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Fusion Classification of Stroke Patients' Biosignals by Weighted Cross-Validation-based Fea-

ture Selection (W-CVFS) Method 

Abstract:A multi-source information fusion-based disease class classification of stroke patients 

was implemented to address the low classification accuracy of pure input motion and electromyo-

graphic signals. sEMG sensor MYO arm ring and wearable wireless motion sensor Shimmer were 

used as data acquisition devices. The Butterworth high-pass filter filtering and envelope threshold-

ing method detected the activity segment. Detection and FIR filtering using the window function 

method remove interference from the motion signal. A weighted cross-validation-based feature 

selection (W-CVFS) method is proposed for feature fusion selection. The top 10 features selected 

by the W-CVFS method and all 18 features are input to the deep neural network for training and 

testing, and the feature classification result of the W-CVFS method is 79.17%, which is better than 

the existing mRMR method (66.67%) and ILFS method (62.50%). The classification accuracy of 

multi-source information fusion was 95.385%, which was higher than that of a single input motion 

signal or sEMG. The experiments showed that the proposed method can retain the features that 

have more influence on the classification results and can improve the classification accuracy of the 

rehabilitation model for stroke patients. 

Keywords: stroke, sEMG, multi-source information fusion, cross-validation, deep neural network 

1. Introduction 

Cerebral stroke, a cerebrovascular disease with a high fatality rate, is the main cause of disa-

bility among adults[1]. Surface electromyography (sEMG)[2] is a bioelectrical signal produced by 

the human body, which contains meaningful information related to muscle activity, and can be used 

to identify the muscle movement intention, evaluate the functional state of the muscle, and play a 

role in motor control. And neuromuscular physiology has many applications.  

Using a genetic algorithm (GA) and pseudo-wavelet function, the classification rate of muscle 

fatigue was improved by 4.45% to 14.95% (p<0.05), and the average correct classification rate was 



87.90%[3]. The performance was evaluated using six different sEMG signals with varying move-

ments of the arm and four different classifiers. Better classification accuracy was obtained in the 

MT classifier with a 6% improvement in differentiation compared to the features extracted from 

the original sEMG signals[4]. The fusion of surface EMG signal nonlinear features and time-domain 

features using the SVM-DS fusion algorithm and the recognition accuracy can be stabilized at 

95%[5]. The features of surface EMG signals were extracted using principal component analysis 

(PCA), and the processing effect of each feature extraction method was compared using discrimi-

nant analysis (DA). The recognition rate of six gestures could reach 98.29% [6]. Upper limb move-

ments were identified from surface EMG signals by digital signal processing, discrete wavelet 

transform, and enhanced probabilistic neural network (EPNN). This method's average classifica-

tion accuracy was 75.5%[7]. Identification of six different hand motions by comparing frequency 

domain (FD) and time-frequency domain (TFD) features using a most neighborly field (KNN) 

classifier with 95.5% classification accuracy for the TFD feature vector and 89% for the FD feature 

vector[8]. Proposed an improved deep BP (Backpropagation)-LSTM for sEMG signal classification, 

achieving an accuracy of 92%[9]. Individual time-frequency domain features were compared using 

a support vector machine (SVM) classifier and a linear regression (LR) model. The SVM classifier 

outperformed the LR classifier, achieving a classification accuracy of 95.8% [10]. The data were 

analyzed using a multilayer neural network and an adaptive neuro-fuzzy inference system com-

bined with surface electromyography (sEMG) and accelerometer (ACC) sensors [11]. Most of the 

above studies have used a single surface EMG signal for analysis. Experiments have shown that 

the classification accuracy of pure input motion signal features and EMG features is low and cannot 

meet the requirements of clinical rehabilitation assessment. When fused motor features and sEMG 

features were input, training accuracy and test accuracy improved. 

 

Therefore, to improve the accuracy of biosignal classification of stroke patients as well as to 

assist physicians in patient grade classification, to address the problem of the insufficient effect of 

single-input biosignal classification, this paper fuses biosignals of stroke patients to achieve fusion 



classification of patient motion features and surface EMG features. A weighted cross-validation 

feature selection method (W-CVFS) is used for feature selection, which is experimentally validated 

with the collected patient data and compared with the classical mRMR and ILFS methods, and the 

classification accuracy of the W-CVFS method is higher through extensive experiments. By using 

the proposed method in this paper, we can more effectively select the features that have more 

influence on the classification results, and thus improve the classification accuracy of the rehabil-

itation model for stroke patients. 

