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Abstract: Due to the unresectability of normal brain tissue and the extensive invasive growth of the 

malignant tumor, the boundary between the tumor and surrounding healthy brain tissue or blood 

vessels is blurred, which greatly affects the accuracy of diagnosis and treatment. Meanwhile, with the 

growth of data information and the development of computer equipment, it is extremely 

time-consuming and laborious to rely on the traditional manual segmentation of brain medical images. 

To solve the above problems, this paper proposes a multi-input Unet model based on the integrated 

block and the aggregation connection to achieve efficient and accurate segmentation of tumor structure. 

Besides, this paper studies two-dimensional (2D) transverse brain tumor slices to meet the needs of 

doctors in the actual diagnosis. It solves the low-resolution problem in sagittal and coronal planes, 

which can effectively improve memory efficiency. The proposed algorithm is innovative in three 

aspects. Firstly, by inputting the mask images which can effectively represent the tumor location 

characteristics, it can provide more information about the spatial relationship to alleviate the problems 

of fuzzy boundary and low contrast between the lesion region and healthy brain tissue. Then, the 

integrated block extracts the tumor local information in different receptive domains by a multi-scale 

convolution kernel. The aggregation connection realizes the implicit deep connection of context 

information, which combines the shallow and deep information of the brain with strong geometric 
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spatial relationships. Meanwhile, to effectively alleviate the waste of memory resources caused by 

redundant and background information in medical images, the amount of calculation in model training 

is reduced by dimension reduction of the feature map. It can also overcome the gradient vanishing 

problem caused by network deepening. In this paper, an ablation experiment is used to verify the 

innovation of the proposed algorithm on the BraTS dataset, which compares with the state-of-the-art 

brain tumor segmentation methods. The accuracy of the proposed multi-input Unet model for the whole 

tumor and core lesion is 0.92 and 0.90, respectively. 

Keywords Brain tumor segmentation, Unet model, multi-input images, the integrated block, the 

aggregation connection. 

 

1 Introduction 

Glioma [1, 2] is the most common disease in the central nervous system and its incidence rate is 

about 40% [3, 4]. In terms of pathological diagnosis and prognosis, glioma is a disease with the highest 

recurrence rate and relatively short survival cycle in primary brain tumors. The World Health 

Organization divides glioma into four grades. Here, grades I and II are low-grade glioma (LGG); 

grades III and IV are high-grade glioma (HGG) [5, 6]. Relatively, the growth rate of the LGG is slow 

and the treatment can effectively improve the survival cycle of patients. The HGG has the tendency of 

faster recurrence and development to a higher grade tumor, which poses a great threat to the health. 

Therefore, how to effectively determine the tumor grade and timely diagnosis plays an important role 

in improving the life cycle of patients. Recently, with the development of computed tomography (CT) 

[7-9] and magnetic resonance imaging (MRI) [10-13], the detection rate of brain tumors has been 

greatly improved, which plays an increasingly important role in cancer diagnosis [14-16], surgical 



planning [17, 18], and treatment outcome evaluation [19, 20]. Compared with the CT images, the MRI 

images [21, 22] have higher soft-tissue resolution and can detect more tiny lesions in early time, which 

is of great clinical significance to improve the survival rate of patients. Besides, because the MRI 

images can obtain non-invasive vascular and water imaging, it can analyze more tissues and 

pathological metabolism without causing damage [23]. Considering the generation need of the MRI 

images, the human body needs to be placed in a strong magnetic field and the hydrogen protons are 

excited by radio-frequency pulses [24, 25]. Then, the nuclear magnetic resonance is received signals 

from protons to generate multi-angle and multi-modal images, which can reflect brain diseases more 

effectively. 

Fig. 1.  The multi-modal MRI medical images of brain tumors. (a) HGG; (b) LGG. 

The multi-modal MRI brain medical images [26-28] include the T1 weighted images (T1), the T2 

weighted images (T2), the T1 contrast images (T1c, The contrast agent is used in the T1 weighted 

images), and the fluid attention inversion recovery images (FLAIR) [29, 30]. Figure 1 shows the 

imaging status of the HGG and the LGG in multi-modal images. The T1 and the T2 images are used to 

observe the anatomical structure and lesion structure of the brain, respectively. From Figure 1, the color 

contrast of gray matter, white matter, and cerebrospinal fluid in the T1 images is obvious, which can 

effectively reflect the difference between brain tumor and other healthy tissues. The T1c images can 

distinguish lesion from the non-tumor region by blood contrast agent, which makes the tumor with rich 

blood flow display as the high-intensity signal. As T2 imaging is related to water content, the signal 

intensity of the lesion is significantly stronger than that of the surrounding normal brain tissue. 

Therefore, it can effectively identify tumor with obvious edema occupying effect and obtain more clear 

boundary information. The FLAIR images can suppress the high-intensity signal in cerebrospinal fluid 



to make the lesions adjacent display more clearly. However, due to the invasive growth of brain tumors 

and the increasing amount of medical data, the traditional manual segmentation method relying on 

doctors has some limitations. 

Recently, with the development of deep learning, how to simulate the abstract cognition of the 

human brain and process the complex mass of data information accurately and efficiently, using 

computer-aided medical disease diagnosis has become one of the key problems. The performance of 

the deep learning model is mainly related to four aspects: network depth [31-34], feature map width 

[35,], kernel scale [36, 37], and kernel step size [38]. Here, with the increase of network depth, the 

non-linear transformation of convolution in each layer can enhance the non-linear fitting ability. 

However, when the depth arrives at a certain extent, the model to an over-fitting problem, which leads 

to the problem of gradient vanishing or gradient exploding. To solve this problem, researchers have 

proposed activation function, batch standardization operation, and auxiliary loss function, which can 

slow down the network degradation, such as convolutional neural network (CNN) [39-43] and 

GoogLeNet model [44-46]. 

