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Abstract

This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace 
eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These 

spectral measures are isometry invariant and therefore allow for shape comparisons with minimal 

shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The 

discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of 

female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory 

function, emotion processing, and learning) of normal control subjects and of subjects with 

schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues 

and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition 

showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological 

analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) 

are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing 

geometric properties and detecting shape differences by indirectly registering topological features 

such as critical points, level sets and integral lines of the gradient field across subjects. The use of 

these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical 

shape analysis is novel.
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1. Introduction

Morphometric studies of brain structures have classically been based on volume 

measurements. More recently, shape studies of gray matter brain structures have become 

popular. Methodologies for shape comparison may be divided into global and local shape 

analysis approaches. While local shape comparisons [41,24,19] yield powerful, spatially 

localized results that are relatively straightforward to interpret, they usually rely on a number 

of preprocessing steps. In particular, one-to-one correspondences between surfaces need to 

be established, shapes need to be registered and resampled, possibly influencing shape 

comparisons. While global shape comparison cannot spatially localize shape changes, global 

approaches may be formulated with a significantly reduced number of assumptions and 

preprocessing steps, staying as true as possible to the original data.

This paper describes a methodology for global shape comparison based on the Laplace-

Beltrami eigenvalues and for local comparison based on selected eigenfunctions (without the 

need to register the shapes). The Laplace-Beltrami operator for non-rigid shape analysis of 

surfaces and solids was first introduced in [36,34,37] together with a description of the 

background and up to cubic finite element computations on different representations 

(triangle meshes, tetrahedra, NURBS patches). In [28,29] the eigenvalues of the (mass 

density) Laplace operator were used to analyze pixel images. This article focuses on 

statistical analyses of the Laplace-Beltrami operator on triangulated surfaces and of the 

volumetric Laplace operator on 3D solids and extends earlier works [27,35] by additionally 

analyzing eigenfunctions and their topological features to localize shape differences. [27] 

introduces the analysis of eigenvalues of the 2D surface to medical applications. Especially 

[35] can be seen as a preliminary study to this work, involving already eigenvalues and 

eigenfunctions for shape analysis. Related work in anatomical shape processing that use 

eigenfunctions of the Laplace-Beltrami operator computed via standard linear FEM on 

triangle meshes includes [30,31] who employ the eigenfunctions as an orthogonal basis for 

smoothing and the nodal domains of the first eigenfunction for partitioning of brain 

structures. In [38] a Reeb graph is constructed for the first eigenfunction of a modified 

Laplace-Beltrami operator on 2D surface representations to be used as a skeletal shape 

representation. The modified operator gives more weight to points located on the geodesic 

medial axis (also called cut locus [42]) which originated in computational geometry (see 

[32,25] for its computation) and has become useful in biomedical imaging. In [1] the 

Laplace-Beltrami operator is employed for surface parametrization but without computing 

eigenfunctions or -values.

Previous approaches for global shape analysis in medical imaging describe the use of 

invariant moments [20], the shape index [18], and global shape descriptors based on 

spherical harmonics [13]. The proposed methodology based on the Laplace-Beltrami 

spectrum differs in the following ways from such approaches.

1. It may be used to analyze surfaces or solids independently of their 
isometric embedding whereas methods based on shperical harmonics or 

invariant moments are not isometry invariant (finding large shape 
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differences in bendable near-isometric shapes that might only be located 

differently but otherwise the same, e.g. a person in different body 

postures). Furthermore, some spherical harmonics based methods require 

spherical representations and invariant moments do not easily generalize 

to arbitrary Riemannian manifolds.

2. Only minimal preprocessing of the data is required, in particular no 

registration is needed. Three dimensional volume data may be represented 

by its 2D boundary surface, separating the object interior from its exterior 

or by the 3D volume itself (a volumetric, region-based approach). In the 

former case, the extraction of a surface approximation from a binary 

image volume is the only preprocessing step required. In the volumetric 

case even this preprocessing step can be avoided and computations may be 

performed directly on the voxels of a given binary segmentation 1. This is 

in sharp contrast to other shape comparison methods, requiring additional 

object registration, remeshing, etc. The presented Laplace-Beltrami 

eigenvalues and - functions are invariant to rigid transformations, 

isometries, and to grid/mesh discretization (as long as the discretization is 

sufficiently accurate) [37] and fairly robust with respect to noise.

This article summarizes and significantly extends previous Laplace-Beltrami shape analysis 

work on subcortical brain structures [27,35]. Results are presented both for the 2D surface 

case (triangle mesh), as well as for 3D solids consisting of non-uniform voxel data. 

Neumann spectra are used as shape descriptors in 3D, with powerful discrimination 

properties for coarse geometry discretizations. In addition to the eigenvalues (allowing only 

global shape comparisons), new eigenfunction analyses are introduced employing the 

Morse-Smale complex and Reeb graph to shed light on the behavior of the spectra as well as 

on local shape differences. This can be done by automatically defining local geometric 

features described by topological features of the eigenfunctions (e.g. critical points, nodal 

domains, level sets and integral curves of the gradient field). The first eigenfunctions 

indirectly register these features robustly across shapes, therefore an explicit mesh 

registration is not necessary. In this paper we are mainly interested in the statistical analysis 

of populations of shapes. We use a study of differences in a subcortical structure (the 

caudate nucleus) as a real world example to demonstrate the applicability of the presented 

methods. The presented topologcial study of eigenfunctions is a novel approach for 

statistical shape analyses.

Section 2 describes the theoretical background of the Laplace-Beltrami operator and the 

numerical computation of its eigenvalues and -functions. Normalizations of the spectra, 

properties of the Neumann spectrum as well as the influence of noise and of the 

discretization are investigated. Section 3 gives an overview of the used topological 

structures, nameley the Morse-Smale complex and the Reeb graph while Section 4 explains 

the statistical methods used for the analysis of populations of Laplace-Beltrami spectra. 

1Note that of course other preprocessing steps might be necessary to initially obtain the geometric data, such as scanning, manual or 
automatic segmentation of the image. For the purpose of shape analysis, the shape has to be given in a standard representation, which 
is usually 3D voxel data or 2D triangular meshes.
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Results for two populations of female caudate shapes are given in Section 5. This section is 

subdivided into the 2D and 3D analyses. Within each of these subsections, we start with a 

global analysis on the eigenvalues and continue with local shape measures derived from a 

selection of eigenfunctions. The paper concludes with a summary and outlook in Section 6.

2. Shape-DNA: The Laplace-Beltrami Spectrum

In this section we introduce the necessary background for the computation of the Laplace-

Beltrami spectrum beginning sequence (also called “Shape-DNA”). The “Shape-DNA” is a 

fingerprint or signature computed only from the intrinsic geometry of an object. It can be 

used to identify and compare objects like surfaces and solids independently of their 

representation, position and (if desired) independently of their size. This methodology was 

first introduced in [36] though a sketchy description of basic ideas and goals of this 

methodology is already contained in [43]. The Laplace-Beltrami spectrum can be regarded 

as the set of squared frequencies (the so called natural or resonant frequencies) that are 

associated to the eigenmodes of a generalized oscillating membrane defined on the 

manifold. We will review the basic theory in the general case (for more details refer to [37] 

and especially [34]).

