∆ROI225

is a parameter that indicates the offset between the slices wherein the ROI
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has to be manually delineated. SI and SF represent the initial and the final

slices, respectively (i.e., where the lesion starts and ends). The selection of

the range [SI , SF ] is interactively performed by the radiologist. After the

choice of SI and SF , the implemented tool supports the radiologist to man-230

ually delineate some rough ROIs (reference ROIs), one every ∆ROI slices

and, then, automatically interpolates each pair of adjacent reference ROIs,

to obtain an ROI on each slice within the range [SI , SF ].

If necessary, the operator can modify the value of ∆ROI. In our exper-

iments, we always used ∆ROI = 4 (the default value chosen jointly with235

clinicians). Fig. 4 schematizes the selection strategy used to set a ROI every

∆ROI slices.

4.2.3. ROI interpolation and refinement

At the end of the previous step, reference ROIs were manually drawn,

and the missing ROIs are automatically inferred by means of interpolation240

(see Fig. 5).

In particular, relying on the manually segmented ROIs, drawn every

∆ROI slices, all the ROIs for the intermediate slices are computed by inter-

polating the ROIs delineated on the slices at positions ith and (i+ ∆ROI)th.

By doing so, the workload of the operator is sensibly reduced, because the245

number of slices manually set is reduced by a ∆ROI factor. Considering that

the points Pi and Pi+∆ROI belong to the ROI on the ith and (i+ ∆ROI)th

slices, respectively, it is possible to calculate the points Pj, ∀j ∈ (i, i+∆ROI),

15
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Figure 4: ROI selection strategy: within the range [SI , SF ], the user roughly delineates

the ROI manually every ∆ROI (dark orange squares). After delineating these ROIs, the

remaining ROIs are interpolated automatically (light orange squares).

of the points of the jth interpolated ROI according to Eq. (5):

Pj =
{(
xROIi,n + j ·∆xn, yROIi,n + j ·∆yn | n ∈ PROI

)}
,

∀i ∈ [SI , SF ] ∧mod(i− SI ,∆ROI), ∀j ∈ (i, i+ ∆ROI),
(5)

where PROI represents the set of points composing the ROI.250

As illustrated in Fig. 5e, the pair (∆xn,∆yn)—defined by Eq. (6)—

represents the increments along the x and y directions for the nth point

of the ROI that must be added j times to obtain the points interpolating the

16



(xROIi,n, yROIi,n) and (xROIi+∆ROI,n, yROIi+∆ROI,n) point pairs, belonging

to the ith and (i+ ∆ROI)th ROIs, respectively. This allows us to calculate255

the missing ROIs.

(
∆xn,∆yn

)
=

(
xROIi+∆ROI,n − xROIi,n

∆ROI− 1
,
yROIi+∆ROI,n − yROIi,n

∆ROI− 1

)
(6)

Because this interpolation strategy has been applied here to a clinical

scenario different from the original (i.e., chest CT angiography) [39], before

its use in the segmentation, an analysis and validation phase was accurately

performed together with the clinicians, who endorsed its validity in the new260

breast DCE-MRI segmentation task and the effectiveness in remarkably re-

ducing the workload of the human operator.

If deemed necessary, when the manual ROI is not sufficiently accurate or

the result of the interpolation is not satisfactory, the operator can replace

the ROI by redrawing it. The adjacent ROIs are automatically updated by265

performing a new interpolation that takes into account the newly drawn ROI.

To endorse the quality of the interpolation results obtained by our procedure,

this event never occurred.

4.2.4. Image preprocessing and postprocessing

Preprocessing. Before the sFCM clustering, a 2D median filter with a 5× 5270

pixel kernel was applied for image smoothing. The use of a median filter

is a common choice in DCE-MRI image analysis. For instance, a 3D me-

dian filtering was applied to facilitate the ROI identification by removing (or

at least reducing) the outlier introduced by anatomical peculiarities [21] or

also deal with small patient shifts [40]. With specific reference to impulsive275
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noise models, a 3D median filter was also systematically applied in [41] to

pharmacokinetic parameter maps before masking to suppress spatial noise.

Postprocessing. Although preprocessing reduces intensity discontinuities, it

cannot always manage to completely eliminate non-uniformities that may

cause holes within the segmented masses. This problem was overcome by280

applying a hole-filling algorithm, based on morphological reconstruction [42].