Kao et al. [47] propose a CNN model based on the block location information. By fusing the tumor 

information extracted from different advanced networks, the uncertainty can be reduced and the 

accuracy can be effectively improved. Russo et al. [48] propose a depth CNN model for brain tumor 

segmentation based on the spherical coordinate transformation pre-processing operation. This 

algorithm works independently of resolution and images settings by assuming three-dimensional (3D) 

spherical coordinate transformation, which can effectively improve the learning accuracy. Zhang et al. 

[49] propose a deep network structure of cross pattern learning features. By extracting information 

between different modal data and converting into features, this model can effectively improve the 



performance of brain tumor cell segmentation. The above algorithms use the way of deepening the 

network depth to improve the feature extraction ability, which can overcome the problem of a feature 

missing caused by convolution operation to a certain extent. However, this operation may provide more 

information for the model by adding additional eigenvalues, which can result in a lot of redundant 

computation. On this basis, Chandra et al. [50] propose an end-to-end brain tumor segmentation model 

to optimize the deep learning network by calculating the generalized dice overlap loss. Sharif et al. [51] 

propose a depth neural network based on the pixel enhancement along with the limit, which has good 

segmentation performance by active feature selection of entropy filling. The algorithm proposed by 

Chandra et al. [50] and Sharif et al. [51] can reduce the amount of unnecessary information by 

optimizing the loss function. Thus, it can effectively improve the computational efficiency, but the 

model training still needs a large number of datasets. To solve this problem, Nassar et al. [52] input the 

narrow-band information in the integrated MRI images into the CNN model, which can obtain more 

accurate brain tumor anatomical information. Kayalıbay et al. [53] propose an improved CNN model 

based on the filter algorithm, which effectively alleviates the problem of high-class imbalance by 

combining the feature maps of long skip connected lesions. However, the problem of high memory and 

resource consumption caused by high-dimensional medical images has not been greatly improved. 

Fig. 2.  The structure of the traditional Unet model. 

Besides, by adding the network feature maps, more features can be obtained and the generalization 

ability can be effectively enhanced. However, as the scale of the feature map increases, a large number 

of redundant data will appear in the model. Therefore, many researchers propose to replace the 

performance of large-scale convolution by continuous multiplexing of small-scale convolution, such as 

the AlexNet model [66-68] and the VGG model [72, 73]. Adding the network feature maps can 



effectively enhance the non-linear approximation ability, increase the width of the network, and reduce 

the cost of memory resources, but more training data are needed to train the deep network. However, 

due to the variety of brain tumors and the small difference between the gray amplitude of healthy brain 

tissue, the accuracy of gray value can not be guaranteed. Because the Unet model [54-60] constructs 

the encoder-decoder structure through the skip connection, which ensures the maximum extraction of 

lesion features in the case of a small amount of data, as shown in Figure 2. 

In the traditional Unet model, skip connection is used to link low-level and high-level features in one 

stage, instead of direct monitoring and loss back propagation, which ensures that more local features 

are fused into the feature maps. However, the convolution of the traditional Unet model will cause the 

loss of image details. Although an up-sampling operation can recover part of the lost fine boundary 

information, it still does not meet the higher requirements of medical image segmentation accuracy. To 

solve the above problems, Zhang et al. [61] improve the combination of high-level and low-level 

features by adding an attention mechanism. It can enhance the expression of local features in the Unet 

model and further reduce the loss of the network in the feature extraction process. However, due to the 

high requirements of equipment and memory, Nitnaware et al. [62] propose an improved Unet model 

for brain tumor segmentation, which converts the 3D brain tumor images into two-dimensional (2D) 

slice images through the DICOM conversion tool. McHugh et al. [63] propose an automatic glioma 

segmentation algorithm based on a 2D density unit. By dividing the 3D images into 2D slices, the 

above algorithms can better alleviate the problem of large memory resources required by the depth 

network. On this basis, Yang et al. [64] propose an improved brain tumor segmentation model based on 

Unet model. By deepening the network depth and using the compression operator to control the 

parameters in the model training process, the feature extraction ability is improved and the network 



degradation phenomenon is better overcome. Ahmad et al. [65] extract multi-context information from 

the concept of feature reusability by using densely connected blocks. Besides, it can extract local and 

global information by combining features of different kernel scales. Thus, the non-linear feature 

extraction ability is effectively enhanced and the segmentation performance is improved. However, in 

the process of network training, there is still the problem that useful features are lost or not used. 

Therefore, this paper proposes a multi-input Unet model based on the integrated block and the 

aggregation connection for MRI brain tumor segmentation. 

To improve the efficiency and meet the actual needs of physician diagnosis, this paper uses 

multi-input 2D slices to train the proposed Unet model. Meanwhile, due to the particularity of MRI 

medical image sampling, the contrast between brain tumor and surrounding healthy tissue is often low, 

which affects the judgment of the dynamic relationship. To effectively obtain the feature information of 

atypical brain tumors, the proposed algorithm inputs the mask images, which can correctly reflect the 

location and structure characteristics of brain tumors into the multi-input Unet model. Besides, through 

the integrated block and the aggregation connection, the large receptive domain feature maps are 

connected with the small-scale feature maps that have strong geometric detail expression ability. In the 

integrated block, the bottleneck convolution is used to effectively reduce the dimension of current 

eigenvectors of the convolution process. It can not only keep the sparsity of network structure, but also 

improve the computing performance by using a dense matrix. Meanwhile, the proposed multi-input 

Unet model combines the multi-scale local information in different stages with the global information, 

which can effectively reflect the structural characteristics of tumor location. The feature results of the 

upper layer are directly connected to the lower layer and used as supplementary information in the 

process of up-sampling operation. It also makes up for the problem of a feature missing caused by the 



down-sampling operation. This proposed algorithm can not only effectively overcome the gradient 

vanishing problem, but also obtain more tumor information. The main contributions of the proposed 

algorithm are as follows: 

 Data processing: To alleviate the problem of fuzzy boundary and low contrast between the tumor 

and the healthy brain tissue, the algorithm inputs the mask images that can effectively reflect the 

location and structure of brain tumors into the proposed multi-input Unet model. 