2.1. Definitions

Let f be a real-valued function, with f ∈ C2, defined on a Riemannian manifold M 
(differentiable manifold with Riemannian metric). The Laplace-Beltrami Operator Δ is:

(1)

with grad f the gradient of f and div the divergence on the manifold (Chavel [7]). The 

Laplace-Beltrami operator is a linear differential operator. It can be calculated in local 

coordinates. Given a local parametrization

(2)

of a submanifold M of ℝn+k with

(3)

(where i, j = 1, …, n and det denotes the determinant) the Laplace-Beltrami operator 

becomes:

(4)
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If M is a domain in the Euclidean plane M ⊂ ℝ2, the Laplace-Beltrami operator reduces to 

the well known Laplacian:

(5)

The wave equation

(6)

may be decomposed into its time-dependent and its spatially dependent parts

(7)

Separating variables in the wave equation yields [8]

Thus, the vibrational modes may be obtained through the Helmholtz equation (also known 

as the Laplacian eigenvalue problem) on manifold M with or without boundary

(8)

The solutions of this equation represent the spatial part of the solutions of the wave equation 

(with an infinite number of eigenvalue λi and eigenfunction fi pairs). In the case of M being 

a planar region, f(u, v) in equation (8) can be understood as the natural vibration form (also 

eigenfunction) of a homogeneous membrane with the eigenvalue λ. The square roots of the 

eigenvalues are the resonant or natural frequencies ( ). If a periodic external driving 

force is applied at one of these frequencies, an unbounded response will be generated in the 

medium (important e.g. for the construction of bridges). In this work the material properties 

are assumed to be uniform. The standard boundary condition of a fixed membrane is the 

Dirichlet boundary condition where f ≡ 0 on the boundary of the domain (see Figure 1 for 

two eigenfunctions of the disk). In some cases we also apply the Neumann boundary 

condition where the derivative in the normal direction of the boundary  is zero along 

the boundary. Here the normal direction n of the boundary should not be confused with a 

2In fact, Riemannian volume and volume of the boundary are spectrally determined (see also [37] where these values were 
numerically extracted from the beginning sequence of the spectrum in several 2D and 3D cases).
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normal of the embedded Riemannian manifold (e.g., surface normal). n is normal to the 

boundary and tangential to the manifold. We will speak of the Dirichlet or Neumann 

spectrum depending on the boundary condition used.

The spectrum is defined to be the family of eigenvalues of the Helmholtz equation (eq. 8), 

consisting of a diverging sequence 0 ≤ λ1 ≤ λ2 ≤ ··· ↑ +∞, with each eigenvalue repeated 

according to its multiplicity and with each associated finite dimensional eigenspace 

(represented by the corresponding base of eigenfunctions). In the case of the Neumann 

boundary condition and for closed surfaces without boundary the first eigenvalue λ1 is 

always equal to zero, because in this case the constant functions are solutions of the 

Helmholtz equation. We then omit the first eigenvalue so that λ1 will be the first non-zero 

eigenvalue.

Because of the rather simple Euclidean nature of the voxel representations used later, the 

more general (Riemannian) definitions given above are not necessarily needed to understand 

the computation in the 3D voxel case. Nevertheless, the metric terms are helpful when 

dealing with cuboid voxels (as we do) and of course for analyzing the 2D boundary surfaces 

of the shapes. Furthermore, this approach clarifies that the eigenvalues are indeed isometry 

invariants with respect to the Riemannian manifold. Note that two solid bodies embedded in 

ℝ3 are isometric if and only if they are congruent (translated, rotated and mirrored). In the 

surface case this is not true, since non-congruent but isometric surfaces exist.

2.2. Properties

The following paragraphs describe well known results on the Laplace-Beltrami operator and 

its spectrum.

i. The spectrum is isometry invariant as it only depends on the gradient and 

divergence which in turn are defined to be dependent only on the 

Riemannian structure of the manifold (eq. 4), i.e., the intrinsic geometry.

ii. Furthermore, scaling an n-dimensional manifold by the factor a results in 

eigenvalues scaled by the factor . Therefore, by normalizing the 

eigenvalues, shape can be compared regardless of the object’s scale (and 

position as mentioned earlier).

iii. Changes of the membrane’s shape result in continuous changes of its 

spectrum [8].

iv. The spectrum does not characterize the shape completely, since some non-

isometric manifolds with the same spectrum exist (for example see [15]). 

Nevertheless these artificially constructed cases appear to be very rare cf. 

[37] (e.g., in the plane they have to be concave with corners and until now 

only isospectral pairs could be found).

v. A substantial amount of geometrical and topological information is known 

to be contained in the spectrum [21] (Dirichlet as well as Neumann). Even 

3We used the spherical harmonics surfaces as generated by the UNC shape analysis package [41].
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though we cannot crop a spectrum without loosing information, we 

showed in [34] that it is possible to extract important information just from 

the first few Dirichlet eigenvalues (approx. 500).

vi. The nodal lines (or nodal surfaces in 3D) are the zero level sets of the 

eigenfunctions. When the eigenfunctions are ordered by the size of their 

eigenvalues, then the nodes of the n-th eigenfunction divide the domain 

into maximal n sub-domains, called the nodal domains [8]. Usually the 

number of nodal domains stays far below n.

vii. The spectra have more discrimination power than simple measures like 

surface area, volume or the shape index (the normalized ratio between 

surface area and volume, SI = A3/(36πV2)−1) [18]. See Figure 2 for 

simple shapes with identical shape index, that can be distinguished by 

their Laplace-Beltrami spectrum 2. Furthermore, as opposed to the 

spectrum, a moment based method did not detect significant shape 

differences in the medical application presented in Section 5. The 

discrimination power of the spectra can be increased when employing both 

the spectra of the 2D boundary surface and the 3D solid body (cf. 

isospectral GWW prisms in [37]).

For more properties see [37,34].

2.3. Variational Formulation

For the numerical computation, the first step is to translate the Helmholtz equation into a 

variational formulation. This is accomplished using Green’s formula

(9)

(Blaschke [4] p.227) with the Nabla operator defined as

(10)

with the vector Df = (∂1f; ∂2f, …). Employing the Dirichlet (f, ϕ ≡ 0) or the Neumann 

( ) boundary condition Eq. (9) simplifies to

(11)

The Helmholtz equation (8) is multiplied with test functions ϕ ∈ C2, complying with the 

boundary condition. By integrating over the area and using (11) one obtains:
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(12)

(with dσ = W du dv being the surface element in the 2D case or the volume element dσ = W 
du dv dw in the 3D case). Every function f ∈ C2 on the open domain and continuous on the 

boundary solving the variational equation for all test functions ϕ is a solution to the Laplace 

eigenvalue problem (Braess [6], p.35). This variational formulation is used to obtain a 

system of equations constructing an approximation of the solution.

2.4. Implementation

To solve the Helmholtz equation on any Riemannian manifold the Finite Element Method 
(FEM) [45] can be employed. We choose a tessellation of the manifold into so called 

elements (e.g., triangles or cuboid voxel). Then linearly independent test functions with up 

to cubic degree (the so called form functions Fi) can be defined on the triangles or cuboid 

voxel elements (explained in the next section). The high degree functions lead to a better 

approximation and consequently to better results, but because of their higher degree of 

freedom more node points have to be inserted into the elements. See [34] or [37] for a 

detailed description of the discretization used in FEM that finally leads to the following 

general eigenvalue problem

(13)

with the matrices

(14)

Where Fl is a piecewise polynomial form function with value one at node l and zero at all 

other nodes. Here U is the vector (U1, …, Un) containing the unknown values of the solution 

at each node and A, B are sparse positive (semi-) definite symmetric matrices. The solution 

vectors U (eigenvectors) with corresponding eigenvalues λ can then be calculated. The 

eigenfunctions are approximated by ΣUiFi. In case of the Dirichlet boundary condition, the 

boundary nodes do not get a number assigned to them and do not show up in this system. In 

case of a Neumann boundary condition, every node is treated exactly the same, no matter if 

it is a boundary node or an inner node. Since only a small number of eigenvalues is needed, 

a Lanczos algorithm [16] can be employed to solve this large symmetric eigenvalue problem 

much faster than with a direct method. In this work we use the ARPACK package [2] 

together with SuperLU [9] and a shift-invert method, to compute the eigenfunctions and -
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values starting from the smallest eigenvalue in increasing eigenvalue order. The sparse solver 

implemented in Matlab uses a very similar indirect method.