Moreover, considering that sFCM could detect, in addition to the lesion,

also small connected-components, a flood-fill algorithm was executed for the

identification of the largest connected-components, representing the contrast-

enhancing mass.285

4.2.5. Contrast-enhancing mass segmentation

Breast lesions generally appear brighter than the surrounding adipose and

muscle tissues on DCE-MRI. Furthermore, anatomical atlases and radiology

reports refer that breast lesions are typically spherical [43]. Relying on these

morphological features, we decided to use the sFCM, a variant of the tradi-290

tional FCM, which allowed us to improve the segmentation when the ‘pixels

of interest’ are spatially close to each other [32].

In fact, one of the important characteristics of an image is that neigh-

boring pixels are highly correlated. In other words, these neighboring pixels

have similar feature values, and the probability that they belong to the same295

cluster is high [32, 44]. This spatial relationship is important in clustering,

but it is not utilized in a traditional FCM algorithm.

The segmentation via sFCM analyzed the images after the application of

the preprocessing, in order to obtain images with similar characteristics. The
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masks yielded by clustering are used to extract the lesion from the original im-300

ages (which did not undergo preprocessing). In fact, in some contexts—such

as radiomics—it is essential to keep original data, without any alteration,

so that they may reflect the real anatomical/metabolic characteristics of the

breast masses.

4.3. Segmentation evaluation procedure305

The quantitative evaluation of the proposed computational method was

performed by comparing the automatically segmented DCE-MRI image (S)

against the corresponding gold standard manual segmentation (G) using spa-

tial overlap- and distance-based metrics [45, 46, 47]. Since our method anal-

yses 2D MR images, we calculated slice-wise metrics that were then averaged310

per lesion.

The used overlap-based evaluation metrics were: Dice similarity coeffi-

cient (DSC), Jaccard index (JI), sensitivity (Sen), specificity (Spc). We also

computed the following distance-based metrics: Hausdorff distance (HD),

mean absolute distance (MAD), maximum absolute distance (MaxD). The315

detailed definitions are provided in Section S2 ‘Segmentation evaluation met-

rics’ of Supplementary Materials.

4.3.1. Competing methods

With the goal of providing a fair and careful comparison with the clas-

sic image processing approaches for breast lesion segmentation on DCE-MRI320

proposed in the literature approaches, a direct evaluation on the same dataset

was performed. In particular, the proposed sFCM-based approach was com-

pared against the following segmentation approaches:
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• Otsu’s method [48], inspired by [19];

• traditional FCM algorithm, similar to [16].325

To strengthen the experimental analysis, we present also a proper ex-

perimental comparison on the same dataset between the proposed method

and other literature approaches. With more details, we compared our imple-

mented approach against CNN-based approaches, for the following reasons:

• the only breast dataset, named QIN DCE-MRI [49, 50], was not col-330

lected for segmentation purposes (it is a longitudinal dataset created

for assessing breast cancer response to neoadjuvant chemotherapy);

• even by re-implementing the approaches in Table 6, the full repro-

ducibility cannot be ensured;

• no other public breast DCE-MRI datasets are currently available, there-335

fore we used our curated DCE-MRI dataset to obtain a common database

for appropriate and fair comparisons with the state-of-the-art.

In particular, we implemented and tested the most popular CNN-based

approaches for semantic segmentation of medical images [51], namely SegNet

[52] and U-Net [53], to directly compare them on the same data. To allow340

other researchers to reproduce the same results, we maintained the default ar-

chitectural characteristics (provided by the MatLab Deep Learning Toolbox).

Table 2 provides the most relevant details about implemented CNN-based ar-

chitectures. In both cases, the used optimizer was the Stochastic Gradient

Descent with Momentum (SGDM).345
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For an accurate and fair comparison, 2D slices were considered also for

the CNN-based segmentation. In particular, the cropped images were derived

from the manually segmented breast masses. The size of the input matrices

(96 × 96 pixels) was determined considering the bounding-box (centered on

the lesion centroid) that contains the largest lesion in the whole dataset. By350

doing so, we optimized the processing pipeline, avoiding to feed the whole

image to the CNNs. Moreover, the use of the bounding-box for the CNN

segmentation is equivalent to the ROI selection adopted in our processing

pipeline.

