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Abstract

Converting a quadrilateral input mesh into a C1 surface with one bi-3 tensor-
product spline patch per facet is a classical challenge. We give explicit local
averaging formulas for the spline control points. Where the quadrilateral mesh
is not regular, the patches have two internal double knots, the least number and
multiplicity to always allow for an unbiased G1 construction.

Key words: spline surfaces, bicubic, construction, geometry continuity,
Catmull-Rom splines.

1. Introduction

While smooth surfaces of degree bi-3 can be generated from quadrilateral
meshes by recursively applying subdivision [CC78], using a finite number of
polynomial pieces is often preferred due to existing CAD standards or to support
parallelism when rendering.

When associating one bi-cubic tensor-product spline patch with each facet of
a quadrilateral mesh, the main challenge comes from converting extraordinary
quads, i.e. quads that have one or more vertices of valence n 6= 4 (red quads
in Figure 1 (d)). Regular quads have only vertices of valence 4 and therefore
allow interpretation of the surrounding 4 × 4 grid of vertices as control points
of bi-cubic B-spline surface (gold quads in Figure 1 (d)).

For localized smooth surface constructions that only access a fixed, small
neighborhood of the quad, we established in [PF09] the minimal number and
multiplicity of knots that allows for one bi-3 spline patch per quad. This lower
bound is exactly met by our construction in this paper. Here we present explicit
B-spline (NURBS) control point formulas for
−− a construction with one degree bi-3 tensor-product spline patch per quad;
−− at most two interior double knots, and
−− a complete smoothness analysis.
Each tensor-product spline patch has, per tensor-direction, either no interior
knot (and represents a piece of a standard C2 spline complex) or two interior
double knots. Vertex position and normal are either derived from the mesh or
may be explicitly prescribed.

Section 2 gives explicitly input, output, construction stages and formulas
with illustrations of the B-spline coefficients. Section 3 formally verifies that
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Figure 1: Bi-3 tensor-product spline construction. (a) Quad mesh with (b) enlarged
section and (c) surface generated by the algorithm. (d) Red quads are extraordinary with
possibly several non-4-valent vertices. Regular gold quads correspond to bi-3 polynomial
patches that join C2 with their neighbors, also across T-junctions. (e) A minimal number of
bi-3 polynomial pieces (random coloring).

the construction satisfies the G1 continuity constraints, i.e., for generic input,
results in a surface that is at least C1 surface everywhere. Moreover transitions
across edges connecting 4-valent vertices (regular edges) are C2. Section 4
examines the quality of the resulting surfaces by examples and Section 5 points
to generalizations such as using more than the minimal number of knots in the
spline patches.

1.1. Literature on bi-3 C1 surface constructions

Generalizing bicubic (bi-3) tensor-product spline patches to C1 surfaces on
general quad meshes is a classic challenge with a more than 30 year history
[Gre74, Bez77, vW86, Pet91, GZ94]. More recently, a number of publications
have re-addressed this challenge in the context of the impending ability of GPUs
to tessellate and adaptively evaluate patched polynomial surfaces at animation
speeds. Loop and Schaefer [LS08] propose bi-cubic C0 surfaces with surrogate
tangent patches to convey the impression of smoothness via lighting. Myles et
al. [MYP08] perturbed a bi-cubic base patch near non-4-valent vertices by coef-
ficients of a (5,5) patch to obtain a C1 surface. PCCM [Pet00] generates smooth
bi-cubic surfaces. PCCM requires up to two steps of Catmull-Clark subdivision
to separate non-4-valent vertices resulting in at least a 4 × 4 arrangement of
polynomial patches per quad. [Pet01] pointed out that PCCM in its original
form can have shape problems at higher-order (e.g. monkey) saddles. The 3× 3
arrangement of Bézier patches per quadrilateral in our conference paper [FP08]
has a re-parameterization different from PCCM that avoids the PCCM shape
problem. The construction we present below is very similar to [FP08] (after
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conversion to B-spline form) but subtly different. It guarantees C2 continuity
across all regular edges (where both end vertices have valence 4), while [FP08]
guarantees only C1 continuity (see Figure 5(c) vs (d)).