 Model design: The proposed algorithm can effectively combine the shallow information with the 

deep information, which improves learning ability through the combination of the integrated 

block and the aggregation connection. The local information is obtained by the integrated block, 

which provides more tumor features for model training. The context information is connected by 

the aggregation connection to enhance the feature strength of the proposed model implicitly and 

deeply.  

 Optimization process: By expansion convolution and bottleneck convolution, the multi-scale 

feature analysis ability of the proposed model is enhanced. The expansion convolution uses 

continuous convolution to improve memory efficiency, which achieves large kernel utility. The 

bottleneck convolution reduces the number of calculation parameters, which alleviates the 

gradient disappearance phenomenon caused by the deepening of the network. 

The paper is organized as follows. Section Ⅱ introduces the related algorithms in the training deep 

learning model, including the integrated block and the aggregation connection. Section Ⅲ introduces 

the experimental process of the proposed multi-input Unet model, including reconstruction of the 

multi-input dataset, training of the proposed Unet model based on the integrated block and the 

aggregation connection, and fusion of context information. Section Ⅳ shows the experimental results 



and analysis to verify the effectiveness of each innovation point through ablation research. Besides, it is 

compared with the state-of-the-art brain tumor segmentation algorithm. Finally, the conclusion is given 

in section Ⅴ. 

2 The related algorithm 

Since the AlexNet model [66-68] won the ImageNet competition in 2012, the DNN [69-71] model 

has rapidly become one of the hot research topics. Then, the VGG model [72, 73], the GoogleNet 

model [44-46], the ResNet model [74, 75], and so on are improved from the following three aspects: 

 Through the design of a more complex deep network structure, the ability of extracting deeper 

feature information is lifted, i.e., the GoogleNet model. 

 By adding pre-processing and post-processing operations, the calculation parameters are 

simplified and the segmentation performance is improved, i.e., training model using multi-modal 

images. 

 To alleviate the problem of a feature missing caused by convolution operations, special loss 

functions or links that are more suitable for deep networks are explored, i.e., the Unet model. 

On this basis, the proposed algorithm overcomes the network degradation problem through the 

integrated block and the aggregation connection, which effectively improves the segmentation 

performance by extracting deeper features. 

2.1 The integrated block 

The traditional deep learning model directly uses continuous convolution to increase the dimension 

of the feature maps, which will aggravate the over-fitting phenomenon and lead to an exponential 

increase in the calculation. To solve this problem, the inception unit proposed in the GoogleNet model 

[44-46] transforms sparse matrix clustering into dense sub-matrix, which improves the performance of 



computation. The corresponding parameter is ( 1,3,5* * * * * ,6)
i i Ki ii

K K F N N M i  , where i
K  

is the size of the i -th convolution kernel, Ki
F  is the corresponding dimension. N  and M  are the 

size and dimension of the obtained feature map, respectively, as shown in Figure 3. Although the 

problem of redundant information is alleviated to a certain extent, the high-dimensional convolution 

operation will lead to the loss of feature information.  

Inspired by the inception unit, this paper improves the performance by building the integrated block 

to cluster the sparse matrix into a dense sub-matrix. To effectively obtain the tumor local features, this 

paper uses convolution linkage with different scales, which obtains the deep features in multi-scale 

kernels. Besides, the proposed algorithm uses the bottleneck convolution to reduce the dimension of 

the current eigenvector. It can debase the amount of computation effectively and improve the utilization 

of computing resources. The integrated block can not only keep the sparsity of network structure, but 

also improve the computing performance by using a dense matrix, as shown in Figure 3. Through 1*1 

bottleneck convolution, the dimension reduction operation of large-scale feature information (That is, 

the 1K , 2K , 3K , 4K , 5K , and 6K  values are 1, respectively) is carried out. Then, it will reduce 

the dimension of certain strong feature signals, which is conducive to accelerated training. Therefore, 

the calculation cost of the proposed algorithm is 
6

1

* * *
i

Ki i
F N N M


 , which can balance the 

relationship between network depth and density effectively. The number of tumor feature maps 

extracted from each integrated block path is balanced by dimension reduction, which ensures that the 

gradient vanishing problem can be solved while deepening the model depth. 

Fig. 3.  The integrated block. 

By increasing the depth and width of the network, the segmentation performance of the proposed 

model can be effectively improved. However, it will increase the redundant computation in network 



training and reduce the segmentation efficiency. Therefore, the aggregation connection is used to link 

the deep and shallow features. 

2.2 The aggregation connection 

Although multi-modal MRI tumor images can make up for the lost features to a certain extent, the 

boundary between edema and healthy region is blurred because of the invasive growth of the tumor. 

Due to the insufficient information on brain tumor structure, more deep and shallow features are 

needed in lesion segmentation. To effectively solve the above problem, the Unet model [54-60] can 

obtain more global and local information with a small amount of data. Through U-shaped structure and 

skip connection operation, the deep information obtained by down-sampling operation can be restored 

to the original image scale. However, because part of the boundary information will be lost in the 

process of feature extraction, the corresponding larger feature maps obtained by the up-sampling 

operation are not complete. Even though the connection between shallow and deep features, the 

residual information still can not meet the needs of tumor segmentation. To solve the above problem, 

the ResNet model [74, 75] obtains the feature information of the layer L  by adding the feature signal 

1L
X   and the non-linear transformation 1L

H   value of the layer 1L  : 

1 1 1( )
L L L L

X H X X                                (1) 

The ResNet model effectively enhances the non-linear mapping ability and alleviates the problem of 

a feature missing caused by convolution operation to a certain extent, as shown in Figure 4(a). 