2. Methods 

2.1 Data acquisition 

In this paper, we use a novel dataset collected from 30 stroke patients. Table 1 shows the 

general information of the patients participating in the data collection experiment.We collect two 

kinds of data for every patient: signals (both motion and sEMG) and their disease stage. In this 

section, we introduce the collection process of each data. 

Actual disease stage of patients To acquire the ground truth prediction target, we collect each 

patient's clinical file and let clinical experts assess their disease stage.  

Motion and sEMG signal Wearable sensors collect both signals. Concretely, we use a Shim-

mer device to manage the motion signal from the wrist and a MYO arm ring device to select the 

sEMG signal from the upper arm. Both signs are collected with four selected rehabilitation move-

ments (shoulder forward flexion, shoulder forward exhibition, shoulder 0° elbow 90° forearm pro-

nation, hand touch lumbar vertebrae). The collection process is as follows:  

Acquisition steps: 

Step1. The technician helps the patient to wear the Shimmer and MYO [12]. 

Step2. The patient sits in a relaxed position and adjusts the seat or bed to a comfortable height 

for better movement. 

Step3. Under the guidance of the rehabilitation therapist, we familiarized the patient with the 

selected four movements by practicing them several times. 



Step4. After hearing the technician's instruction, the patient completes the four sets of move-

ments in sequence, doing each set of movements three times with an interval of three seconds each.  

Precautions: 

1. The technician disinfected the key areas of the skin with medical alcohol to improve the 

quality of the data. 

2. To ensure the accuracy and consistency of the collected data, all MYO sensors were worn 

on the outside of the forearm wrist and all EMG sensors were worn on the upper arm up to 3 cm 

from the elbow joint. 

3. During the collection process, we recorded the signal for each movement three times, with 

a 3-second interval between every two movements. We started recording 2 seconds before the 

movement and discarded movements that did not meet the rehabilitation therapist's criteria.  

Figure 1 shows the motion sensor and the MYO arm ring wearing position. Table 2 shows the 

specific operation of the acquisition action. 

Table1 General Data of patients 

Medical record information 

Sex Male / female  28/16 

Age 

Mean ± standard deviation 

(years) 
58.3± 

Diagnose 

Cerebral hemorrhage / cere-

bral infarction (human) 

17/27 

Paraparesis site Left / right  24/20 

 Disease time 

Mean ± standard deviation 

(month) 
30.5±13.5 

Brunnstrom grade III/IV/V/VI 6/16/15/7 

 

 

Table2 Collection Content 



Action 

Num-
ber of 
times 

Time Sensor wearing position 

shoulder forward flexion 3 Four sets of 
movements 

Each completed 
action interval of 
3 seconds 

MYO EMG 

shoulder forward exhibi-
tion 

3 

Outer side of 
forearm wrist 

Upper arm to el-
bow joint 3cm 

shoulder 0° elbow 90° 
forearm pronation 

3 

hand touch lumbar 3 

 

 

Fig1 Motion Sensor and MYO Arm Ring Wearing Position 

2.2 sEMG  

2.2.1  Signal filtering 

Since the energy of the sEMG is mainly concentrated above the 20Hz band, the sEMG is 

filtered with a Butterworth high-pass filter, setting the cut-off frequency to 20Hz.  

2.2.2  Active segment detection 

To extract valuable information from the three movements, we need to perform active segment 

detection in the data pre-processing. Therefore, we adopt an effective and efficient method, the 

envelope threshold method, to detect the functional segments. Figure 2 shows the Filtered sEMG 

and the envelope. Figure 3 shows the division of active components of sEMG. 



 

Fig2 Filter sEMG Data and Envelope 

 

Fig3 Active Segment Division for sEMG 

2.3 Motion signals  

Due to the low-frequency nature of the biological signal, we adopt the FIR filtering for motion 



  

  

 7 

signal pre-processing. Specifically, we use the FIR1 filter and set the cutoff frequency as 5.5HZ ac-

cording to the characteristics of human medical-biological signals. 

As the FIR1 filter requires normalized frequency as an input, we apply normalization to the sig-

nal before filtering. With a sampling frequency 
sf  and a cutoff frequency 

cf , the normalized cutoff 

frequency 
nW  is calculated as 

scn ffW /2  [13][14]. In this study, the sampling frequency 
sf  is 

102.4Hz, 
cf  is 5.5Hz. Therefore, in the MATLAB environment, we set 2.51/5.5Wn  with a 

default Hamming window. For example, with an original motion data shown in Figure 4(a sixth-grade 

patient's shoulder flexion), the FIR1 outputs filtered motion data shown in Figure 5. The filtered data 

efficiently maintained the essential characteristics of the original data and removed the noises. 