Table 2: The most relevant architectural and training details of the SegNet and U-Net

CNN-based architectures.

Characteristic SegNet U-Net

Input size 96× 96 pixels

Output classes 2

CNN layers 32 58

Optimizer SGDM

Initial learning rate 1× 10−3

Maximum number of epochs 100

A 5-fold cross-validation (CV) was adopted for the CNN training. There-355

fore, for each CV round, the whole dataset was split into 80%/20%, where

the 80% and the 20% were used for CNN training and test, respectively. The

mask obtained by CNN segmentation was elaborated by applying the same

postprocessing steps exploited for the proposed approach (i) hole filling, (ii)

largest connected-component selection, and (iii) morphological opening). For360

an accurate result comparison, this CV scheme was adopted as a test dataset

for the proposed approach, despite our sFCM is unsupervised and does not

require any training phase (Table 7).

22



5. Experimental results

This section presents the experimental results achieved by the proposed365

computer-assisted method. Segmentation performance, as well as correlation

between gold standard (manual) and automated volumes, are reported and

discussed. Furthermore, the analysis performed for sFCM parameter tuning,

necessary to optimize the final clustering performance, is shown.

5.1. Parameter settings370

The spatial function—defined in Eq. (3)—and the membership function—

defined in Eq. (4)—are controlled by means of p and q weighting parameters.

The tuning of these two parameters was performed on a calibration subset

composed of 30 randomly selected cases. We assessed the performance in

terms of DSC. Table 3 illustrates the average results obtained in this pre-375

liminary setting phase, which justifies the final choice to use the sFCM with

〈p, q〉 = 〈1, 2〉. The configuration with 〈p, q〉 = 〈1, 0〉, corresponding to the

traditional FCM, obtained a lower mean value of DSC, demonstrating that

the clustering with spatial constrains more accurately identified the tumor.

Supplementary Figures S1 and S2 show a comparison of manual delineations380

against the automated segmentation results obtained by sFCM during the

tuning phase by varying the parameters p and q.

5.2. Segmentation performance

Along with the quantitative segmentation assessment, we computed the

correlation between the volumes calculated from the radiologist’s gold stan-385

dard (Vmanual) and the volumes obtained by the proposed method (Vautomated).
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Table 3: DSC values (mean ± standard deviation) obtained during tuning of p and q

parameters with different values of neighborhood N .

〈p, q〉 N3×3 N5×5

〈1, 0〉 76.26 ± 18.19 74.59 ± 18.44

〈1, 1〉 75.24 ± 14.78 69.67 ± 23.02

〈1, 2〉 77.66 ± 15.09 78.2 ± 15.07

〈2, 0〉 69.7 ± 21.46 71.2 ± 22.44

〈2, 1〉 77.73 ± 15.13 75.86 ± 15.25

〈2, 2〉 71.31 ± 22.3 77.97 ± 15.04

Fig. 6a shows the corresponding scatter diagram: the achieved Pearson’s cor-

relation coefficient ρ confirms the high accuracy of the method. Along with

correlation coefficients, Fig. 6b depicts the corresponding Bland-Altman plot.

As a matter of fact, the Bland–Altman analysis better shows the data dis-390

tribution by plotting the pairwise difference between the volumes measured

by the two methods against their mean. It can be observed that, except for

a few outlier cases with very large volumes, there is no systematic bias.

Fig. 7 plots the mean DSC values achieved by the implemented and tested

segmentation methods. For statistical validation of the results achieved by395

the compared methods, the two-sided Wilcoxon signed rank test on paired

DSC results [54] was performed with the null hypothesis that the samples

come from continuous distributions with equal medians. In all the tests,

a significance level of 0.05 was considered. The p-values, corrected by the

Bonferroni–Holm method [55] for multiple comparisons, are shown at the400

top of Fig. 7. According to Fig. 7a, both FCM and sFCM achieved signifi-
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cantly higher DSC values compared to adaptive thresholding (p � 0.001 in
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Figure 6: In the upper part, scatter diagram showing the correlation Vautomated vs Vmanual.