However, this network requires a large amount of computation and takes up more resource space, 

which leads to low computational efficiency. Therefore, the proposed model adopts the aggregation 

connection and the corresponding structure is shown in Figure 4 (b). 

Fig. 4.  The aggregation connection. (a) The ResNet model; (b) The proposed model. 



The aggregation connection directly links the feature results of the upper layer to the lower layer, 

which is used as supplementary information in the up-sampling process to make up for the lost features 

caused by the down-sampling operation. The feature information of the layer L  is obtained from all 

the non-linear changes 1L
H   of the previous layer 1L  : 

1 0 1 1([ , ,..., ])
L L L

X H X X X                                          (2) 

1 2 1

1 1 1 1 1
1 2 2 2 2( ) ( ( )) ( ) ( )L L L L L

L b L b b L d L p L
H C X C C X C X C X

    
                  (3) 

where 
1

1L

b
C

 , 
2

1L

b
C

 , 1L

d
C

 , and 1L

p
C

  represent bottleneck convolution, convolution with batch 

normalization and ReLU, extended convolution after dimension reduction, and pooling operation, 

respectively.   is used to connect the pooling or convolution feature maps. The aggregation 

connection establishes the relationship between different layers. On the premise of making full use of 

the feature information, it narrows the network by bottleneck convolution, which greatly reduces the 

number of calculation parameters. Moreover, because the problem of network degradation is solved, it 

is possible to obtain more sampling information by building a deeper network. 

3 The proposed method 

In this paper, a multi-input Unet model for MRI brain tumor segmentation is proposed. Through 

feature analysis of different scales, the continuous 3*3 expansion convolution is used to obtain deep 

features with the large receptive domain. The 1*1 bottleneck convolution is used to decrease the 

dimension, which can effectively reduce the number of training parameters and greatly improve the 

utilization of memory resources. Meanwhile, with the increase of the depth and width of the proposed 

model, the feature maps obtained by the down-sampling operation become more and more abstract. 

Besides, its resolution decreases that leads to the loss of some tumor information and the corresponding 

spatial geometric features. 

https://ww2.mathworks.cn/help/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html
https://ww2.mathworks.cn/help/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html


Fig. 5.  The flow chart of the proposed algorithm. 

To overcome this problem, the integrated block is used to connect the local feature information of 

different scales. The large receptive domain is convenient to connect the location of the tumor with 

other brain structures, which can effectively reduce the error caused by the high signal feature 

identification of lesions. The small kernel can provide the necessary resolution information for 

identifying small lesions. By connecting feature maps of different scales, the ability of tumor geometric 

expression and lesion differentiation can be effectively improved. With the increase of down-sampling 

times, the range of receptive domain extracted by the model expands. However, the lost local tiny 

information leads to the inability to identify small lesion effectively. Therefore, in this paper, the 

aggregation connection method is used to merge the up-sampling and down-sampling feature maps of 

the same scale. To express the geometric details, the small and the large receptive domains are 

combined, which makes the strong ability to distinguish lesions. The experimental process is mainly 

divided into three steps: reconstruction of the multi-input dataset, training of the proposed Unet model 

based on the integrated block and the aggregation connection, and fusion of context information. The 

specific process is shown in Figure 5. 

3.1 The multi-input images 

Due to the small number of transverse slices in multi-modal MRI brain tumor images, there is 

anisotropy in sagittal and coronal planes, which are much lower than that in the transverse plane, as 

shown in Figure 6. Besides, using low-resolution 3D images for tumor segmentation can not better 

express the brain features with different shapes and positions. Generally, doctors use 2D slice images to 

observe when they actually determine the type of tumor and the treatment plan. Therefore, to meet the 

actual needs of brain tumor segmentation and improve the utilization of resources, the proposed 



algorithm is used to segment brain tumors on 2D slice images of the transverse plane. 

Fig. 6.  The MRI images of brain tumors from different angles. 

Because the boundary between tumor and healthy tissue is fuzzy, it is difficult to segment brain 

tumor structure only by single-modal images. Therefore, how to effectively integrate the feature 

information of multi-modal images is a hot topic in tumor segmentation. The structure of the traditional 

multi-modal MRI images training deep learning model is shown in Figure 7(a). Due to the different 

density signals of lesions in different multi-modal images, high-performance segmentation results can 

be obtained. However, consider that the mutual exclusion of multi-modal images and the feature loss of 

the network, the segmentation accuracy needs to be improved further. To grasp the features of the 

lesion quickly, the mask images are used as the training dataset of the proposed model, which can 

reflect the spatial relationship between the brain tumor and the surrounding healthy tissues. Specifically, 

the mask images instead of the T1 images are used to overcome the mutual exclusion phenomenon. 

Besides, it can effectively combine tumor context information and local lesion features to predict the 

attribution of pixels. Therefore, the proposed algorithm provides more features for MRI brain tumor 

segmentation through multi-input operation, as shown in Figure 7(b). 

Fig. 7.  The process of the proposed multi-input Unet model. (a) Traditional Unet model; (b)The proposed model. 

Through the region growing algorithm, the connected information can be obtained, which can 

provide fine boundary features between the tumor and the healthy tissue. Then, the mask images 'I  is 

obtained by multi-modal integration, which can directly reflect the shape, scale, and appearance of a 

brain tumor. The calculation process is as follows: 

4

1 ,1
1

2

if ' ( , ) 3
'( , ) m

m

r I x y
I x y

r otherwise



  



                        (4) 

where ,1'mI  and ,2'mI  represent the lesion region (value 1) and non-lesion region (value 0) in 



modality m , respectively. 1r  and 2r  indicate that the points ( , )x y  belong to the tumor region or 

healthy region. The region growing algorithm is used to obtain the single-modal lesion information, as 

shown in Algorithm 1. 