2. The spline construction for extraordinary quads
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Figure 2: G1 constraints: (left) n patches joining. (right) Coplanar partial derivatives along
the kth boundary curve bk(u, 0).

Consider n patches that are internally (parametrically) C1

bk : [0..1]2 ( R2 → R3, k = 1, . . . , n, (1)

and that meet at a central point bk(0, 0) and such that bk(u, 0) = bk−1(0, u)
as displayed in Figure 2. For every pair of patches sharing a curve, we enforce
the unbiased G1 constraints

∂2b
k(u, 0) + ∂1b

k−1(0, u) = αk(u)∂1b
k(u, 0), (2)

where ∂ℓ means differentiation with respect to the ℓth argument and αk :
[0..1] → R is a univariate linear or quadratic scalar function. That is, the con-
straints are logically symmetric in that exchanging the index k ↔ k+ := (k +1)
mod n0 does not change the constraints. If αk = 0, the constraints enforce para-
metric C1 continuity. When the quad is covered by a spline with two internal
knots, i.e. a three by three arrangement of C1-connected polynomial pieces, we
use a subscript ℓ to refer to the ℓth piece αk

ℓ , ℓ = 0, 1, 2 of αk along a boundary.

To delineate each bi-3 spline patch, we place 4-fold knots at the ends of the
knot sequence. To cope with extraordinary quads with one or more vertices of
valence n 6= 4, [PF09, Thm 1]proves that at least two double internal knots are
needed. Scaling to multiples of 3 yields a knot sequence κ := (κ0, κ1, . . . κ11) =
(0, 0, 0, 0, 3, 3, 6, 6, 9, 9, 9, 9) that can nicely be used to associate control points
with their Greville abscissae γ (cf. Figure 3 right). That is for the kth patch
surrounding the central point,

bk(u, v) :=
7

∑

i=0

7
∑

j=0

bk
γi,γj

Ni(u)Nj(v), γ := (γ0, . . . γ7) = (0, 1, 2, 4, 5, 7, 8, 9)

(3)
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where Ni is the degree 3 B-spline with knot sequence κi, . . . κi+4. Below, we
will also refer to the bi-3 (= bi-cubic) Bernstein-Bézier form (short: BB-form)
of a polynomial

3
∑

i=0

3
∑

j=0

cγi,γj
fi(u)fj(v), fℓ(t) :=

(

3

ℓ

)

(1 − t)3−ℓtℓ.

To convert a uniform spline with B-spline coefficients pij to the BB-form we
need only specify

36c00 = 16p11 + 4(p21 + p12 + p01 + p10) + (p22 + p02 + p00 + p20),

18c10 = 8p11 + 2(p10 + p12) + 4p21 + p22 + p20, (4)

9c11 = 4p11 + 2(p21 + p12) + p22

since the remaining 13 formulas are obtained by combinatorial symmetry.

2.1. The Algorithm

We factor the algorithm into five localized stages that are explained in detail
in Sections 2.4–2.8. The coefficients of a stage can be determined in parallel,
for all quads, respectively all vertices.

Algorithm
For each quad, we

1. compute a bi-3 tensor product patch q in Bernstein-Bézier form;
If the quad is regular, set b = q and STOP,
else insert, equally spaced, two repeated knots in the u and the v direction.

2. adjust tangents to enforce (2);

3. complete the boundary to enforce (2);

4. modify the first interior layer of control points to enforce (2);

5. compute the remaining interior control points by averaging.

2.2. Control points

Below we give the formulas for the B-spline control points bk
γiγj

. The pre-
sentation is intentionally terse to facilitate implementation. We do however
mention the choice of αk to hint at the derivation and the proof of smoothness
that follow in Section 3.

In the figures illustrating the formulas, older, already computed control points
are presented as gray disks; the new control points, computed by the formu-
las, are shown as black disks. Only formulas for a few control points need to
be shown since the remaining ones are obtained symmetrically. By this we
mean the (obvious) combinatorial symmetries where formulas are obtained by
exchanging the subscripts (diagonal flip of a quad bk

ij ↔ bk
ji) or increasing the

superscript (rotation of quad bk
ij ↔ bk+

ij where k+ := k +1 mod n0) or switch-

ing start and end-point along an edge (flip across the midpoint: bk
i0 ↔ bk

9−i,0).
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Figure 3: Layout and Indexing. (left) Local input mesh p. (middle) q patch initializa-
tion.(right) NURBS control point indices of a patch b.