Mass volumes are expressed in ‘number of pixels’ (a logarithmic scale is used). The

Pearson’s correlation coe�cient is ⇢ = 0.993. In the lower part, Bland–Altman plots of the

automated volumes (Vautomated) vs the manual colony counting measurements (Vmanual).

Solid horizontal and dashed lines denote the mean and ±1.96 standard deviation values,

respectively.
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Table 2: DSC values (mean ± standard deviation) obtained during tuning of p and q

parameters with di↵erent values of neighborhood N .

hp, qi N3⇥3 N5⇥5

h1, 0i 76.26 ± 18.19 74.59 ± 18.44

h1, 1i 75.24 ± 14.78 69.67 ± 23.02

h1, 2i 77.66 ± 15.09 78.2 ± 15.07

h2, 0i 69.7 ± 21.46 71.2 ± 22.44

h2, 1i 77.73 ± 15.13 75.86 ± 15.25

h2, 2i 71.31 ± 22.3 77.97 ± 15.04

correlation coe�cient r confirms the high accuracy of the method (Table 3).

Along with correlation coe�cients, Fig. 6b depicts the corresponding Bland-

Altman plot. As a matter of fact, the Bland–Altman analysis better shows

the data distribution by plotting the pairwise di↵erence between the volumes

measured by the two methods against their mean. It can be observed that,315

except for a few outlier cases with very large volumes, there is no systematic

bias.

Table 3: Pearson’s linear correlation coe�cient calculated between the automatically com-

puted volume values (Vautomated) and the manual segmentation performed by the radiolo-

gist (Vmanual). The corresponding significance level (p-value) and 95% confidence interval

are also reported.

Pearson’s Significance 95% Confidence

Coe�cient Level Interval

⇢ = 0.993 (p  0.0001) 2807.84 � 9755.80

Tables 4 and 5 depict the overlap-based and distance-based metrics, re-
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(b)

Figure 6: (a) Scatter diagram showing the correlation Vautomated versus Vmanual. Mass

volumes are expressed as ‘number of pixels’ (a logarithmic scale is used). The Pearson’s

correlation coefficient is ρ = 0.993 (p ≤ 0.0001). (b) Bland–Altman plots of the automated

volumes (Vautomated) versus the manual measurements (Vmanual). Solid black horizontal

and dashed red lines denote the mean and ±1.96 standard deviation values, respectively.
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both cases). Importantly, sFCM significantly outperformed the traditional

FCM algorithm (p = 3.511 × 10−4), thus confirming the importance of the

incorporation of the spatial information.405
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of 0.05 was considered. The p-values, corrected by the Bonferroni–Holm

method [48] for multiple comparisons, are shown in Table 6. Both FCM330

and sFCM achieved significantly higher DSC values compared to adaptive

thresholding. Importantly, sFCM significantly outperformed the traditional

FCM algorithm (p = 3.511 ⇥ 10�4), thus confirming the importance of the

incorporation of the spatial information.

Table 6: P -values obtained from the statistical validation procedure. The Wilcoxon rank-

sum test for pairwise result comparison was used with the alternative hypothesis that the

samples do not have equal medians of DSC values. A significance level of ↵ = 0.05 with a

correction using the Bonferroni–Holm method for multiple comparisons.

Comparison p-value

FCM versus thresholding 1.540 ⇥ 10�15

FCM versus thresholding 3.351 ⇥ 10�19

sFCM versus FCM 3.511 ⇥ 10�4

5.3. Comparison against existing work335

For the sake of completeness, this section compares existing literature

works addressing the problem of segmentation of breast lesions in DCE-MRI

sequences. Table 7, which merely reports the numerical values reported in the

original publications, has the sole purpose of providing an indication of the

performance that can be reached by the various approaches; since di↵erent340

DCE-MRI datasets were used, a direct comparison among them cannot be

carried out.