Algorithm 1 Region growing algorithm 

Input: Single-modal image m
I , seed points 1,...,nS , where n  is the number of the seed points, 

height  and width  of the image m
I . 

Output: Mask image '
m

I  

Initialization: GrowQue= 1,...,nS , GrowQue’=GrowQue 

1  while GrowQue   GrowQue’ 
2   while i height  

3    while j width  

4       if 1,..., 1,...,min( ( , ) max) )(n nI i SjS    

5          add ( , )I i j GrowQue 

6       end 

7     end 

8    end 

9   end 

10 GrowQue’=GrowQue 

Then, to effectively overcome the mutual exclusion phenomenon [76-78] (T1 images and T1c 

images), multi-input images (T1c images, T2 images, FLAIR images, and mask images) are used to 

train the proposed model, which can effectively alleviate the low contrast between the brain tumor and 

the healthy tissue. 

Fig. 8.  The mask images by region growing algorithm. (a) 2D slices; (b) The corresponding mask images. 

Figure 8 shows a set of mask images obtained by region growing algorithm from continuous 2D 

slices. By providing the mask images, the multi-input images can provide more information for the 

deep learning model, which assist to derive the different features of lesion structure and obtain more 

accurate segmentation results. 

3.2 The proposed multi-input Unet model 



The proposed model is composed of encoder and decoder, as shown in Figure 9. The encoder 

consists of two convolution layers and three integrated block layers. After each convolution layer, batch 

normalization and ReLU layers are used to tune up the linear unit loss. To speed up the training and 

reduce the sensitivity to network initialization, the proposed model uses a batch normalization layer 

between the convolution layer and the non-linear layer: 

( )
*

( )
TotalChannel

ChannelS

x

i

f x

ze





                          (5) 

where x  and ( )f x  represent input and output elements, respectively.  ,  , and   are the super 

parameters in normalization [79], where  ,  , and   are set to 2, 0.0001, and 0.75, respectively. 

ChannelSize  is the size of the feature channel. ChannelTotal  is the sum of the feature channel. To 

improve the accuracy of brain tumor segmentation network, the non-linear activation layer ReLU 

, 0
( )

0, 0

x x
f x

x


  

 is used to perform threshold operation on each element x . 

Fig. 9.  The encoder and decoder of the proposed model. 

The integrated block is composed of four paths. Each path has a 1*1 bottleneck convolution to 

achieve dimension reduction, which improves the computational efficiency. Meanwhile, the local 

feature maps in different scales are obtained by three paths. It can improve the ability of abstract 

feature extraction effectively. The fourth path is pooling operation, which reduces the number of 

computing parameters by bottleneck convolution without losing the extracted information. It can also 

provide a simplified feature map of the same scale for the up-sampling operation. 

The decoder consists of four up-sampling layers and two aggregation connection layers, which 

makes the tumor information flow along the multipath to achieve implicit depth supervision. Two 

convolution layers are added after each up-sampling layer to recover the resolution and generalization 

information of the feature maps. Besides, to prevent the information loss caused by the sharp 

https://ww2.mathworks.cn/help/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html
https://ww2.mathworks.cn/help/deeplearning/ref/nnet.cnn.layer.batchnormalizationlayer.html


dimension reduction, the slow decrease is used to retain the brain tumor information by the convolution 

operation. Meanwhile, the aggregation connection realizes the feature connection between encoder and 

decoder with the same resolution, which can combine the shallow and deep information. Through the 

connection of local and global features, the proposed model effectively reduces the gradient vanishing 

phenomenon caused by the increase of network width and depth. To get the final result of brain tumor 

segmentation, 16 feature components are mapped into four kinds of labels by 1*1 bottleneck 

convolution, as shown in Tab. 1. To realize multi-class generalization, the softmax layer calculates the 

loss LOSS  of classification problem: 

CE dice
LOSS LOSS LOSS                                   (6) 

1

1 1

2
=

N

n n

n

dice N N

n n

n n

P GT

LOSS

P GT







 




 



 

g
                               (7) 

1

1
= ( log( ) (1 ) log(1 ))

N

CE n n n n

n

LOSS GT P GT P
N 

    g g               (8) 

where CE
LOSS  and dice

LOSS  represent cross entropy loss and dice loss, respectively. n
P  and n

GT  

represent the classification results of pixel n  in the proposed model and ground truth, respectively. To 

avoid the situation that the classification results in the proposed model and ground truth exist 0, the 

constant   is set to 810 . N  is the total number of samples, g represents scalar multiplication. 

Tab. 1. The structure of the proposed Unet model. 

3.3 Fusion of context information 

Because the 3D MRI medical images are reconstructed by interpolation, the resolution of the coronal 

plane and sagittal plane is much lower than that of the transverse plane. According to the doctor's 

experience and MRI acquisition protocol, the proposed model can segment the transverse plane, which 

effectively represents the shape and size of the brain tumor. Compared with the segmentation of 3D 



images, the proposed model can overcome the problem of low computational efficiency caused by a 

large amount of data. By reducing the dimension of brain tumor images, the complexity and memory 

requirement are significantly reduced. However, the brain context information of the functional and 

spatial geometric features is partially lost in the process of 2D slice acquisition. To solve this problem 

effectively, the proposed algorithm obtains the points ( , )
t t

x y  on the current slice T by fusing the 

points 1 1( , )
t t

x y   and 1 1( , )
t t

x y   on the corresponding positions of two adjacent slices 1T   and 

1T  . The concrete process is as follows: 

Case 1: The region of the current point ( , )
t t

x y  is different from that of the corresponding points on 

the adjacent slices:  

(1) If points 1 1( , )
t t

x y   and 1 1( , )
t t

x y   are consistent, the current point ( , )
t t

x y  is revised to 

 region of the corresponding adjacent points;  

(2) If points 1 1( , )
t t

x y   and 1 1( , )
t t

x y   are different and the current point ( , )
t t

x y  is the same as 

 one of them, the current result will be retained.  