 

 

Fig4 The Original Motion Data of a Sixth-Grade Patient Doing Shoulder Flexion 
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Fig5 Motion Data after Filtering 

2.4 Feature selection 

Feature selection is selecting the subset of relevant features in model construction. As a dimen-

sionality reduction technique, it can help the model to save computational resources and achieve 

better generalization without sacrificing prediction performance[15]. 

The classic feature selection methods include mRMR method[16][17], ILFE method[18], and CVFS 

method[19]. 

2.4.1  W-CVFS method 

Based on the CVFS method, this paper proposes a weighted cross-validation feature selection 

(W-CVFS) method. Logistic regression is used as a classification calculation method to convert the 

classification problem into a regression analysis problem and solve the weight coefficient of the fea-

ture. Detailed steps are as follows: 

Step 1: Divide the sample equally into K  randomly, and use multi-class Logistic regression as 

the classification method. 
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Step 2: In each cross-validation, the weight value of each feature in each category is calculated, 

and the model classification accuracy rate of this cross-validation is obtained at the same time. 

Step 3: Multiply the classification accuracy obtained this time with the weight value of each 

feature received this time, and record it as the feature weight value of each category under this set of 

cross-validation. 

Step 4: After performing K  times of cross-validation, the weight coefficients of the same fea-

ture in each group are averaged, and then the same feature weights under each category are arranged 

in descending order, and finally, the weight ranking of all features is obtained. 

The specific calculation method will be introduced below: 

Let x  be n  known samples with labels, where 1x  is a feature vector of dimension d with 

a one at the end of the vector, representing the bias term; the label y represents one of the U catego-

ries; each category corresponds to a weight vector, and there are a total of U weight vectors, let the 

weight vector of the ith category be w . The model's output is a probability distribution to represent 

the probability of each type. The Softmax function is used as the activation function to map the 

weighted summation results of the features into a probability distribution that satisfies the sum of the 

probability values of all categories as 1. The function can be interpreted as the posterior probability 

that the sample point x  belongs to category r , with the following expressions. 

Let ),(),...,,(),,(),,( 332211 nn yxyxyxyx


 be n known samples with labels, where 

)1,,...,,,( 1321 



 di xxxxx is a feature vector of dimension d with a one at the end of the vector, 

representing the bias term; the label  Uryi ,...,,...,3,2,1 represents one of the U  categories; 

each category corresponds to a weight vector, and there are a total of U  weight vectors, let the 

weight vector of the ith category be


i . The model's output is a probability distribution to represent 

the probability of each type. The Softmax function is used as the activation function to map the 

weighted summation results of the features into a probability distribution that satisfies the sum of 
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the probability values of all categories as 1. The function can be interpreted as the posterior prob-

ability r  that the sample point 


ix  belongs to category )(


ixrP , with the following expressions. 

                  
)exp()exp()(

1







  ij

K

j

iri xxxrP 
                      

(1)

 The probability distribution can be found by calling the Softmax function for all categories 

and satisfying. 
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For the logistic regression model, find the weight vector 


i  so that the model's output in the 

training set is as close to the given label as possible. Therefore, the maximum likelihood estimation 

method establishes a likelihood function G , hoping to maximize it. The likelihood function expres-

sion G  is expressed as: 
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1
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i
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






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(4)

 

Adding a negative sign, the original maximization is changed to depreciation, so the above equa-

tion is the loss function that needs to be solved in logistic regression to minimize. 

Find the weight vector 


i  that minimizes the loss function L , let 


 irri x ,  
, represents the 

vector product of the feature vector 


ix  and the corresponding weight 


r  of the rth category. The 

traditional approach is to set the partial derivative of 


r of the loss function L  to 0 , that is: 

                        

0


rL 
                                   

(5) 
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Formula 6 is solved by gradient descent method. Among them,  is the learning rate, that is, 

the search step size, this article takes  =0.001, 

 rL   is the gradient, "-" indicates that the update 

direction is toward the direction of decreasing loss function. Formula 7 is the shaving expression of 

the loss function for the 

r : 

Formula 10 is the updated formula  ),...,,...,3,2,1( Urrr 





r  weight vector. 

After K cross-validations, the weight value of feature d in category r  is recorded as r

d . 

u

i

nDA )(  is the classification accuracy rate. 

Where 
k

r

d )(  is the weight value of feature d in the kth cross-validation category r , 
it  is 

the sample category discriminated by the classifier after feature selection for sample i , and 
iy  is 

the actual category of sample i . 