It should be noted that the integrals mentioned above are independent of the mesh (as long 

as the mesh fulfills some refinement and condition standards). Since the solution of the 

sparse generalized eigenvalue problem can be done efficiently with external libraries, we 

will now focus on the construction of the matrices A and B.

2.5. Form Functions

In order to compute the entries of the two matrices A and B (equation 14) we need the form 

functions Fi and their partial derivatives (∂kFi) in addition to the metric values from equation 

(3). The form functions are a basis of functions representing the solution space.

Any piecewise polynomial function F of degree d can easily be linearly combined by a base 

of global form functions Fi (of same degree d) having the value one at a specific node i and 

zero at the others. For linear functions it is sufficient to use only the vertices of the triangle 

mesh as nodes. In case of a voxel the values at the 8 vertices are sufficient to define a tri-

linear function in the inside c1 + c2u + c3v + c4w + c5uv + c6uw + c7vw + c8uvw. For higher 

degree approximations further nodes have to be inserted. When applying a Dirichlet 

boundary condition with zero values at the boundary, we only need a form function for each 

node in the interior of the domain. If we look at a 2D example (a single triangle of a 

triangulation), a linear function above the triangle can be linearly combined by the three 

form functions at the corners. These local functions can be defined on the unit triangle (leg 

length one) and mapped to an arbitrary triangle. Figure 3 shows examples of a linear and a 

quadratic local form function for triangles. It can be seen that the form function has the 

value 1 at exactly one node and 0 at all the others. Note that in the case of the quadratic form 

function new nodes were introduced at the midpoint of each edge, because quadratic 

functions in two variables have six degrees of freedom. On each element containing n nodes 

exactly n local form functions will be constructed this way. The form functions and their 

derivatives can be defined explicitly on the unit triangle or unit cube. Since high order 

approximations lead to much better results, we mainly use cubic form functions of the 

serendipity family for the computation of the spectra in this paper. To set up these functions 

over a cuboid domain new nodes have to be inserted (two nodes along each edge makes 32 

nodes together with the vertices, see Figure 3). A cubic function of the serendipity family 

with three variables has 32 degrees of freedom, that can be fixed by giving the function 

values at these 32 locations. A full tri-cubic approach of the Lagrange family needs 64 nodes 

(32 along the edges, 24 inside the faces, and 8 inside the cuboid) and increases the total 

degree of freedom tremendously without adding much accuracy to the solution. More details 

on the construction of these local functions can be found in most FEM books (e.g. 

Zienkiewicz [45]). For each element the results of the integrals (14) are calculated for every 

combination m, l of nodes in the element and added to the corresponding entry in the matrix 

A or B. Since this entry differs only from 0 when the associated global form functions Fi 

overlap (i.e. the associated nodes share the same element) the matrices A and B will be 

sparse.
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2.6. Cuboid Voxel Elements

For piecewise at objects the computation described above can be simplified, thus speeding 

up the construction of the two matrices A and B significantly. If the local geometry is at we 

do not need to integrate numerically on the manifold since the metric G (see equation 3) is 

constant throughout each element. The integrals can be computed once for the unit element 

explicitly and then mapped linearly to the corresponding element. This makes the time 

consuming numerical integration process needed for curved surfaces or solids completely 

unnecessary.

As opposed to the case of a surface triangulation with a piecewise at triangle mesh (with 

possibly different types of triangles), the uniform decomposition of a 3D solid into cuboid 

voxels leads to even simpler finite elements. A parametrization over the unit cube of a 

cuboid with side length s1, s2, s3 (and volume V) yields a diagonal first fundamental matrix 

G:

(15)

(16)

(17)

These values are not only constant for an entire voxel, they are identical for each voxel 

(since the voxels are identical). Therefore we can pre-compute the contribution of every 

voxel to the matrices A and B once for the whole problem after setting up the form functions 

Fl as described above:

(18)

The local indices i, j label the (e.g. 32) nodes of the cuboid voxel element and thus the 

corresponding local form functions and their partial derivatives. These integrals can be pre-

computed for every combination i, j. In order to add (+ =) these local results into the large 

matrices A and B only a lookup of the global vertex indices l(i), m(j) for each voxel is 

necessary. Therefore the construction of the matrices A and B can be accomplished in O(n) 

time for n elements.
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2.7. Normalizing the Spectrum

As mentioned above, the Laplace-Beltrami spectrum is a diverging sequence. Analytic 

solutions for the spectrum and the eigenfunctions are only known for a limited number of 

shapes (e.g., the sphere, the cuboid, the cylinder, the solid ball). The eigenvalues for the unit 

2-sphere for example are λi = i(i + 1), i ∈ ℕ0 with multiplicity 2i + 1. In general the 

eigenvalues asymptotically tend to a line with a slope dependent on the surface area of the 

2D manifold M

(19)

Therefore a difference in surface area manifests itself in different slopes of the eigenvalue 

asymptotes. Figure 4 shows the behavior of the spectra of a population of spheres and a 

population of ellipsoids respectively. The sphere population is based on a unit sphere where 

Gaussian noise is added in the direction normal to the surface of the noise-free sphere. 

Gaussian noise is added in the same way to the ellipsoid population. Since the two basic 

shapes (sphere and ellipsoid) differ in surface area, their unnormalized spectra diverge 

(Figure 4a), so larger eigenvalues lead to a better discrimination of groups. Surface area 

normalization greatly improves the spectral alignment (Figure 4b). Figures 4c and d show 

zoom-ins of the spectra for small eigenvalues. Even for the surface area normalized case, the 

spectra of the two populations clearly differ. Therefore the spectra can be used to pick up the 

difference in shape in addition to the size differences.

A similar analysis can be done for 3D solids. The eigenvalues for the cuboid (3D solid) with 

side length s1, s2 and s3 for example are

with M, N, O ∈ ℕ+ for the Dirichlet case and M, N, O ∈ ℕ for the Neumann case. In 

general the Dirichlet and Neumann eigenvalues of a 3D solid asymptotically tend to a curve 

dependent on the volume of the 3D manifold M:

(20)

Figure 5 shows the discrete Dirichlet spectra of a unit cube (V = 1), a cuboid with side 

length 1, 1.5, 2 (V = 3) and a unit ball ( ). It can be seen how the difference in volume 

manifests itself in different scalings of the eigenvalue asymptotes.

A statistical method able to distinguish shapes needs to account for this diverging behavior 

so not to limit the analysis to an analysis of surface area or volume. Therefore the Laplace-
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Beltrami spectra should be normalized. Figure 6 shows the spectra of the volume normalized 

solids. The zoom-in shows that shape differences are preserved in the spectra after volume 

normalization.

2.8. Exactness of the Spectrum

When using a FEM with p-order form functions, the order of convergence is known. For 

decreasing mesh size h it is p+1 for eigenfunctions and 2p for eigenvalues [40]. This is the 

reason, why it makes sense to use higher order elements (we use up to cubic) instead of a 

global mesh refinement.

To verify the accuracy of the numerically computed spectra, we compare the eigenvalues of 

a cuboid with side length (1, 1.5, 2) and of a ball with radius one to the known exact values. 

In the case of the cuboid we computed the first 200 eigenvalues. The maximum absolute 

difference occurring in the Dirichlet spectra is less than 0.044 (which is less than 0.015 % 

relative error). This is due to the fact that the voxels represent the cuboid exactly without any 

approximation error at the boundary. The Neumann spectra have only a maximum absolute 

difference of less than 0.01 (which is less than 0.005% relative error), due to the higher 

resolution at the boundary.