(3) If the results of three points are not consistent, the context scope is expanded to judge the region 

 of the corresponding points on 2T   and 2T   slices. 

Case 2: The current point ( , )
t t

x y  and its adjacent points belong to the same region and the result 

of the current point is retained. 

By fusing the context information, i.e., functional and spatial geometric features, the wrongly 

divided lesion points can be effectively corrected, which can tackle the partial loss in the process of 2D 

slice acquisition. 

4 Experiment and analysis 

4.1 Dataset and evaluation indexes 



All the medical images used in this experiment are from the public dataset provided by the 

multi-modal brain tumor segmentation challenge (BraTS) [80, 81]. The pre-processing procedure 

includes co-registration of the same anatomical template and skull dissection. Each group of MRI brain 

tumor images contains four multi-modal information: T1 images, T1c images, T2 images, and FLAIR 

images. Meanwhile, it includes ground truth, which is segmented manually according to the same 

annotation protocol. By neuroradiologists with rich clinical experience, the results of ground truth 

labeling can effectively provide accurate information of healthy brain tissue, whole tumor, and core 

lesion. The BraTS 2018 dataset consists of 210 high-grade gliomas cases and 75 low-grade gliomas 

cases. The experimental training set consists of 20 groups of HGG and 5 groups of LGG samples. The 

testing set consists of 5 groups of HGG and LGG cases. 

To effectively evaluate the performance of the proposed multi-input Unet model in brain tumor 

segmentation, this paper uses three indicators: accuracy ( Acc ), sensitivity ( Sen ), and specificity 

( Spe ). To assess the classification results for healthy tissue, whole tumor, and core lesion, the relevant 

calculation formulas are as follows: 

( ) ( ) ( ) (
( )
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where {1, 2, 3, 4}i   corresponds to the complete image, healthy region, whole tumor, and core 

lesion, respectively. T
P  and F

P  represent the pixel in the segmentation result whether belongs to or 

does not belong to the tumor region, respectively. Similarly, T
GT  and F

GT  represent whether the 

pixel is determined as the tumor region or healthy brain tissue in the ground truth, respectively. 

4.2 Segmentation results of the proposed model 



Fig. 10.  Segmentation results of the proposed model. 

The segmentation results of the proposed multi-input Unet model are shown in Figure 10. Here, red, 

green, and yellow represent core lesion, whole tumor, and healthy brain tissue, respectively. By using 

the mask images with strong spatial features to replace the T1 images which conflicts with the T1c 

images, the proposed model can obtain the segmentation results effectively. The accuracy of 

segmenting the whole tumor and core lesion can reach 0.92 and 0.90, respectively. The curve of 

accuracy and loss rate with the number of iterations is shown in Figure 11. 

Fig. 11.  The accuracy and loss rate of the proposed model. 

Figure 12 shows the feature maps of the proposed multi-input Unet model under different layers. 

Figure 12(a) and (b) denote the integrated block in the encoder and the up-sampling operation in the 

decoder, respectively. It can be seen that the shallow network has a strong ability to express geometric 

information. However, the corresponding lesion features are relatively scarce. Through the integrated 

block, the receptive domain is larger and its brain tumor features are more abundant. Yet, its spatial 

geometric information is less. Therefore, through the aggregation connection, the proposed algorithm 

links the rich local information with the global information, which can effectively represent the 

location characteristics of the lesions. 

Fig. 12.  The feature maps of the proposed model. (a) Part of the feature maps in the integrated blocks 1-3; (b) Part of the 

feature maps in the up-sampling (Up-conv 1-4). 

4.3 Analysis of the proposed method 

The ablation experiment is adopted to prove the good performance of the proposed multi-input Unet 

model. It compares the accuracy, sensitivity, and specificity from three aspects: multi-modal images, 

learning rate, and multi-input images. Besides, by comparing with the state-of-the-art brain tumor 



segmentation model, the performance of the proposed network is evaluated. 

4.3.1 Analysis of the multi-modal images 

Figures 13-14 show the performance of the proposed multi-input Unet model under different 

multi-modal images, where the numbers 1-4 represent single-modal images and 5-9 represent 

multi-modal images. Due to the pertinence of the single-modal images, the performance of the 

proposed network is more prominent in a certain index, but segmentation results of other parts are 

slightly insufficient. For example, the accuracy of the T1c images is relatively high. By adding a blood 

contrast agent before MRI examination, the T1c images can make the tumor with fast blood flow 

appear as high-intensity information, which further enriches the structural information. The FLAIR 

images and the T1c images are more sensitive for the whole tumor and core lesion. The FLAIR images 

can effectively provide healthy brain tissue and lesion information by suppressing normal cerebrospinal 

fluid signals. In general, the T1 images and T2 images are sensitive to brain anatomical structure and 

tissue lesions, respectively. Because most brain tumors are accompanied by tissue edema, the T2 

images related to water content can effectively monitor the lesion structure. Conversely, the T1 images 

mainly provide the characteristic information to distinguish gray matter, white matter, and 

cerebrospinal fluid. Due to the limitations of single-modal images in the display of lesions on the brain 

surface and paraventricular, the multi-modal images are often used to judge the central nervous system 

diseases, as shown in Figure 13. 

Fig. 13.  Segmentation results of the multi-modal images. 