The work in [19]—based on thresholding—obtained the highest sensitiv-

ity, although it should be noted that only 65 lesions were processed. Both the
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Table 4: Segmentation results on the analyzed breast DCE-MRI dataset. The overlap-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach JI DSC Sen Spc

Thresholding 64.81 ± 5.36 77.27 ± 6.11 81.19 ± 5.32 75.20 ± 7.23

FCM 72.15 ± 6.23 82.86 ± 5.87 86.39 ± 4.56 81.09 ± 5.15

sFCM 73.95 ± 5.8 84.47 ± 4.75 89.23 ± 5.71 82.42 ± 6.98

Table 5: Segmentation results on the analyzed breast DCE-MRI dataset. The distance-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach HD MAD MaxD

Thresholding 3.25 ± 0.82 2.21 ± 1.2 4.41 ± 3.16

FCM 2.71 ± 0.43 1.13 ± 0.88 3.62 ± 2.34

sFCM 2.19 ± 0.51 1.15 ± 0.71 3.28 ± 2.56

We showed that the achieved performance was in line with existing work

based on either classic machine learning or deep learning techniques. Along

with the introduction of the spatial FCM clustering algorithm, our novelty

is represented by the smart and reliable interpolation strategy that allows us

to o↵er a user-friendly tool for radiologists.420

0.004 � 1.900 ⇥ 10�10 � 2.154 ⇥ 10�04

The work in [19]—based on thresholding—obtained the highest sensitiv-

ity (98%), although it should be noted that only 65 lesions were processed

and this method was designed to be highly sensitive at the cost of false pos-

itives. Unfortunately, no other evaluation metric was provided. Both the425
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method [48] for multiple comparisons, are shown in Table 6. Both FCM330

and sFCM achieved significantly higher DSC values compared to adaptive

thresholding. Importantly, sFCM significantly outperformed the traditional

FCM algorithm (p = 3.511 ⇥ 10�4), thus confirming the importance of the

incorporation of the spatial information.
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of 0.05 was considered. The p-values, corrected by the Bonferroni–Holm
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and sFCM achieved significantly higher DSC values compared to adaptive
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correction using the Bonferroni–Holm method for multiple comparisons.
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Table 4: Segmentation results on the analyzed breast DCE-MRI dataset. The overlap-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach JI DSC Sen Spc

Thresholding 64.81 ± 5.36 77.27 ± 6.11 81.19 ± 5.32 75.20 ± 7.23

FCM 72.15 ± 6.23 82.86 ± 5.87 86.39 ± 4.56 81.09 ± 5.15

sFCM 73.95 ± 5.8 84.47 ± 4.75 89.23 ± 5.71 82.42 ± 6.98

Table 5: Segmentation results on the analyzed breast DCE-MRI dataset. The distance-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach HD MAD MaxD

Thresholding 3.25 ± 0.82 2.21 ± 1.2 4.41 ± 3.16

FCM 2.71 ± 0.43 1.13 ± 0.88 3.62 ± 2.34

sFCM 2.19 ± 0.51 1.15 ± 0.71 3.28 ± 2.56

We showed that the achieved performance was in line with existing work

based on either classic machine learning or deep learning techniques. Along

with the introduction of the spatial FCM clustering algorithm, our novelty

is represented by the smart and reliable interpolation strategy that allows us

to o↵er a user-friendly tool for radiologists.420

0.004 � 1.900 ⇥ 10�10 � 2.154 ⇥ 10�04

The work in [19]—based on thresholding—obtained the highest sensitiv-

ity (98%), although it should be noted that only 65 lesions were processed

and this method was designed to be highly sensitive at the cost of false pos-

itives. Unfortunately, no other evaluation metric was provided. Both the425
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(b)

Figure 7: DSC values achieved by: (a) interactive methods based on classic image pro-

cessing techniques (namely, thresholding, FCM and sFCM); (b) CNN-based approaches

compared against the proposed sFCM method. The bar graph and error bars denote the

average value and the standard deviation DSC values, respectively. The p-values, obtained

from the statistical validation procedure, are shown at the top of the bars as brackets. The

Wilcoxon rank-sum test for pairwise result comparison was used with the alternative hy-

pothesis that the samples do not have equal medians of DSC values. A significance level of

↵ = 0.05 with a correction using the Bonferroni–Holm method for multiple comparisons.