In case of the ball an exact voxel representation is not possible, therefore the numerical 

results differ more strongly from the analytical ones especially for high eigenvalues (up to 

6% relative error for the first 100 Dirichlet eigenvalues). Since the exact values of the object 

represented by the voxelization are unknown, a fair analysis of the accuracy of the 

computation is difficult. Nevertheless, it is interesting to see that the numerical values 

closely approximate the exact ones of the ball the more voxels are used (see Figure 7, the 

value r describes the number of voxels used in the direction of the radius).

2.9. Neumann Spectrum

To demonstrate that Neumann spectra can be used to pick up significant geometric features 

much faster than Dirichlet spectra the eigenvalues of the cube with a tail (see Figure 8, left) 

were computed for the Neumann and the Dirichlet boundary condition and compared to the 

values of the cube. Figure 8 (right) shows the differences of the first 150 eigenvalues for the 

two different boundary conditions. Since the cube with tail has a larger volume, its 

eigenvalues are expected to be smaller than the values of the cube (see Section 2.2 2.). This 

fact is reflected in the graph (Figure 8 right) where the differences are always positive. It can 

be clearly seen that the Neumann spectrum picks up the differences much earlier than the 

Dirichlet spectrum. This is due to the fact that the Neumann boundary condition allows the 

solutions to oscillate at the boundary whereas the Dirichlet condition forces them to be zero 

on the boundary, strongly reducing their freedom especially in the region of the tail.

A 2D example of a square with a tail (ST) illustrates the different behaviors of Neumann and 

Dirichlet boundary conditions. Figures 9 and 10 depict a comparison of a few eigenfunctions 

of the square with tail (ST) and of the unit square (S1) for both the Dirichlet and the 

Neumann case. For the Dirichlet case (Figure 9), the lower eigenfunctions do not detect the 

attached tail (9 a,e and b,f). For higher frequencies the nodal domains shrink (9 c,g) until 

they are finally able to slip into the smaller features. Because of the restrictive Dirichlet 
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boundary condition, this only occurs around the 18th eigenfunction. From a signal 

processing point of view it is sensible that functions with higher frequencies can be used to 

analyze smaller features.

The Neumann spectrum behaves differently (Figure 10). Because of the higher degree of 

freedom (with respect to the free vibration of the eigenfunctions at the boundary), small 

features like the tail influence the eigenfunctions already very early. It is unnecessary to 

compare the smallest eigenvalue which is always zero with constant eigenfunctions. But 

already the first non-constant eigenfunction (10 d) is very different from the first non-

constant eigenfunctions of the square (10 a) since the extremum is shifted into the tail. This 

is reflected in a change of more than 50% of the corresponding eigenvalue. The next 

eigenfunction (10 e) of ST on the other hand is zero in the tail region and therefore almost 

identical with (10 a). The corresponding eigenvalues are almost the same. Also the next few 

eigenfunctions (10 b ↔ f and c ↔ g) correspond with each other on the square region.

2.10. Influence of Noise

As demonstrated in Section 2.7, volume normalizations can lead to good spectral 

alignments. Nevertheless, having identical noise levels for the shape populations under 

investigation is essential, since different noise levels will affect surface areas differently 

(high noise levels yield highly irregular bounding surfaces especially if the voxel resolution 

is low). Because surface area is contained in the spectrum this has an influence on the 

eigenvalues. Violating the assumption of similar noise levels therefore leads to the detection 

of noise level differences as opposed to shape differences, as demonstrated in Figure 11 for 

noisy spheres (surfaces) and Figure 12 where the spectra of the ball (solid) are depicted with 

different levels of added noise. A fixed probability for adding a voxel to or removing a voxel 

from the object boundary was chosen for each experiment. Only voxels maintaining 6-

connectivity were added or removed, guaranteeing a single 6-connected solid component. 

Increasing the noise level moves the corresponding spectra further apart. It can be seen in 

Figure 12 that the ball cannot be accurately represented with only a low voxel resolution, 

especially with high noise levels, the spectra move far apart. Such a noisy ball could also be 

seen as a noisy cube. For the analysis of identically acquired and processed shapes – e.g., 

obtained through manual segmentations of MRI (magnetic resonance image) data – a similar 

noise level is a reasonable assumption; we also assume the accuracy of the spectra 

calculations to stay the same for the whole population.

2.11. Influence of the Discretization

Domain discretizations can significantly affect computational results. Figure 13 shows a 

two-dimensional example for a domain consisting of a small and a large square connected 

by a thin rectangle. Insufficient degrees of freedom, due to a coarse discretization, can lead 

to insufficiently resolved vibrational modes. In particular, thin structures may simply be 

overlooked if not enough nodes are contained in them. The Neumann spectra are not 

influenced as strongly by the discretization, as they allow free nodes on the boundary.
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3. Topological Analysis of Eigenfunctions

Eigenfunctions are real valued functions defined on the whole manifold. They are more 

difficult to deal with than eigenvalues but can be studied with topological methods, for 

example analyzing level sets and critical points. For the topological analysis of 

eigenfunctions we will construct the Morse-Smale (MS) complex on 2D surface 

representations and the Reeb graph inside the 3D voxel volume.

The MS complex [39,22] splits the domain of a function h into regions of uniform gradient 

flow. Its edges are specific integral lines (maximal paths on the surface and whose tangent 

vectors agree with the gradient of h) that run from the saddles to the extrema. For the 

construction of the MS complex for piecewise linear functions on triangulated surfaces see 

[11], where the concept of persistence is also described. It can be used, for example, to 

remove topological noise from the complex by pairing and canceling saddle/extrema 

combinations.

The MS complex is closely related to the Reeb graph [33], that captures the evolution of the 

level set components of the function and is often used in shape analysis applications. A level 

set is the pre-image h−1(x) for a specific level x ∈ ℝ. The Reeb graph of a function h is 

obtained by contracting the connected components of the level sets to points. Thus the 

branching points and leaves (end points) in a Reeb graph correspond to level set components 

that contain a critical point of h. The leaves are the extrema while the branching points are 

saddles, where one edge is split into two (or more) or where edges are merged. The other 

points can be considered to lie on the edges between leaves and branching points. Note that 

the Reeb graph is a one-dimensional topological structure (a graph) with no preferred way of 

drawing it in the plane or space or attaching it to M (as opposed to the MS complex). Its 

edges are often manually attached to the shape by selecting the center of the represented 

level set.

Both the MS complex and the Reeb graph have been extensively used for shape processing 

and topological simplification. E.g. the MS complex has been constructed for a user selected 

eigenfunction of the mesh Laplacian for the purpose of meshing in [10].

So why is it of interest to study the eigenfunctions at all? In fact in addition to their relation 

to the corresponding eigenvalue (as demonstrated in the examples) they have some 

interesting properties. They are also isometry invariant and change continuously when the 

shape is deformed (although when ordered according to the magnitude of their eigenvalues, 

the ordering might switch). The functions with the smallest eigenvalues are more robust 

against shape change or noise, as they present the lower frequency modes. Another feature is 

their optimal embedding property used in manifold learning (see [3]). For example the first 

non-constant eigenfunction gives the smoothest embedding of the shape to the real line (of 

course complying with the boundary condition).