Through a large number of experiments, one can get that the performance of most multi-modal 

images in segmenting whole tumor and core lesion is better than that of single-modal images, as shown 

in Figure 14. However, only the T1+T1c multi-modal images (number 7) have performance 



degradation. This is because there is mutual exclusion between the T1 images and the T1c images, 

which leads to the opposite results of tumor in the same location and affects the judgment of the 

proposed network. In this paper, the T1c images are chosen to distinguish tumor and non-tumor regions 

effectively. Here, the performance of FLAIR+T1c+T2+T1 (number 9) images is worse than that of the 

FLAIR+T1c+T2 (number 8) images. It is proved that the coexistence of the T1 and the T1c images will 

affect the segmentation results. The proposed model has the highest segmentation accuracy when 

inputting the FLAIR+T1c+T2 multi-modal images. The segmentation accuracy of the whole tumor and 

core lesion is 0.92 and 0.90, respectively. 

Fig. 14.  The performance of the proposed multi-input Unet model in different multi-modal images. (The first and second rows 

represent the segmentation results of whole tumor and core lesion, respectively. The first to third columns represent three 

performance indicators: accuracy, sensitivity, and specificity, respectively. Here, numbers 1-4 represent the single-modal 

images :T2 images, T1 images, FLAIR images, and T1c images. Numbers 5-9 represent the multi-modal images, which are 

T2+T1c images, FLAIR+T1c images, T1+T1c images, FLAIR+T1c+T2 images, and FLAIR+T1c+T2+T1 images.) 

4.3.2 Analysis of the learning rate 

The influence on the performance of the proposed model mainly reflects two aspects: the size of the 

initial learning rate and the transformation scheme of the learning rate. The initial learning rate 

determines the step size of weight iteration during network training. The learning rate is transformed by 

a non-uniform reduction strategy and the reduced step interval is specified to improve the learning 

efficiency of the network. Figure 15 shows the curves of the accuracy and loss rate of the proposed 

multi-input Unet model under different learning rates. It can be seen that the convergence speed is 

faster when the initial setting value is large (e.g., 1×e-3), but the weights are changed along the 

gradient direction of each sample. This will lead to a serious oscillation phenomenon, which causes the 



gradient exploding problem. Conversely, when the initial value is relatively small (e.g., 8×e-5), the 

convergence speed is slower. In the circumstances, the over-fitting phenomenon is easy to occur and 

the local optimal value may be obtained. 

Fig. 15.  The accuracy and loss rate curves of the proposed model under different learning rates. 

In general, the most ideal curve descent condition is slide descent (e.g., 1×e-4), which has stronger 

generalization performance and faster convergence speed. The accuracy of the proposed model will be 

improved with the enhancement of the learning rate and the corresponding training loss will also be 

decreased. However, when the learning rate reaches the critical value, the loss will increase. Besides, 

the proposed model may also change from under-fitting to over-fitting, especially for large datasets. 

The best learning rate can be selected from the region with the least loss. Thus, the initial learning rate 

set in this paper is set to 1×e-4 and the transformation scheme is to divide the learning rate by 10 after 

every 5 training sessions. 

4.3.3 Analysis of the proposed multi-input images 

Because multi-modal MRI images can reflect tumor necrosis and edema caused by cell proliferation, 

it is often used in the detection of brain tumor diseases. However, due to the invasive growth of brain 

tumor, the boundary between the edema region and the healthy brain tissue or capillaries is fuzzy. In 

these circumstances, the weak boundary information of the adhesion type can not be obtained well. 

Therefore, by inputting the mask images with strong spatial connectivity into the proposed multi-input 

Unet model, the geometric position relationship between the tumor and healthy brain tissue can be 

effectively obtained. 

Figure 16 shows the results of the proposed model with and without the mask images under different 

multi-modal images. Here, rows 1-3 represent the results in single-modal, multi-modal, and multi-input 



images, respectively. It can be seen that in the same group of experiments, the performance of the 

multi-input images with the mask images are significantly better than that without the mask images. By 

inputting the mask images, the results of glioma spreading morphology and pathological location can 

be directly reflected in the proposed algorithm, thus avoiding the weak boundary problem of uneven 

gray and density. 

Fig. 16.  The performance of the proposed algorithm in different multi-input images.(where the numbers 1-9 represent T2 , T1, 

FLAIR, T1c, T2+T1c, FLAIR+T1c, T1+T1c, FLAIR+T1c+T2, and FLAIR+T1c+T2+T1 with the mask images, respectively. The 

numbers 1'-9' indicate the corresponding multi-input images without the mask images.) 

4.3.4 Comparison with other algorithms 

To further verify the performance of the proposed model, several state-of-the-art brain tumor 

segmentation models are compared, as shown in Tab. 2. 

Tab. 2. The segmentation results of proposed multi-input Unet model and state-of-the-art models 

From Tab. 2, the accuracy of the proposed multi-input Unet model for segmentation of whole tumor 

and core lesion is 0.92 and 0.90, respectively. Here, the algorithm proposed in references [48, 49, 52] 

inputs more lesion information into the deep learning network through pre-processing operation, which 

can improve the ability to obtain non-linear lesion features. Nassar et al. [52] input the integrated 

narrow-band information of brain tumor into the CNN model, which has good segmentation results, 

especially in the aspect of specificity (Spe as shown in row 12 of Tab. 2). However, this method does 

not overcome the problem of boundary feature loss caused by convolution, which leads to an 

incomplete boundary feature map obtained by the up-sampling operation. References [47, 53] combine 

tumor features extracted from different networks to effectively alleviate the high-class imbalance and 

memory requirements of the medical images. However, this network ignores the relationship between 



the context information and the local receptive domain features, which leads to poor classification 

accuracy (Acc as shown in Tab. 2). References [51, 50] realize active feature selection by optimizing 

operation and entropy filling to segment lesion region from healthy tissue. Sharif et al. [51] propose a 

depth neural network based on pixel enhancement along with the limit and its complete segmentation 

accuracy can reach 0.98. It can not only accelerate in the correct gradient direction, but also restrain the 

occurrence of local extremum (as shown in row 6 of Tab. 2). However, there is a problem that the 

initial data weight is too low. Although it can be fixed by deviation correction, it is still easy to appear 

the gradient vanishing problem.  