Tables 4 and 5 depict all the overlap-based and distance-based metrics,405

respectively, obtained by the implemented and tested approaches. Fig. 8

shows a segmentation example obtained using thresholding, FCM and sFCM,

respectively. From a qualitative assessment, it is appreciable how the per-

formances of FCM and sFCM are very similar (although the sFCM achieves

overall better results). The segmentation based on thresholding obtained the410

worst performances, due to many false misclassified pixels.
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Figure 7: DSC values achieved by: (a) interactive methods based on classic image pro-

cessing techniques (namely, thresholding, FCM and sFCM); (b) CNN-based approaches

compared against the proposed sFCM method (in a 5-fold CV scheme). The bar graph

and error bars denote the average value and the standard deviation DSC values, respec-

tively. The p-values, obtained from the statistical validation procedure, are shown at the

top of the bars as brackets. The Wilcoxon rank-sum test for pairwise result comparison

was used with the alternative hypothesis that the samples do not have equal medians of

DSC values. A significance level of α = 0.05 with a correction using the Bonferroni–Holm

method for multiple comparisons.

Tables 4 and 5 depict all the overlap-based and distance-based metrics,

respectively, obtained by the implemented and tested approaches. Fig. 8

shows a segmentation example obtained using thresholding, FCM and sFCM,

respectively. From a qualitative assessment, it is appreciable how the per-

formances of FCM and sFCM are very similar (although the sFCM achieves410

overall better results). The segmentation based on thresholding obtained
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the worst performances, due to many false misclassified pixels. Analogously,

Fig. 9 shows two distinct examples of segmentation results yielded by SegNet,

U-Net and the proposed sFCM-based method, respectively. The CNN-based

approaches achieved accurate segmentation results, although our approach415

integrating the sFCM allowed us to obtain results superior to SegNet and

U-Net without requiring any training phase.

Table 4: Segmentation results on the analyzed breast DCE-MRI dataset. The overlap-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach JI DSC Sen Spc

Thresholding 64.81 ± 5.36 77.27 ± 6.11 81.19 ± 5.32 75.20 ± 7.23

FCM 72.15 ± 6.23 82.86 ± 5.87 86.39 ± 4.56 81.09 ± 5.15

sFCM 73.95 ± 5.8 84.47 ± 4.75 89.23 ± 5.71 82.42 ± 6.98

Table 5: Segmentation results on the analyzed breast DCE-MRI dataset. The distance-

based metrics are expressed as the mean value ± standard deviation. Boldface indicates

the best value for each metric.

Approach HD MAD MaxD

Thresholding 3.25 ± 0.82 2.21 ± 1.2 4.41 ± 3.16

FCM 2.71 ± 0.43 1.13 ± 0.88 3.62 ± 2.34

sFCM 2.19 ± 0.51 1.15 ± 0.71 3.28 ± 2.56

5.3. Comparison against existing work

For the sake of completeness, this section compares existing literature

works addressing the problem of segmentation of breast lesions in DCE-MRI420
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The work in [20]—based on thresholding—obtains the highest sensitiv-

ity, although it should be noted that only 65 lesions are processed. The

approaches proposed in [18] and [21] use both FCM. Considering that [18]

has twice as many patients/lesions with respect to [21], we could argue that

they have comparable performance. Also the CNN-based method presented325

in [9] did not report superior performance. In this scenario, our approach—

coupling a smart interactive strategy and the sFCM algorithm—achieved

comparable, or even the highest, performance on a dataset of 111 lesions.

Figure 6: Segmentation results obtained using thresholding, FCM and sFCM (red con-

tour), compared with ground-truth (green contour) provided by clinicians. Each row shows

a specific example, while each column report a specific segmentation approach: 1st column

thresholding; 2nd column FCM; 3rd column sFCM. All images are shown with a 4⇥ zoom

factor.
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Thresholding Traditional FCM Spatial FCM

Figure 8: Segmentation results obtained using thresholding, FCM and sFCM integrated

into the proposed semi-automated pipeline. The automated and the gold standard con-

tours are denoted in red and green, respectively. Two distinct examples (in the rows) are

shown and a 4× zoom factor was used.

sequences. Table 6, which merely reports the numerical values reported in

the original publications, has the sole purpose of providing an indication of

the performance that can be obtained by the various approaches. The main

aim of this comparison is just to provide evidence of the performance that

can be achieved by existing work; indeed, since different datasets were used425

in these studies, a direct comparison among them cannot be carried out.