We will employ the eigenfunctions to give an indirect registration of similar shapes. As the 

(lower) eigenfunctions are stable across the shapes, they have similar values in similar 

location. Thus, we can measure local shape differences by analyzing landmarks such as 

lengths of level sets or integral lines, or areas of level surfaces in 3D. A simple example is 
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given Figure 14 where two planar domains are shown together with their first eigenfunctions 

(color shaded) and level sets. The two domains where modeled with the medial modeler by 

adjusting the medial axis and the thickness function and then processed (meshed, FEM 

computation …) as described in [44]. It can be seen how the extrema and level sets are at 

similar locations for both shapes, even though bending and thickness changes are involved. 

The length of the level sets can be used to do a thickness comparison. We will demonstrate 

similar comparisons later for 3D solids. The Reeb graph is a line from the minimum to the 

maximum running through the midpoints of each level set and can be used to measure 

length. For the simple example in Figure 14 the MS complex cannot be constructed as no 

saddles are involved. However, the MS complex will be helpful for studying higher 

eigenfunctions on surfaces, where additional interesting features such as saddles and 

multiple extrema exist.

4. Statistical Analysis of Groups of LB Spectra

The (possibly normalized) beginning sequence of the Laplace-Beltrami spectrum (called 

ShapeDNA) can be interpreted as a point  in the n-dimensional positive Euclidean 

space. Given the ShapeDNA vi of many individual objects divided into two populations A 
and B we use permutation tests to compare group features to each other (200,000 

permutations were used for all tests). We call a set of objects the object population. 

Permutation testing is a nonparametric, computationally simple way of establishing group 

differences by randomly permuting group labels. Let SA = {vi} and SB = {vj} denote two 

sets of ShapeDNA associated to individuals for group A and for group B respectively. 

Assume for example that we want to investigate if elements in SA have on average a larger 

Euclidean norm than the elements in SB (due to some external influences). A possible test 

statistic stat would be the sum of the lengths of the elements in SA (stat:= Σvi∈SA||vi||). For 

the permutation test we then randomly distribute the subjects into groups A and B, keeping 

the number of elements per group fixed. We define the p-value to be the fraction of these 

permutations having a greater or equal sum stat than the original set SA (in other words the 

relative frequency of occasions where the random label outperforms the original labeling). 

The values of SA will be considered significantly larger than the ones of SB at a prespecified 

significance level α if p ≤ α (taken as α = 5% here). Note, that rejecting the null hypothesis 

of two populations being equal given a significance level α only implies that the probability 

of making a type I error (i.e., the probability of detecting false positives; “detecting a 

difference when there is none in reality”) is α, but does not exclude the possibility of making 

such an error.

Confidence intervals for the estimated p-values p̂ may be computed following Nettleton et 

al. [26] for 100(1 − γ)% confidence as

where
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is the inverse of the cumulative distribution function of the standard normal distribution, 

erf−1(·) is the inverse error function, N denotes the number of samples (200,000 in our case). 

The approximation is based on the binomial distribution and holds for Np ≥ 5. Figure 15 

shows the confidence intervals for a confidence range of [90%, 99%] for p-values p ∈ 
{0.0001, 0.05}. Note, that the plots are the same, except for scaling, which depends only on 

the different p-values. While these are just probabilistic characterizations of the confidence 

in the estimated p-value they demonstrate that using 200, 000 permutations will give good 

estimations up to the first or even the second non-zero decimal place.

We use three different kinds of statistical analyses (all shapes are initially corrected for brain 

volume differences, also see [14] for details on permutation testing):

1. A nonparametric, permutation test to analyze the scalar quantities: volume 

and surface area.

2. A nonparametric, multivariate permutation test based on the maximum t-

statistic to analyze the high-dimensional spectral feature vectors (Shape-

DNA in 2D and 3D cases).

3. Independent permutation tests of the spectral feature vector components 

across groups (as in (2)), followed by a false discovery rate (FDR) 

approach to correct for multiple comparisons, to analyze the significance 

of individual vector components.

To test scalar values the absolute mean difference is used as the test statistic s = |μa−μb|, 

where the μi indicates the group means. The maximum t-statistic is chosen due to the usually 

small number of available samples in medical image analysis, compared to the 

dimensionality of the ShapeDNA feature vectors (preventing the use of the Hotelling T2 

statistic [17]). It is defined as

(21)

Here, N is the vector dimension, v¯A,j indicates the mean of the j-th vector component of 

group A, and SEj is the pooled standard error estimate of the j-th vector component, defined 

as

(22)
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where ni is the number of subjects in group i (with i ∈ A,B) and σi,j is the standard deviation 

of vector component j of group i. The maximum t-statistic is particularly sensitive to 

differences in at least one of the components of the feature vector [5]. It is a summary 

statistic, which allows for the detection of differences between feature vectors across 

populations. However, it does not determine which components show statistically significant 

differences.

Nevertheless, testing the individual statistical significance of vector components is possible. 

Such testing needs to be performed over a whole set of components, since it is usually not 

known beforehand which component of a ShapeDNA vector will be a good candidate for 

statistical testing. (I.e., we can in general not simply pick one individual vector component 

(eigenvalue) for statistical testing.) To account for multiple comparisons when testing over a 

whole set of vector components, the significance level needs to be adjusted (since “the 

chance of finding differences that are purely random in nature increases with the number of 

tests performed”). See [12,14] for background on schemes for multiple comparison 

corrections.

5. Results

Volume measurements are the simplest means of morphometric analysis. While volume 

analysis results are easy to interpret, they only characterize one morphometric aspect of a 

structure. The following Sections describe the Laplace-Beltrami and the volumetric Laplace 

spectrum as a method for a more complete global structural description using the analysis of 

a caudate as an exemplary brain structure. Note, that it makes sense to look at the 2D surface 

and at the 3D solid as the spectra of the surfaces contain other information than the solid 

spectra. In [37] examples of iso-spectral 3D solids (orthogonal “GWW” prism) were 

presented, where the spectral analysis of their 2D boundary shells was capable of 

distinguishing the shapes.

For brevity all results are presented for the right caudate only.

5.1. Populations and Preprocessing

Magnetic Resonance Images (MRI) of the brains of thirty-two neuroleptic-naïve female 

subjects diagnosed with Schizotypal Personality Disorder (SPD) and of 29 female normal 

control subjects were acquired on a 1.5-T General Electric MR scanner. Spoiled-gradient 

recalled acquisition (SPGR) images (voxel dimensions 0.9375 × 0.9375 × 1.5 mm) were 

obtained coronally. The images were used to delineate the caudate nucleus (see Figure 16) 

and to estimate the intracranial content (ICC) used for volume normalization to adjust for 

different head sizes. For details see [23].

The caudate nucleus was delineated manually by an expert [23]. For the 2D surface analysis 

the isosurfaces separating the binary labelmaps of the caudate shapes from the background 

were extracted using marching cubes (while assuring spherical topology). Analysis was then 

performed on the resulting triangulated surface directly (referred to as unsmoothed surfaces 

in what follows) as well as on the same set of surfaces smoothed and resampled using 

spherical harmonics3 (referred to as smoothed surfaces in what follows). The unsmoothed 
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surfaces are used as a benchmark dataset subject to only minimal preprocessing, whereas the 

smoothed surfaces are used to demonstrate the influence of additional preprocessing. See 

Figure 16(right) for an example of a smoothed and an unsmoothed caudate.

5.2. Volume and Area Analysis

For comparison, results for a volume and a surface area analysis are shown in Figure 17. As 

has been previously reported for this dataset [23], subjects with schizotypal personality 

disorder exhibit a statistically significant volume reduction compared to the normal control 

subjects. While smoothing plays a negligible role for the volume results (smoothed: p = 

0.008, volume loss 7.0%, i.e., there is a chance of p = 0.008 that the volume loss is a random 

effect; unsmoothed: p = 0.013, volume loss 6.7%), the absolute values of the surface area are 

affected more, since smoothing impacts surface area more than volume. The results for the 

female caudates show the same trend for the surface areas in the smoothed and the 

unsmoothed cases.