2.3. Input and Output

[Input: p]
(Figure 3 left) A vertex p0 of valence n := n0 surrounded by vertices p1,p2, . . . ,p2n

forming n quads. The valence of the direct neighbors pk ∈ {p1,p2, . . . ,pn} of
p0 is denoted nk.

[Output: b]
(Figure 3 middle, right) If the quad is ordinary, the output is a bi-3 patch q
( Figure 3 middle) in BB-form, i.e. a tensor-product spline patch with knots
κ := (0, 0, 0, 0, 9, 9, 9, 9) in each direction.
Otherwise, the output spline patch b ( Figure 3 right) has the knot sequence
κ := (0, 0, 0, 0, 3, 3, 6, 6, 9, 9, 9, 9). Section 5 discusses what to do when more
than this minimal number of knots are wanted.
Each tensor-product spline patch of degree bi-3 per quad joines its neighbors to
form a smooth surface with adjacent patches satisfying unbiased G1 constraints.
Patches join C2 across edges where both end-points have valence 4, also across
T-junctions (where one spline corresponding to a regular quad has no knot but
the other does since it corresponds to an irregular quad).

2.4. Step 1 Bézier Patch

We use formula (4) to derive all points, except that, by default, we generalize
the formula of qk

00 to the well-known limit point of Catmull-Clark subdivision:
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qp

6
q00

q10

q11

qk
00 :=

∑n
l=1

(

np0 + 4pl + pn+l
)

n(n + 5)
, (5)

qk
10 :=

8p0 + 4pk + 2pk+1 + 2pk−1 + pn+k + pn+k−1

18
(6)

qk
11 :=

1

9
(4p0 + 2(pk + pk+1) + pn+k).

(7)
Symmetric construction of the other three corners of the quad yields coefficients
qk

ij that we interpret as the control points of a Nurbs patch with knots sequence
(0,0,0,0,9,9,9,9). If the quad is regular, then we stop and output the patch
b := q. We note that if we apply the remaining steps of the algorithm, we can
choose qk

00 to be some other point that the surface should interpolate, e.g. the
original mesh point p0 and some other tangents. This is illustrated in Figure 6
(d).

If the quad is not regular, insert two double knots (first in the u then in the
v direction) to obtain

b00b10 b40

q10 q20

bk
00 := qk

00,

bk
20 :=

4

9
qk

00 +
4

9
qk

10 +
1

9
qk

20,

bk
40 :=

4

27
qk

00 +
12

27
qk

10 +
9

27
qk

20 +
2

27
qk

30.

2.5. Step 2. Tangents

[if n0 = 4] bk
10 := 2

3q
k
00 + 1

3q
k
10, otherwise set bk

10 as follows to lie in the tangent
plane spanned by e1 and e2:

p

bk
10

bk
11 qk

11

bk
10 := bk

00 +
e1c

k
n + e2s

k
n

3
, ei :=

σn

3(2 + ωn)

n
∑

l=1

(

δip
l + βip

n+l
)

ck
n := cos

2πk

n
, sk

n := sin
2πk

n
, cn := c1

n, ωn := 16λn − 4,

λn :=
1

16
(cn + 5 +

√

(cn + 9)(cn + 1)), σn :=
{

0.53 if n = 3,
1

4λn
if n > 3,

δ1 := ωncl
n, β1 := cl

n + cl+1
n , δ2 := ωnsl

n, β2 := sl
n + sl+1

n .

Both for n0 = 4 and n0 6= 4, bk
11 is placed according to the 1 : 1 : 1 split of knot

insertion: bk
11 :=

6(bk
10+bk

01)−4bk
00+qk

11

9 .
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2.6. Step 3. determine the boundary

3a. [if n0 = 4 = nk] skip Steps 3 and 4.