After multiplying the feature weight r

d  and the classification accuracy rate 
u

i

nDA )(  ,the fea-

ture weight value of d  feature in category r  is updated to: 

        
                 

u

i

n

r

d

r

d DA )( 
                              

(13)          
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Summing the same features under the U  categories yields the weight value 
dW

 of the feature 

vector d   as: 

    
                           





U

u

r

udW
1


                             

(14) 

3. Results  

To verify that the features of motion and sEMG selected by the feature selection method based 

on weighted cross-validation are more influential on the classification results and to select the features 

that are more influential on the classification results, the larger the weight value at this point, the 

more influential the selected features are and the more effective they are for our experiments.Exper-

imental data of feature selection method comparison was performed using data from 36 patients. 

There were 4 patients in class III, 14 patients in class IV, 13 patients in class V, and 5 patients in class 

VI, for a total of 108 data sets. Experiments were conducted using the Matlab R2016a platform, and 

the mRMR method, ILFS method and the feature selection method proposed in this paper (W-CVFS) 

were used for feature selection of the extracted motion signals and the 18 features of sEMG, respec-

tively. Table 3 shows the signal features. Table 4 shows the feature selection results of the three meth-

ods. 

As shown in Table 5, the W-CVFS method outperforms the mRMR and ILFS methods for all 

the 18 features extracted. To further verify the superiority of the proposed method in the classification 

results, the weight results shown in the above table were rearranged in descending order, and the top 

10 features were selected, as shown in Table 4. A five-fold cross-validation method is used, and the 

classification accuracy of each cross-validation is involved in the calculation of the feature weights, 

to improve the accuracy of the weights. Finally, the extracted motion features and sEMG features are 

fused and selected by applying the W-CVFS method, and the final feature selection results are ob-

tained and compared for the classification effect, and the classifier is selected as SVM[20]. After the 

experimental comparison, when using SVM classification, the W-CVFS method was able to select 

the more important features that had a greater impact on the results, and the classification accuracy 
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of the stroke patient class was higher, and the classification effect was better than that of mRMR and 

ILFS methods. 

Table 6 shows the classification accuracies of the results of different feature selection methods. 

The results show that the classification accuracy of the features selected by the W-CVFS method 

when input to the SVM for classification is 79.17%, while the classification accuracy of the features 

selected by the mRMR and ILFS methods when input to the SVM is 66.67%, and 62.50%, respec-

tively, which are lower than that of the W-CVFS method, indicating that the W-CVFS method pro-

posed in this paper can select more important The proposed W-CVFS method can select more im-

portant features that have more influence on the classification results. 

Table 7 shows the classification accuracy of the deep neural network with three different inputs. 

The analysis of the results in the table shows that the training accuracy and test accuracies were 

81.026% and 89.744% when the motor features alone or the sEMG features alone were input, which 

could not meet the requirements of clinical rehabilitation assessment. The training accuracy and test 

accuracy of the Brunnstrom scale were both improved. The last two rows of the table compare the 

training accuracy and test accuracy of the neural network with 10 features and 18 features, and the 

results show that the training accuracy and test accuracy of the 18 features are 97.331% and 96.154%, 

respectively, which is only 0.371% and 0.769% higher than that of the 10 features, indicating that the 

weight ranking selected using the improved method features located in the top 10 improve the clas-

sification accuracy, reduce the amount of data processing, and lower the computational cost. 

In summary, the W-CVFS method has the following advantages: 

1.First, the entire dataset is randomly divided into K  groups for cross-training and validation 

using the cross-validation method, in which multiple combinations of data are considered. Each fea-

ture data has the opportunity to be used as training and proof. The feature selection results obtained 

by the cross-validation method are more relevant and reasonable than a single calculation. 

2.Each time cross-validation is performed, the same feature gets different weights in the model 

results obtained under additional training and test sets. This method can improve the generalization 
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ability of features, avoiding the phenomenon of underfitting relative to the mRMR method and over-

fitting close to the ILFS process. 

3.The classification problem is transformed into a regression problem using logistic regression 

as the calculation method. The accuracy of this cross-validation and the weight value of each feature 

can be obtained at each cross-validation training and validation. The two can be multiplied to involve 

the accuracy of each classification in the final weight of each element for processing, which can more 

effectively improve the accuracy of the feature weight value and select the features that have more 

influence on the This can improve the accuracy of the feature weights and choose the features that 

have more impact on the classification results for the next step of the classification model, thus im-

proving the classification accuracy of the classification model. 