5.3. Laplace-Beltrami Spectrum Results (2D Surface)

The LB spectrum was computed for the female caudate population (on the surfaces) using 

the two different normalizations:

i. The shapes were volume normalized to unit intracranial content (UIC) 
(using the ICC measurements) to account for different head sizes.

ii. The shapes were normalized to unit caudate surface area (UCA) to analyze 

shape differences independently of size.

A maximum t-statistic permutation test on a 100-dimensional spectral shape descriptor 

shows significant shape differences (see Table 1) for caudate surface area normalization for 

the unsmoothed surfaces, but not for the smoothed ones. Surface area normalization is the 

strictest normalization in terms of spectral alignment. Testing for surface area independently 

yields statistically significant results, listed in Table 1.

Figure 18 indicates that using too many eigenvalues has a slightly detrimental effect on the 

observed statistical significance. This is sensible, since higher order modes correspond to 

higher frequencies and are thus more likely noise, which can overwhelm the statistical 

testing. It is thus sensible to restrict oneself only to a subset of the spectrum (e.g., the first 

twenty). However, this subset needs to be agreed upon before the testing and cannot be 

selected after the fact. Note, that the Laplace-Beltrami-Spectrum results of Table 1 show 

statistically significant shape differences even when the strong influence of surface area is 

removed, which suggests that the Laplace-Beltrami-Spectrum indeed picks up shape 

differences that complement area and volume findings. The Laplace-Beltrami-Spectrum can 

detect surface area differences (since the surface areas may be extracted from the spectrum) 

and can distinguish objects with identical surface area or volume based on their shape.

It should be noted that tests with the twelve invariant moments (invariant with respect to 

similarity group actions) as proposed in [20] did not yield statistically significant shape 

differences for the caudate shape population, showing that the spectrum has more 
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discrimination power here (as the first few eigenvalues are sufficient to detect differences 

between the groups).

5.4. Laplace-Beltrami Eigenfunctions (2D Surface)

To explore why some of the eigenvalues are statistically significant, we investigate their 

associated eigenfunctions. This will also guide our search for new shape descriptors based 

on the eigenfunctions of the Laplace Betrami operator. In Fig. 18 (bottom) the eigenvalue λ2 

has a low p-value of 0.0003. Since the caudate shapes are rather long and thin, not only the 

gradients of the first non-zero eigenfunction, but also of the second are aligned with the 

general direction of the caudate shape.

It can be seen in Figure 19 that the first non-constant eigenfunction (right) has extrema at the 

two ends of the shape. Due to its simplicity it is not very descriptive, but maps the shapes 

nicely to the real line along its main direction, thus giving an implicit registration along their 

main trend. The second eigenfunction (left and middle) has two maxima at the tips of the 

shape, one minimum at the outer rim and a saddle in the middle of the inner rim. The green 

curves denote the nodal lines (zero level sets) and the blue and red curve are constructed by 

following the gradient from the saddle up to the maxima (red) and down to the minimum 

(blue), thus constructing the Morse-Smale complex (see Section 3).

The second eigenfunction captures the main direction of the shape, which can be seen nicely 

at the green nodal lines and the blue curve being orthogonal to the main direction and spread 

well apart. Additionally, the second eigenfunction captures the thickness as the minimum 

and the maxima are located at opposing rims of the shape. As all the caudates in this 

population are of similar shapes, this behavior is true for all of them. In some cases we have 

an additional saddle-minimum pair at the outer rim that can be identified as topological 

noise induced by the mesh (see Fig. 20). Such noisy pairs can be detected and canceled 

using the concept of persistence [11] pairing related extrema/saddle combinations according 

to their significance.

To analyze the shapes we performed the statistical test on the following descriptors:

(hc) the head circumference (long green curve)

(wc) the waist circumference (blue curve)

(tc) the tail circumference (short green curve)

(l) the length (red curve).

We obtained the following p-values for the unit intracranial content (UIC) and the unit 

caudate surface area (UCA) normalized cases:

UIC UCA

hc p = 0.0015 p = 0.45

wc p = 0.0016 p = 0.053
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UIC UCA

tc p = 0.007 p = 0.039

1 p = 0.21 p = 0.0003

The statistically significant cases are printed in bold. For the intracranial content normalized 

case significant differences are detected in all the three circumferences, but not in the lengths 

of the shape. The caudate surface area normalization principally reverses the results. This 

could be expected as the main surface area lies in the shell of these cylindrical shapes and 

not at the cylinder caps. Therefore a surface area normalization seems to adjust the 

circumferences and changes the lengths instead. Nevertheless, we still pick up statistically 

significant differences in the tail region of the shapes (which can also be expected as the 

head has more surface area than the tail).

The intracranial content normalized results suggest that shape differences are mainly in 

shape thickness as opposed to shape length. Figure 21 shows a group comparison of the 

waist circumferences (top) of the ICC normalized shapes, as well as the differences in length 

after caudate area normalization (bottom). Note also that in the unit caudate area case, the 

length indicates an increase in mean distance between the nodal lines. This explains why the 

corresponding eigenvalue is also significantly smaller for the SPD population (as it is related 

to the frequency of the oscillation, which is related to the size of the oscillating domains).

Similar to Figure 14 it is possible to wrap more level sets around the caudate shapes (see 

Fig. 22), with the difference that now we get closed curves. Again the level sets yield an 

indirect registration of the shapes and present a method to detect local circumference 

differences. Note that we could actually construct a common parametrization (e.g. on the 

sphere) by taking the level and the position on the closed level set as the two parameters, but 

this explicit parametrization is not needed. Figure 23 shows a plot of the level set lengths of 

a few caudate shapes. The p-value for the whole population can be found in Figure 24 and 

indicate that not only the thinner regions in the tail (level 0.2) are significantly different, but 

also the region at the beginning of the head (level 0.7) show highly significant differences.

5.5. Laplace Spectrum Results (3D Solid)

As we deal with 3D solid objects it makes sense to also look at the solid instead of analyzing 

the surface only. The Laplace spectrum of the 3D voxel data was computed for two different 

normalizations:

i. The shapes were volume normalized to unit intracranial content (using the 

ICC measurements) to account for different head sizes.

ii. The shapes were normalized to unit caudate volume to analyze shape 

differences independently.

In order to get more inner nodes especially into the very thin tail region of the caudate 

shapes we additionally employed the dual of the voxel graph. The dual voxel graph is the 

voxel image where each voxel of the original image (regular voxel image) is considered to 

be a vertex of the dual graph. Voxels inside the domain become inner vertices while voxel 
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just outside of the domain’s boundary now become boundary vertices. Figure 25 depicts a 

2D case (using pixels) with the original regular domain on the left and the dual on the right. 

The dual graph enlarges the domain by half a layer thus creating new inner nodes needed 

especially inside the thinner features (tail). The use of the dual graph is helpful since a 

global refinement of the voxels leads to large FEM models that may cause memory problems 

on some standard PC’s. Note that in 3D the number of voxels increases by the factor 8 for 

each refinement step, this will quickly get large, especially if a higher order FEM is used, 

needing many nodes per voxel. The main difficulty lies in solving the large eigenvalue 

problem as the LU decomposition (SuperLU libary) might require a lot of additional 

memory if a large amount of fill-ins is generated4.

Since the two populations show significant differences in volume, surface area, local shape 

thickness and in their 2D surface spectra (see above), we expect to find significant 

differences also in their 3D volume spectra. The following paragraphs present first the 

Dirichlet, then at the Neumann spectrum results for both the regular and dual voxel graph.