We showed that the achieved performance was in line with existing work

based on either classic machine learning or deep learning techniques. Along

with the introduction of the spatial FCM clustering algorithm, our novelty

is represented by the smart and reliable interpolation strategy that allows us430
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to offer a user-friendly tool for radiologists.

The work in [19]—based on thresholding—obtained the highest sensitiv-

ity (98%), although it should be noted that only 65 lesions were processed

and this method was designed to be highly sensitive at the cost of false pos-

itives. Unfortunately, no other evaluation metric was provided. Both the435

approaches proposed in [16] and [20] used FCM. Considering that [16] had

twice as many patients/lesions with respect to [20], we could argue that they

have comparable performance. Especially, the JI values reported in [16] and

[20] were characterized by a higher standard deviation compared to the pro-

posed method. Also the CNN-based method presented in [9] did not report440

superior performance in terms of DSC and sensitivity. In these scenarios, our

approach—coupling a smart interactive strategy and an sFCM-based segmen-

tation method—achieved comparable, or even the highest, performance on

a dataset of 111 lesions. This evidence was confirmed also by the highest

Pearson’s correlation coefficient for (Vautomated) versus (Vmanual).445

Table 6: Comparison of the proposed method against existing literature approaches (N/A:

Not available).

Reference Approach Patients/Lesions DSC JI Sen Correlation

Vignati et al. (2011) [19] Thresholding 48/65 N/A N/A 98 N/A

Chen et al. (2006) [16] FCM 121/121 N/A 64±12 N/A 0.98

Pang et al. (2012) [20] FCM+GVF 60/60 N/A 78±8 N/A 0.976

Wang et al. (2021) [9] CNN 90/90 76.48 N/A 75.93 N/A

Proposed approach sFCM 111/111 84.47±4.75 73.95±5.8 89.23±5.71 0.993

Concerning the comparisons against CNN-based approaches, the results

in Table 7 represent the evaluation metrics obtained in the 5-fold CV (ex-

pressed as mean ± standard deviation). In particular, as shown in Fig. 7b,
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the proposed sFCM method achieved significantly higher DSC values (p =

1.900× 10−10 and p = 2.154× 10−4 compared to SegNet and U-Net, respec-450

tively), while U-Net outperformed SegNet (p = 0.004).

Unlike the approach proposed by Wang et al. [9], which combined three

phases of the DCE-MRI series (namely, the subtraction image, the initial

uptake image and the delayed response image) as input for a mixed 2D-3D

architecture, in the sFCM segmentation we used only one phase (with the455

strongest enhancement, according to the clinicians’ routine). This choice was

motivated by keeping the existing clinical protocol for an immediate clinical

feasibility of the implemented approach.

Table 7: Evaluation metrics (in terms of mean value ± standard deviation) obtained in

5-fold cross-validation. The standard deviation denotes the variability over the five CV

rounds. Boldface indicates the best value for each metric.

Approach JI DSC Sen Spc HD MAD MaxD

SegNet 69.89 ± 2.22 80.79 ± 1.83 85.13 ± 2.17 77.46 ± 4.86 3.2 ± 0.91 1.87 ± 0.71 4.18 ± 3.22

U-Net 72.74 ± 2.67 82.11 ± 2.28 86.21 ± 3.24 81.7 ± 6.19 2.78 ± 0.55 1.24 ± 0.67 3.4 ± 2.93

Proposed approach 74.67 ± 4.11 84.42 ± 1.70 92.57 ± 2.36 84.93 ± 5.21 2.42 ± 0.62 1.03 ± 0.78 3.11 ± 2.85

6. Discussion and conclusion

In clinical routine, the quantification of lesion extent on DCE-MRI plays460

a vital role must be as accurate as possible [13]. Along with volumetric anal-

yses, radiomics enables non-invasive diagnosis by means of predictive models

that rely on features extracted from images [14, 23]. While texture features

obtained promising performance in distinguishing benign and malignant le-

sions [15], they can be combined with the current BI-RADS descriptors of465

internal tumor enhancement pattern and lesion margin [5]. For this reason,
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Figure 9: Segmentation results obtained comparing the proposed approach based on sFCM

(red contour), SegNet segmentation (cyan contour) and U-Net segmentation (yellow con-

tour) against the ground-truth (green contour). Examples are shown with a 2⇥ zoom

factor.
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Figure 9: Segmentation results obtained comparing the proposed approach based on sFCM

(red contour), SegNet segmentation (cyan contour) and U-Net segmentation (yellow con-

tour) against the ground-truth (green contour). Examples are shown with a 2× zoom

factor.

accurate quantification of the shape-based and texture features of the lesion

is fundamental for precision oncology, targeted to the specific clinical case.