3b. [if n0 6= 4 6= nk] We choose αk
i (u) := λk

i (1 − u) + λk
i+1u, i = 0, 1, 2, in (2)

and

λk
0 := 2 cos(

2π

n0
), λk

3 := −2 cos(
2π

nk
), λk

1 :=
2λk

0 + λk
3

3
, λk

2 :=
λk

0 + 2λk
3

3
. (8)

b00 b20b40

Therefore, we replace bk
20 and bk

70 by

bk
20 := bk

10 +
3(bk

11 + bk−1
11 − 2bk

10) − λk
1(bk

10 − bk
00)

2λk
0

,

and a new bk
70 computed symmetrically to bk

20.

Using the re-computed bk
20 and bk

70,

bk
40 :=

4

3
bk

20 −
1

3
bk

80 +
2

3
bk

70 −
2

3
bk

10, and

bk
50 is computed symmetrically to bk

40.

3c. [if n0 6= 4 = nk] By [PF09], not all αk
i can be linear. We choose

αk
0(u) := λk

0(1−u)+λk
1u, αk

1(u) := λk
1(1−u)2+λk

2(1−u)u+λk
3u2, αk

2(u) = λk
3

(9)

and set λk
0 := 2 cos( 2π

n0 ), λk
1 :=

λk
0

2 , λk
2 := 0, λk

3 := 0.

b00 b20b40b40

b50

Then we replace (overwrite) bk
20, bk

40 and bk
50 by

bk
20 := bk

10 +
3(bk

11 + bk−1
11 − 2bk

10) − λk
1(bk

10 − bk
00)

2λk
0

,

bk
40 :=

41

25
bk

20 +
4

25
bk

70 −
4

5
bk

10,

bk
50 :=

36

25
bk

20 +
9

25
bk

70 −
4

5
bk

10.

Note that bk
70 not replaced but stays unchanged from knot insertion. This will

aid in guaranteeing C2 continuity at regular vertices, where n = 4.

2.7. Step 4. First interior layer, enforcing G1 constraints

4a. [if n0 6= 4 or nk 6= 4] compute preliminary coefficients b̃k
ij :

b̃21

b̃41
b̃k
21 := −

4

9
bk

01 +
4

3
bk

11 +
1

3
bk

81 −
2

9
bk

91,

b̃k
41 := −

20

27
bk

01 +
4

3
bk

11 + bk
81 −

16

27
bk

91;

b̃k
51, b̃

k
71 are computed symmetrically to b̃k

41 and b̃k
21.
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Then
4b. [if n0 6= 4 6= nk]

h1 := bk
20 +

λ0
bk

40−bk
20

2 + 2λ1(b
k
20 − bk

10)

6
, h2 := bk

40 +
2λ1(b

k
50 − bk

40) + λ2
bk

40−bk
20

2

6
,

b21

b41 bk
21 := h1 +

1

2
(b̃k

21 − b̃k−1
12 ),

bk
41 := h2 +

1

2
(b̃k

41 − b̃k−1
14 ) and

bk
51,b

k
71 are computed symmetrically to bk

41 and bk
21.

4c. [if n0 6= 4 = nk]

h1 := bk
20 +

λk
0

bk
40−bk

20

2 + λk
0(bk

20 − bk
10)

6
, h2 := bk

40 +
λk

0
bk

70−bk
50

2

12
,

b21

b41
bk

21 := h1 +
1

2
(b̃k

21 − b̃k−1
12 ),

bk
41 := h2 +

1

2
(b̃k

41 − b̃k−1
14 ),

bk
51 := bk

50 +
1

2
(b̃k

51 − b̃k−1
15 ).

Two layers of control points along each boundary are now fixed. Note that bk
71

remains unchanged from knot insertion. This guarantees C2 continuity at reg-
ular vertices, where n = 4.