Table3 Signal Features 

Feature Description Meaning 

(Mean Absolute Value,MAV) 



W

i

ixWMAV
1

/1

 
z-axis direction plus, absolute value 

of angular velocity mean 

reflects the strength of the muscle 
action of the segment 

(Root Mean Square,RMS) 



W

i

iW xWRMS
1

2
/1  reflects muscle contribution during 

completion of movement 

(Variance,VAR) 
2

1 1

/1/1  
 











W

i

W

i

iik xWxWVAR  reflects action clustering characteris-
tics 

(Motion Symmetry,MS) du MAVMAVMS /  lifting drop acceleration absolute 
value mean value ratio 

(Degree of completion,DOC) )1,0(DOC  reflects the degree of movement 
completion 

 

Table4 mRMR, ILFS, W-CVFS Feature Selection Results 

number Action Feature Type Weight(mRMR) Weight(ILFS) Weight(W-CVFS) 

(1) 
shoulder forward flexion 

MAV Acc 0.108536 0.056062 0.404404 

(2) MAV Gyro 0.041855 0.048536 0.346618 
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(3) MAV sEMG 0.094536 0.056049 0.399358 

(4) RMS sEMG 0.130183 0.056044 0.447368 

(5) VAR sEMG 0.219157 0.056064 0.338317 

(6) MS Acc 0.004679 0.055992 0.389607 

(7) DOC Acc 0 0.056067 0.361927 

(8) 

shoulder forward exhibition 

MAV Acc 0.038600 0.055411 0.390303 

(9) MAV Gyro 0.199540 0.055324 0.381061 

(10) MAV sEMG 0 0.056043 0.407227 

(11) RMS sEMG 0.230216 0.056066 0.408939 

(12) VAR sEMG 0.037650 0.056046 0.290427 

(13) MS Acc 0 0.056055 0.319371 

(14) DOC Acc 0 0.056011 0.328344 

(15) shoulder 0° elbow 90° fore-

arm pronation 

 

RMS sEMG 0 0.056047 0.315214 

(16) DOC Acc 0.137552 0.056064 0.247831 

(17) hand touch lumbar verte-

brae 

 

RMS sEMG 0 0.056069 0.385273 

(18) DOC Acc 0.230216 0.056042 0.451213 

 

Table5 Top 10 Features in Weights 

Number Action Feature 

(1) hand touch lumbar vertebrae DOC 

(2) shoulder forward flexion RMS 

(3) shoulder forward exhibition RMS 

(4) shoulder forward exhibition MAV(sEMG) 

(5) shoulder forward flexion MAV(Acc) 
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(6) shoulder forward flexion MAV(sEMG) 

(7) shoulder forward exhibition MAV(Acc) 

(8) shoulder forward flexion MS 

(9) hand touch lumbar vertebrae RMS 

(10) shoulder forward exhibition MAV(Gyro) 

 

Table 6 Classification Accuracy of Results from Different Feature Selection Methods 

Feature selection method SVM classification accuracy 

ILFS 62.50% 

mRMR 66.67% 

W-CVFS 79.17% 

 

Table7 Classification Accuracy of Deep Neural Networks with Different Inputs 

Input Training accuracy Test accuracy 

Motion signal characteristics 85.719% 81.026% 

sEMG characteristics 92.437% 89.744% 

Fusion of motion features and sEMG features (10 

types) 
96.960% 95.385% 

Fusion of motion features and sEMG features (18 

types) 
97.331% 96.154% 

4. Discussion 

In this paper, a weighted cross-validation-based feature selection (W-CVFS) method is pro-

posed, and the effectiveness of the proposed method for feature selection is verified by comparing 

the extracted features with the classical mRMR and ILFS methods. The use of the cross-validation 



  

  

 17 

method makes the feature selection results more relevant and reasonable, and each time when 

cross-validation is performed under different training and test sets, the weights of the same feature 

obtained are different, which improves the generalization ability of the features. At the same time, 

processing the weights of each classification accuracy involved in the final weight of each feature 

can be more effective in selecting the features that have more influence on the classification results 

for the next classification step. After verifying the effectiveness of the proposed method, three 

cases based on motion signal features, surface EMG features, and fusion of motion and EMG fea-

tures are compared, and the results show that the classification accuracy is higher using the W-

CVFS method. By using the proposed method in this paper, the features that have more influence 

on the classification results can be selected more effectively, and the classification of patients can 

be more accurate, which facilitates the objective detection of the degree of rehabilitation of patients. 
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