Computer-assisted segmentation approaches could facilitate tumor annota-

tion and, successively, diagnosis and treatment planning tasks, with reduced470

reporting-time and operator dependence compared to the analogous manual

procedures.

In this work, we proposed an unsupervised machine learning approach

based on sFCM used to segment masses on DCE-MRI images of patients
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with breast lesions recruited by a single institution. In particular, a semi-475

automated segmentation tool was implemented to reliably help radiologists

in accurate detection and segmentation. The obtained results, in terms of

overlap-based and distance-based metrics, demonstrated the superiority of

the sFCM, compared against global thresholding [19] and the traditional

FCM clustering [16].480

The proposed segmentation tool requires the user input for the rough

selection of the mass region that is then propagated over all the slices of

interest via a smart interpolation strategy. In the near future, the authors

aim at further improving this computer-assisted segmentation approach, by

automatically detecting the breast lesion [56]; in such a case, a CNN-based485

detection approach could be exploited [57]. Despite the analyzed DCE-MRI

dataset having been prepared and curated by a single institution, our method

could offer good generalization abilities also on external datasets collected at

other institutions, using different MRI scanners and protocols. Indeed, our

approach currently processes only the time-point with the strongest enhance-490

ment phase, and should therefore be less affected by different MRI acquisition

protocols [18] which might facilitate its integration into the clinical practice

compared to deep learning based methods.

The availability of publicly accessible datasets is a necessary resource for

fair comparisons between a new method and existing approaches. Unfortu-495

nately, however, there are not always ‘useful’ resources available to the re-

search area in question. In particular, our study used DCE-MRI images alone

to enable the clinical feasibility of the approach. In fact, DCE-MRI is the

routine exam in the clinical practice for patients with breast cancer [34, 35].
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From this point of view, the publicly available resources [58, 59, 60, 49, 50]500

which do not comprise DCE-MRI for segmentation purposes, are not suitable

for our purposes; however, the adoption of unenhanced MRI sequences, such

as quantitative DWI, is highly relevant for future development [61, 10]. QIN

Breast DCE-MRI dataset [49, 50] contains MRI images from a longitudinal

study to assess breast cancer response to neoadjuvant chemotherapy of 20505

patients. The only work we have found that uses this breast dataset is [62],

where a two steps approach for breast lesion segmentation is proposed. To

reduce the search area to a specific ROI, in the first step a raw breast mask

is given by simply subtracting the first image and subsequent MRI images.

In the second step, the breast lesions within the previously obtained breast510

mask are segmented. Three classic image processing methods were tested:

(i) thresholding based on the Otsu’s method, (ii) seeded region-growing, and

(iii) K-means clustering. A postprocessing based on morphological opera-

tions was applied to remove some segmentation artifacts. Two area-based

evaluation metrics (namely, DSC and JI) were considered, calculated only515

on 20 DCE-MRI 2D slices of patient BC01. The best result was obtained

by K-means clustering (number of clusters K = 4), with DSC=0.93 and

JI=0.87. The tests were performed on an arbitrary subset of the QIN Breast

DCE-MRI dataset (one patient only), this therefore hampers a comprehen-

sive comparison. Nevertheless, the most important experimental finding is520

that unsupervised K-means clustering outperformed the other classic image

processing techniques in breast lesion segmentation on DCE-MRI.

Regarding the possibility of making the dataset publicly available for the

research community, it should be noted that the approval of this retrospective
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study, by the local ethical review board, currently allows for the data storage525

and analysis only inside the institution, despite the anonymization process.

We plan to address this important issue for result reproducibility.

As a further development, with the goal of fully leveraging the several

time-points provided by DCE-MRI, we plan to develop a multistep unsu-

pervised clustering approach based on time-series analysis [63, 64], which530

exploits the sFCM for each single time-point, as well as the pharmacokinet-

ics modeling derived from DCE-MRI [36, 65].
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