2.8. Step 5. Interior

Interior control points bk
44 are computed such that each of the curves b(u, t)

and b(t, v) with 0 ≤ t ≤ 1 can be a single cubic curve subdivided into three
pieces and the remaining coefficients as a least deviation thereof.

b44

b20b40

bk
44 :=

− 20
27b

k
04 + 4

3b
k
14 + bk

84 −
16
27b

k
94

2

+
− 20

27b
k
40 + 4

3b
k
41 + bk

48 −
16
27b

k
49

2
.
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b22

b42

b20b40

if n0 6= 4 or nk 6= 4, bk
42 :=

1

2
bk

41 + bk
44 −

1

2
bk

45,

if n0 6= 4, bk
22 :=

1
2b

k
12 + bk

42 −
1
2b

k
52

2

+
1
2b

k
21 + bk

24 −
1
2b

k
25

2
.

Note that for n0 = 4 = nk the first three layers of coefficients remained unper-
turbed, guaranteeing C2 continuity across regular edges. We have now specified
all tensor-product spline coefficients.

2.9. Setting degrees of freedom: interpolation of points and tangents

Our approach, although minimal in the number of knots, offers some de-
grees of freedom. These were set heuristically as follows. Our default choice
of position and tangent plane mimics Catmull-Clark subdivision surfaces. This
smoothes out input mesh features. Alternatively, a user can choose qk

00 to be
some other point that the surface should interpolate (cf. Figure 6 (d)). Also
the tangent plane can be set in Step 2 by choosing e1 and e2 differently. More-
over, the coefficients b11 are free to choose. One alternative way to set them is
to make them depend on the boundary curve as in PCCM [Pet00]. We opted
instead for simplicity. Note that, according to [PF09]there is no additional free-
dom in the choice of the boundary in Step 3. In Step 4, the coefficient pairs
(bk

21,b
k−1
12 ) and (bk

41,b
k−1
14 ) each offer one degree of freedom. We set them so as

to minimally perturb their positions after knot insertion just as much as is nec-
essary to accommodate the G1 constraints. Having set the boundary curves and
the first derivatives across the boundaries, the remaining B-spline coefficients
are all free to choose if we only require (parametric) C1 continuity internally.
It is not always possible to enforce that all remaining second derivatives match
across internal boundaries. By default, we chose the interior coefficients to make
the transitions as smooth as possible.

3. Smoothness Verification

The polynomial equalities ∂2b
k(u, 0) + ∂1b

k−1(0, u) = αk(u)∂1b
k(u, 0) of

the unbiased G1 constraints (2) hold for the kth curve exactly when all spline
coefficients are equal. We will show this by expanding the left side, called Left
below, and the right side, called Right. We will superscript = signs with the
equation or assignment of the algorithm that implies the equality.

We now show this equality starting at the vertices.

3.1. Ordinary quads and ordinary edges

Since Step 1 converts B-spline control points p to BB control points q ac-
cording to (4) ((5) agrees with the formula in (4) for n = 4), ordinary quads
join C2. Also, if one or both quads are not ordinary, but both endpoints of
the edge have valence n = 4, then the spline coefficients up to second order are
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determined by the conversion followed by knot insertion. Therefore, the surface
is C2 across T-junctions. We summarize this observation as follows.

Lemma 1. If both endpoints of a boundary curve have valence 4 then two
patches meeting along the curve join C2.

3.2. Extraordinary quads

Next we consider the general case. To verify the G1 constraints along the
shared tensor-product spline patch curves, it is convenient to define

bk
3j :=

bk
2j + bk

4j

2
, bk

6j :=
bk

5j + bk
7j

2
, j = 0, . . . 9.

This allows us to interpret the bk
ij as coefficients of a 3 × 3 arrangement of C1-

connected patches in BB-form. The coefficients of the polynomials ∂2b
k(u, 0),

∂1b
k−1(0, u), and ∂1b

k(u, 0) in (2) are differences of these BB control points:

vk
i := bk

i1 − bk
i0, wk

i := bk−1
1i − bk−1

0i , uk
i := bk

i+1,0 − bk
i0. (10)

(Since (2) has only one variable, u, each difference has one subscript.) The G1

constraint (2) is then equivalent to the 8 equations

vk
0 + wk

0 = λk
0u

k
0 (11)

3(vk
µ + wk

µ) = 2λk
ℓ u

k
µ + λk

ℓ+1u
k
µ−1, µ(ℓ) = 1, 4, 8 (12)

3(vk
µ + wk

µ) = λk
ℓ u

k
µ + 2λk

ℓ+1u
k
µ−1, µ(ℓ) = 2, 5, 7 (13)

vk
9 + wk

9 = λk
3u

k
8 (14)

3.2.1. Expansion at vertices of Extraordinary quads

We first focus again on smoothness at the vertices.