5.5.1. Dirichlet Spectra—Figure 26 shows the statistical results for the regular voxel 

graph and its dual for the caudate populations. The graph shows the corresponding p value 

(see Section 4) when using the first N eigenvalues of the spectra for the statistical analysis 

(unit intracranial content). Recall that not just a single eigenvalue is used but the whole 

beginning sequence of the first N values (therefore we call these plots accumulated statistic 

plots). A p value below the 5% horizontal line is considered to be statistically significant. In 

such a case the beginning sequence of the spectrum is considered to be able to distinguish 

between the two caudate populations (NC and SPD). Figure 26 shows that the beginning 

sequence of the Dirichlet spectrum does not yield any statistically significant results. 

Employing the dual graph yields lower p-values when higher eigenvalues get involved. This 

observation is sensible, considering the fact that especially in the thin tail part of the 

caudates only very few inner nodes exist (see Section 2.11 for the effects of low resolution). 

The dual graph has more degrees of freedom, introducing inner nodes in the thin tail area, 

and therefore improves the result. In unit caudate volume case we did not find any 

significant differences either. For a detailed analysis employing the Dirichlet spectrum 

higher voxel resolutions would be necessary. Due to the low voxel resolution the computed 

eigenfunctions do not seem to accurately represent the real eigenfunctions of the caudate 

shapes.

5.5.2. Neumann Spectra—As demonstrated in section 2.9, the Neumann spectrum can 

help to identify shape differences much earlier than the Dirichlet spectrum. Figure 27 shows 

the accumulated statistics plots for different normalizations of the Neumann spectra for the 

regular and the dual case. In both cases (regular and dual) the intracranial content 

normalized spectra show very similar behavior (27 a,b): already very early, significant 

differences are detected. Because these differences might simply reflect the different caudate 

volumes (known to be significant) a normalization to unit caudate volume (27 c,d) is applied 

to reveal volume-independent shape differences. The eigenvalues in the regular case (27 c) 

4The examples in this paper were run on computers with up to 3GB memory without any problems.
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do not show statistically significant shape differences until about 150 eigenvalues are 

involved, however, the dual case (27 d) shows a significant p value already for 50 or more 

eigenvalues used. The reason seems to be that the higher frequency eigenfunctions have 

smaller nodal domains and can thus better detect the smaller features, presumably in the tail 

region. This assumption aligns with the Dirichlet case (Figure 26 dual) where better p-values 

are obtained when employing higher frequencies.

The accumulated results in Fig. 27 can be partially explained by analyzing the p-values of 

the individual eigenvalues (see Fig. 28). It can be seen that the p-value of the eigenvalue λ5 

is very low in both the regular and the dual voxel graphs (marked in red). This leads to 

significant results very early in the accumulated plots. Furthermore, the low p-values around 

the 50th eigenvalue (the 52nd in particular, also marked in red) in the dual case seem to 

produce the significant results in the accumulated plots above.

5.6. Laplace Eigenfunctions (3D Solid)

Similar to the analysis of interesting eigenfunctions in the 2D surface case it makes sense to 

analyze the eigenfunctions in 3D. By looking at the nodal surfaces (zero level sets) of the 

eigenfunctions λ5 and λ52 (Fig. 29) it can be noticed that these eigenfunctions, whose 

gradient field is always orthogonal to the nodal surfaces, again follow the main trend of the 

shape (for the 52nd function only in the tail region). We focus on the 5th eigenfunction (due 

to its simplicity) and analyze its nodal surfaces with respect to two hypotheses. As can be 

seen in the example in Figure 29, the nodal surfaces of the 5th eigenfunction are usually 4 

separated components (true in all except for 3 cases). First we want to relate the 

eigenfunction to the significant eigenvalue. As the eigenvalues are the square roots of the 

frequencies of the oscillation, the size of the nodal domains and therefore the distances of 

the nodal surfaces (green lines in Figure 29 bottom) should yield significant results after the 

caudate volume normalization. Furthermore, we know from the 2D analysis that significant 

changes in thickness (before caudate area normalization) are present mainly in the tail region 

of the shapes. Therefore, we will test the hypotheses that

i. the mean distance of the nodal surfaces (l1) on the unit volume caudates 

are larger for the SPD population (leading to a smaller eigenvalue EV5).

ii. the mean boundary length (l2) and the mean surface area (l3) of the small 

nodal surface components in the tail region (removing the large 

component in the head) are smaller for the SPD population.

For the first experiment, we compute the barycenter of the vertices of each nodal surface 

component and use it as a representation of that component. We then connect neighboring 

components with each other (green line in Fig. 29 bottom) and compute the mean distance 

between neighboring components. Note that the green line is a skeletal representation of the 

shape. In fact, it is the Reeb graph [33], as each level set component is represented by a node 

(red dot) which is connected to its neighbors by the green edges. Thus, this skeletal model 

represents the topological structure of the analyzed eigenfunction EV5 which yields an 

interesting shape descriptor, that could be used for other application, such as non-rigid 

registration. For both experiments we obtained the following p-values for the unit 

intracranial content (UIC) and unit caudate volume (UCV) cases:
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UIC UCV

l1 p = 0.21 p = 0.0099

l2 p = 0.0001 p = 0.0003

l3 p = 0.0019 p = 0.015

For the first experiment we have significant values for the mean distances of the nodal 

surfaces after caudate volume normalization. We detect an increase in length for the SPD 

population, which goes in line with the significant decrease of the 5th eigenvalue, related to 

the size of the nodal domains (see Figure 30). All the values for l2 and l3 are statistically 

significant, where especially the mean boundary lengths (similar to the waist and tail 

circumferences in 2D) are highly significant (see also Figure 31 for the direct comparison of 

the boundary lengths in the UIC case).

6. Conclusion

This paper describes methods for global and local shape analysis using the Laplace-Beltrami 

eigenvalues and eigenfunctions with Dirichlet and Neumann boundary conditions for 2D 

surfaces (triangle meshes) and 3D volumetric solids (voxel data). The eigenvalues and -

functions including their geometric and topological features are defined invariantly wrt. 

mesh, location, parametrization and depend on the isometry type only. Our experiments 

corroborate their robustness wrt. noise. We demonstrated their discrimination power 

successfully at a real application in medical imaging to distinguish populations of similar 

shapes.

The Laplace-Beltrami eigenvalues are well suited as a global shape descriptor, without the 

need to register the shapes. They could successfully be employed to detect true shape 

differences of the two populations (using the maximum t-statistic) even after normalization 

hinting at caudate shape differences in Schizotypal Personality Disorder. It could be 

demonstrated that the volumetric Neumann spectra can detect statistically significant shape 

differences when applied directly to the voxel data. These computations are feasible on a 

standard desktop computer. The Neumann spectra are of interest, since they recognize shape 

differences much earlier than the Dirichlet spectra and also work much better if the voxel 

resolution is very low. Especially the higher eigenvalues yield statistically significant results, 

indicating true shape differences mainly in areas with smaller features.

Additionally, we proposed a novel method to employ the eigenfunctions on surfaces for the 

detection and registration of features across shapes. We introduced a topological analysis 

(Morse-Smale complex and nodal curves) of selected eigenfunctions to define geometric 

features and to localize shape differences (here the local thickness of the caudate shapes). 

Also the topological analysis of eigenfunctions in 3D data is new and yields interesting 

geometric entities (distance, boundary length and surface areas of nodal surfaces) which 

underline the shape differences in the presented application (thickness differences and length 
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differences for the unit volume caudates). These geometric properties also contribute 

towards an interpretation of the corresponding eigenvalues.