To solve this problem, references [61-65] improve the Unet model and make up for the loss of lesion 

boundary features in the process of down-sampling operation by the skip connection between low-level 

and high-level features. Here, Zhang et al. [61] introduce the attention mechanism to effectively reduce 

the loss of the network in the process of feature extraction. This method can enhance the ability of 

network feature extraction, but the performance is lower than that of the proposed algorithm (as shown 

in row 8 of Tab. 2). Nitnaware et al. [62] use 2D slices training network to obtain more compatible 

segmentation results and better alleviate the problem of large memory resources required. The accuracy 

and sensitivity of this network are 0.99 and 0.97, respectively. Yang et al. [64] use a compression 

operator to control the parameters in the training process of the improved Unet model. This algorithm  

uses a 3×3 kernel to obtain high-level features that can detect the location and texture of tumor features. 

Then, it accurately locates the tumor boundary and gray features by a 2×2 decoding operation. 

However, this algorithm still has a lot of computational redundancy and the efficiency of feature 

extraction needs to be improved (as shown in row 10 of Tab. 2). Ahmad et al. [65] use the dense 

connection to obtain the context information of lesions. By connecting feature maps of different widths 



with a kernel of scale 3×3, this model can obtain more detailed features in brain tumors. If the input 

image size is @m m c , the calculation parameter is 1 2 33 3 3 3 3 3c c c c c c           , where 

1c , 2c , and 3c  are the width of the feature map in each channel (as shown in row 11 of Tab. 2). The 

proposed algorithm uses bottleneck convolution in feature extraction of each scale, whose value is 

1 1 1 2 2 2 3 3 31 1 ' 1 1 ' 1 1 ' 1 1 ' 1 1 ' 1 1 'c c c c c c c c c c c c                       , where 1 'c , 2 'c , and 

3 'c  are the width of bottleneck convolution in each channel. It can be seen that the proposed model 

can reduce the number of calculation parameters and recover the original information of lesions by 

dimension reduction operation, which obtains good segmentation performance. 

5 Conclusion 

To obtain the lesion features efficiently, a brain tumor segmentation algorithm based on the 

multi-input Unet model is proposed. By inputting the mask images that can quickly grasp the temporal 

and spatial relationship between the lesion and the surrounding brain tissue, the problems such as 

uneven data sampling density or fuzzy boundary of atypical tumor can be overcome. Then, the 

proposed Unet model is optimized by the integrated block and the aggregation connection. Here, the 

integrated block extracts the tumor local information in different receptive domains through a 

multi-scale convolution kernel. The aggregation connection is used to realize the implicit depth 

connection of context information, which can realize the combination of brain local and global 

information of strong geometric spatial relationship. Meanwhile, to alleviate the problem of 

overlapping redundancy and feature loss caused by convolution, the proposed algorithm uses 

bottleneck convolution in each path of the integrated block. It not only reduces the amount of 

calculation in model training by reducing the dimension of the feature map, but also alleviates the 

problem of gradient vanishing caused by network deepening. In this paper, the ablation experiment is 



used to verify the effectiveness of the innovations on the BraTS dataset. It can further prove that the 

proposed multi-input Unet model has obvious advantages over the state-of-the-art brain tumor 

segmentation methods. 
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Figures

Figure 1

The multi-modal MRI medical images of brain tumors. (a) HGG; (b) LGG.

Figure 2

The structure of the traditional Unet model.



Figure 3

The integrated block.



Figure 4

The aggregation connection. (a) The ResNet model; (b) The proposed model.



Figure 5

The �ow chart of the proposed algorithm.

Figure 6

The MRI images of brain tumors from different angles.



Figure 7

The process of the proposed multi-input Unet model. (a) Traditional Unet model; (b)The proposed model.

Figure 8



The mask images by region growing algorithm. (a) 2D slices; (b) The corresponding mask images.

Figure 9

The encoder and decoder of the proposed model.



Figure 10

Segmentation results of the proposed model.

Figure 11

The accuracy and loss rate of the proposed model.



Figure 12

The feature maps of the proposed model. (a) Part of the feature maps in the integrated blocks 1-3; (b)
Part of the feature maps in the up-sampling (Up-conv 1-4).



Figure 13

Segmentation results of the multi-modal images.

Figure 14



The performance of the proposed multi-input Unet model in different multi-modal images. (The �rst and
second rows represent the segmentation results of whole tumor and core lesion, respectively. The �rst to
third columns represent three performance indicators: accuracy, sensitivity, and speci�city, respectively.
Here, numbers 1-4 represent the single-modal images :T2 images, T1 images, FLAIR images, and T1c
images. Numbers 5-9 represent the multi-modal images, which are T2+T1c images, FLAIR+T1c images,
T1+T1c images, FLAIR+T1c+T2 images, and FLAIR+T1c+T2+T1 images.)

Figure 15

The accuracy and loss rate curves of the proposed model under different learning rates.



Figure 16

The performance of the proposed algorithm in different multi-input images.(where the numbers 1-9
represent T2 , T1, FLAIR, T1c, T2+T1c, FLAIR+T1c, T1+T1c, FLAIR+T1c+T2, and FLAIR+T1c+T2+T1 with
the mask images, respectively. The numbers 1'-9' indicate the corresponding multi-input images without
the mask images.)