Lemma 2. The G1 constraint holds at q00.

Proof We verify the G1 constraint (11) at u = 0 by separately expanding the
left side Left and its right side Right. Let n = n0 ≥ 3, the valence at q00.

Left : vk
0 + wk

0

(10)
= bk+1

10 − b00 + bk−1
10 − b00

Step2.
=

e1(c
k+1
n + ck−1

n ) + e2(s
k+1
n + sk−1

n )

3
.

Right : λk
0u

k
0

(10)
= λk

0(bk
10 − b00)

Step2.
= λk

0(e1c
k
n + e2s

k
n)

(8),(9)
=

2c1
nck

ne1 + 2c1
nsk

ne2

3
.

Equality of Left and Right for all valences including n0 = 4 follows by standard
trigonometric expansion. |||
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3.2.2. Smoothness across patch boundaries

For each edge, we now analyze the three remaining valence combinations.
By Lemma 1, if n0 = 4 = nk then (2) holds with αk ≡ 0.

Lemma 3. If n0 6= 4 6= nk then (2) holds.

Proof By Lemma 2 and symmetry of the constraint structure at the two end-
points, we need only verify (12) for ℓ = 0 and ℓ = 1 and (13) for ℓ = 0.
For ℓ = 0, µ(ℓ) = 1, (12) has a left hand side, Left, and a right hand side, Right,
that agree:

Left : 3(vk
1 + wk

1)
(10)
= 3(bk

11 − bk
10 + bk−1

11 − bk−1
01 ).

Right : 2λk
0u

k
1 + λk

1u
k
0

(10)
= 2λk

0(bk
20 − bk

10) + λk
1(bk

10 − b00)

3b.
= 2λk

0(bk
10 +

3(bk
11 + bk−1

11 − 2bk
10) − λk

1(bk
10 − b00)

2λk
0

− bk
10) + λk

1(bk
10 − b00)

= 3(bk
11 − bk

10 + bk−1
11 − bk−1

01 ).

For ℓ = 1, µ(ℓ) = 4, (12) holds since

Left : 3(vk
4 + wk

4)
(10)
= 3(bk

41 − bk
40 + bk−1

14 − bk−1
04 )

4b.
= 3(h2 +

1

2
(b̃k

41 − b̃k−1
14 ) − bk

40 + h2 +
1

2
(b̃k

14 − b̃k−1
41 ) − bk−1

04 )

= 6(h2 − bk
40)

4b.
= 6(bk

40 +
2λ1(b

k
50 − bk

40) + λ2
bk

40−bk
20

2

6
− bk

40)

= 2λ1(b
k
50 − bk

40) + λ2
bk

40 − bk
20

2
.

Right : 2λk
1u

k
4 + λk

2u
k
3

(10)
= 2λk

1(bk
50 − bk

40) + λk
2(bk

40 − bk
30).

The two expressions are equal because bk
30 =

bk
40+bk

20

2 .
We verify (13) for ℓ = 0, µ(ℓ) = 2,

Left : 3(vk
2 + wk

2)
(10)
= 3(bk

21 − bk
20 + bk−1

12 − bk−1
02 )

4b.
= 3(h1 +

1

2
(b̃k

21 − b̃k−1
12 ) − bk

20 + h1 +
1

2
(b̃k−1

12 − b̃k
21) − bk−1

02 )

= 6(h1 − bk
20)

4b.
= 6(bk

20 +
λ0

bk
40−bk

20

2 + 2λ1(b
k
20 − bk

10)

6
− bk

20)

= λ0
bk

40 − bk
20

2
+ 2λ1(b

k
20 − bk

10) = λ0(b
k
30 − bk

20) + 2λ1(b
k
20 − bk

10).