The presented results are promising and show that the spectra (eigenfunctions and 

eigenvalues) of the Laplace-Beltrami operator are capable shape descriptors, especially 

when combined with a topological analysis, such as locations of extrema, behavior of the 

level sets and the construction of the Morse-Smale complex (or Reeb graph). The presented 

methods are expected to be applicable in other settings. Future work will focus on the 

possibility to compare shape based on a specific size of the features of interest 

(multiresolution shape matching), founded on the frequency analysis delivered by the 

Laplace spectra. Another direction of research will be the non-rigid registration of shapes 

employing eigenfunctions and their topological features. Furthermore, it is of interest to 

construct generalized feature vectors consiting of 2D and 3D (geometric and topological, 

global and local) features for the fast comparison of shapes or the retrieval of objects from 

large shape databases.
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Fig. 1. 
Eigenfunction 30 and 50 of the disk.
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Fig. 2. 
Objects with same shape index but different spectra
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Fig. 3. 
A linear and a quadratic form function and location of 32 nodes for cubic serendipity FEM 

voxel.
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Fig. 4. 
Spectral behavior from top to bottom: (a) unnormalized, (b) Area normalized, (c) 

unnormalized (zoom), (d) Area normalized (zoom).
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Fig. 5. 
Unnormalized exact spectra of cube, cuboid, ball.
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Fig. 6. 
Volume normalized spectra and zoom-in.
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Fig. 7. 
Approximation of the Ball.
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Fig. 8. 
The first 150 eigenvalues of the cube with tail subtracted from the eigenvalues of the cube 

for the Dirichlet and Neumann case.
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Fig. 9. 
Eigenfunctions for Dirichlet boundary conditions for a square (top) and a square with tail 

(bottom). Low frequency (low eigenvalue) eigenfunctions do not probe the tail region due to 

the restrictive Dirichlet boundary conditions. Differences are picked up for high frequencies 

only where the higher spatial frequencies of the eigenfunctions allow for a probing of the tail 

region.
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Fig. 10. 
Eigenfunctions for Neumann boundary conditions for a square (top) and a square with a tail 

(bottom). Differences between the shapes are picked up already for small eigenvalues, since 

the Neumann boundary conditions allow the tail to swing freely for low frequencies.
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Fig. 11. 
Spectra of a sphere with different noise levels. The noise-free case on the left demonstrates 

the accuracy of the numerical eigenvalue computations. Spectra were normalized to unit 

surface area. Black horizontal lines: analytic spectrum of the noise-free sphere. Increasing 

levels of noise from left to right.
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Fig. 12. 
Influence of noise on the ball spectrum (Dirichlet). Noise-levels influence the spectral 

signature of a shape.
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Fig. 13. 
Eigenmode 19 for Dirichlet boundary conditions for different mesh refinements. Eigenmode 

contributions may be overlooked for coarse discretizations (left) in comparison to a fine 

discretization (right). In particular, thin structures may not get sufficiently probed for coarse 

discretizations.
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Fig. 14. 
First non-constant eigenmode for two similar shapes. Red and blue dots at the tips denote 

the extrema, the green curves are some level sets. The Reeb graph (gray curve) approximates 

the medial axis.
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Fig. 15. 
Confidence intervals for p ∈ {0.0001, 0.05} with N = 200, 000 permutations
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Fig. 16. 
Example of a caudate shape consisting of cuboid voxels (left). Exemplary caudate surface 

shape unsmoothed and with spherical harmonics smoothing (right).
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Fig. 17. 
Group comparisons for volume differences (top) and surface area differences (bottom). 

Smoothed results prefix ‘s’, unsmoothed results prefix ‘us’. Volume and surface area 

reductions are observed for the SPD population in comparison to the normal control 

population.
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Fig. 18. 
Maximum t-statistic results of area normalized case (top) for the first n eigenvalues, i.e. 

shape-DNA’s of different length, (solid line: unsmoothed, dashed line: smoothed) and 

(bottom) for individual eigenvalues (unsmoothed case) with FDR multiple comparison 

correction. The black horizontal lines correspond to the 5% significance level and the 5% 

FDR corrected significance level respectively. Since the statistically most significant 

eigenvalue cannot be selected after the statistical analysis, a shape-DNA-based analysis with 

prespecified length is useful.
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Fig. 19. 
Left and middle: Eigenfunction (EF) 2 with maxima at tips (red), minimum at outer rim 

(blue, middle) and saddle at inner rim (green, left), the integral lines (red and blue curve) run 

from the saddle to the extrema. Right: EF 1 with extrema at the tips and no saddle. The 

closed green curves denote the zero level sets (two for EF 2 and only one for EF 1).
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Fig. 20. 
Noisy Morse-Smale complex of the second non constant eigenfunction on the outer rim 

(left) and close-up (middle). After canceling the saddle with the closest minimum, only one 

minimum remains and the red integral lines from the saddle to the two maxima at the head 

and tail disappear.
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Fig. 21. 
Group comparisons for waist circumferences differences (left) and length differences (right) 

after caudate area normalization. A waist length reduction can be observed for the SPD 

population in comparison to the normal controls (unit ICC). After caudate area 

normalization, an increase in length can be seen.
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Fig. 22. 
100 level sets wrapped around two exemplary caudate shapes using the first eigenfunction. 

The absence of any saddles guarantees that each level set has only one component.
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Fig. 23. 
Lengths of level sets (mapped onto the unit interval) of 8 exemplary shapes (sampling at 200 

levels). Red curves: SPD subjects, green curves: normal controls.
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Fig. 24. 
p-value for the whole population on each level set (sampling at 200 levels). The red line 

marks the significance level corrected for multiple comparisons (FDR).
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Fig. 25. 
Regular pixel domain (left) and its dual (right).
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Fig. 26. 
Accumulative maximum t-statistic results (unit intracranial content, Dirichlet) for the regular 

(left) and the dual (right) voxel graphs. Employing the dual graph yields lower p-values. 

This may be attributed to the better suitability of the dual graph for probing the thin tail 

regions of the caudate shapes. However, there is no statistical difference at a significance 

level of α = 5%.
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Fig. 27. 
Accumulated statistic, Neumann boundary conditions. Statistically significant shape 

differences are detected as expected for the unit intracranial content cases (a and b) (due to 

the caudate volume differences between the SPD and the NC populations). After caudate 

volume normalization (c and d), differences are first detected for the dual graph analysis (d), 

presumably because the additional degrees of freedom enable a proper probing of the 

caudate tail regions.
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Fig. 28. 
p-values for the individual eigenvalues with Neumann boundary condition for the regular 

(top) and dual (bottom) voxel graph.

Reuter et al. Page 54

Comput Aided Des. Author manuscript; available in PMC 2010 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 29. 
Nodal surfaces of eigenfunction 52 (top) and 5 (bottom), where the centroids are connected.
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Fig. 30. 
Group comparison for the eigenvalue 5 (left) and mean distance of the nodal surfaces (right) 

for the unit intracranial content. A reduction of the eigenvalue and a corresponding increase 

of the distances can be observed for the SPD population in comparison to the normal 

controls.
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Fig. 31. 
Group comparison for the boundary length of the small nodal surfaces for the unit 

intracranial content. A reduction can be observed for the SPD population in comparison to 

the normal controls.
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Reuter et al. Page 58

Table 1

Shape comparison results for the maximum t-statistic permutation test for the unsmoothed (US) and smoothed 

(S) dataset. Volume and area results for comparison. The used normalizations are: unit intracranial content 

(UIC), unit caudate surface area (UCA) and unit caudate volume (UCV).

norm p-value (US) p-value (S)

LBS (N=20) UIC 0.0026 0.0013

UCA 0.005 0.63

LBS (N=100) UIC 0.0003 0.0009

UCA 0.026 0.84

Volume UIC 0.013 0.0078

UCA 0.0011 0.011

Area UIC 0.0001 0.0002

UCV 0.001 0.011
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