Right : λk
0u

k
2 + 2λk

1u
k
1

(10)
= λ0(b

k
30 − bk

20) + 2λ1(b
k
20 − bk

10).

This completes the proof. |||

Lemma 4. If n0 6= 4 = nk then (2) holds.
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Proof For the leftmost segment, ℓ = 0, (11) holds by Lemma 2; and (12) and
(13) have already been verified in Lemma 3. For the rightmost segment, ℓ = 2,
Lemma 1 applies. We need only verify (2) for the middle segment, ℓ = 1. By
the formulas in 3c., the third derivative of the middle boundary curve segment
is

bk
30−3bk

40 + 3bk
50 − bk

60 =
bk

20 + bk
40

2
− 3bk

40 + 3bk
50 −

bk
50 + bk

70

2

=
bk

20 − 5( 41
25b

k
20 + 4

25b
k
70 −

4
5b

k
10) + 5(36

25b
k
20 + 9

25b
k
70 −

4
5b

k
10) − bk

70

2
= 0. (15)

That is, this segment is of degree 2 and can equivalently be defined by coefficients

b
[2]
j0 of the polynomial in quadratic BB form:

b
k[2]
30 := bk

30, b
k[2]
40 :=

3bk
40 − bk

30

2
=

3bk
50 − bk

60

2
, b

k[2]
50 := bk

60. (16)

By (9), αk
1(u) = λk

1(1− u)2 is a quadratic function and λk
2 = λk

3 = 0 (λk
0 and λk

1

are given near (9)). For ℓ = 1, (12) and (13) specialize to

9(vk
µ + wk

µ) = 2λk
ℓ u

k[2]
µ , µ(ℓ) = 4 (17)

3(vk
µ + wk

µ) = 0, µ(ℓ) = 5, (18)

where u
k[2]
µ = b

k[2]
µ+1,0 − b

k[2]
µ0 .

We verify (17),

Left : 9(vk
4 + wk

4)
4c.
= 18(h2 − bk

40) = 18(
λk

0
bk

70−bk
50

2

12
) =

3λk
0(bk

70 − bk
50)

4
,

Right : 2λk
1u

k[2]
4 = λk

0(b
k[2]
50 − b

k[2]
40 )

(16)
=

3λk
0(bk

60 − bk
50)

2
=

3λk
0(bk

70 − bk
50)

4

and (18),

Left : 3(vk
5 + wk

5)
4c.
= 3(bk

50 +
1

2
(b̃k

51 − b̃k−1
15 ) + bk

50 +
1

2
(b̃k−1

15 − b̃k
51) − 2bk

50)

= 0.

This completes the proof. |||

3.3. Overall Smoothness

Since the tensor-product spline patches are of degree bi-3 and have at most
double internal knots, they are internally parametrically C1. Together with
Lemma 3 and Lemma 4 this implies the claimed smoothness. In particular, by
Lemma 1, ordinary patches join C2 with extraordinary patches. We summarize.

Theorem 1. A surface generated by the algorithm is C1; and it is C2 across
regular edges.
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4. Examples

In a large model, such as Figure 7 and Figure 1, an overall shape impression
dominates. To test the shape of the surface construction and illustrate its proven
properties, we therefore focus intentionally on small synthetic examples where
the shape can be predicted.

Figure 4, top, illustrates that the construction is well-behaved for some ge-
ometrically un-symmetric configurations of valence 3,4,5 and 6. We chose un-
symmetric configurations since geometrically symmetric input can hide conti-
nuity defects. The neighborhood of the vertex of valence 6 a form of ‘mon-
key saddle’. We do not see the shape deficiency, a flat region, that according
to [PF09]any bi-3 construction with quadratic α at the vertices (e.g. PCCM,
[GZ94, vW86]) must have. The refinement of the quad mesh in Figure 4, bot-
tom, illustrates the localized nature of the 3× 3 split near extraordinary points:
(e) and (g) show the corresponding q and b patches for regular and irregular
quads. That is, each (randomly chosen) color corresponds to one polynomial
piece (cf. Figure 1). In tensor-product regions, the construction yields just a
standard bi-3 tensor-product C2 spline surface. Figure 5 allows us to look in
more detail at the transition between standard bi-3 C2 tensor-product splines
(center region of the lozenge-shaped test example) and the construction for an
irregular quad. Despite the T-corners, the Gaussian curvature shading attests
to the C2 continuity of the transition. This is trivially so since the construction
simply subdivides, and then (cf. Steps 1–5) does not perturb the control net
of the three sub-patches in the 3 × 3 arrangement bordering on the standard
bi-2 C2 tensor-product spline. The T-junctions present no problem since the
surfaces are mathematically C2. For example, if we evaluate with uniform pa-
rameter spacing, we can simply evaluate the standard bi-3 C2 tensor-product
splines three times more finely to match points. Figure 5 (d) and (e) allow us
to compare the current construction and the construction according to [FP08].
Juxtaposing Gaussian curvature shading, we notice that the construction of
the present paper improves the transition between regular and irregular quads.
Figure 6, represents not only a basic check, but illustrates in (d) the option
to locally interpolate the quad net by setting q00 to the vertex position (see
Section 2.4).

5. Discussion and Extensions

In applications such as surface reconstruction, many more knots and there-
fore polynomial pieces per quad may be needed to fit given data. By inserting
knots in the bi-3 tensor-product spline patch of this paper, we can refine the rep-
resentation of the patch. All interior coefficients are then freely adjustable to fit
the data. For example, by augmenting κ2 to (0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 9, 9),
all coefficients with Greville abscissae i, j, 1 < i, j < 8, can be freely chosen. We
note that according to [PF09, Thm 1]inserting single knots in a bi-3 construc-
tion does not add degrees of freedom to the boundary curves. This is a general
and not a specific restriction of the present construction.
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For some combinations of vertex valences, the number of knots could be
lowered still to just one internal knot. For example, when n0 = n1 on opposing
edges then one internal knot suffices to construct a smoothly connect patch.
However, this would create many special rules, or severely restrict the class of
input meshes [PF10]. But minimizing the number of knots may not be the
main argument for using the present algorithm over other bi-3 constructions.
The main improvement of the presented algorithm over [Pet00, GZ94, vW86] is
not the lower number of polynomial pieces, but the improved shape for higher-
order saddles. The key to this is the reparameterization at the vertices: both αk

0

and αk
2 in (8) or (9) are linear, allowing for degree 3 boundary curves emanating

from the vertex. By comparison [Pet00, GZ94, vW86] use quadratic αk
0 and αk

2

to quickly switch from G1 constraints to C2 continuity across the boundaries.
At higher-order saddle-points, using quadratic αk

0 for a bi-3 construction will
lead to flat spots [PF09, Lemma 5]. So, the Ansatz in [Pet00], [GZ94, (4.3)] or
[vW86] cannot always yield good shape at higher-order saddle-points. The new
algorithm does not suffer from this source of shape deficiency.

We note that all coefficients qij are convex combinations of the input data;
and all coefficients bij are at least affine combinations: that is, on setting the
input data to 1, the formulas output 1. Note for example, that in Step 2,
∑n

l=1 δ1 =
∑n

l=1 ωncl
n = 0 and similarly for the sum of the δ2 and of βi, for

i = 1, 2.

6. Conclusion

We presented explicit formulas for constructing the B-spline coefficients of a
C1 surface. The formulas are intended to make it easy to implement the surface
construction and reproduce the results. We know to date of one commercial
package that has adopted this construction for extraordinary points. Vertex
positions and tangents are either set, by default, approximating Catmull-Clark
subdivision surfaces, or they can be set to match existing data. The latter
reminds of Catmull-Rom splines. While the underlying machinery is not new
but classic, the new construction deserves attention since, among bicubic spline
surface constructions with one spline patch per quad, it uses the fewest number
and multiplicity of internal knots (hence polynomial pieces) to allow for an
unbiased G1 construction with n-valent vertices without flat regions near higher-
order saddles.
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Figure 7: Views of the airplane model in Figure 1: from left to right: quad mesh, shaded,
highlight lines.

Figure 8: From left to right: quad mesh, shaded, zoom view.
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