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 An efficient construction algorithm for RP layered model is proposed based on 

LDNI. 

 Solid is converted into LDNI representation which is a layered and ordered point 

cloud. 

 Boolean operation is performed on 1D segment in LDNI. 

 Loops are constructed according to three simple rules. 

 Mesh with 2 million triangles can be sliced in 2.5 seconds. 

*Highlights



Efficient Slicing Procedure based on Adaptive Layer Depth 

Normal Image 

Long ZENG, Lip Man-Lip LAI, Di QI, Yuen-Hoo LAI, Matthew Ming-Fai YUEN 

Department of Mechanical Engineering, Hong Kong University of Science and Technology,  

Hong Kong SAR, P.R. China 

Abstract: 

In layered modeling for rapid prototyping of products, compromising slicing accuracy and time is 

a critical issue. Based on adaptive Layer Depth Normal Image (LDNI), this paper proposes an 

efficient algorithm to achieve this compromise for complex Constructive Solid Geometry (CSG) 

models. First, each primitive at the tree leaf is converted adaptively into a LDNI solid whose 

Boolean operation can be performed efficiently. Then, a layered model is constructed directly 

from the Booleaned LDNI solid since it is actually a set of layered and ordered point cloud. In 

addition to speed, efficient use of memory is also taken into account in design of the adaptive 

LDNI algorithm. The capability and efficiency of this slicing algorithm are demonstrated by 

examples. 

Keywords: rapid prototypes, layer manufacturing, layer depth normal image, constructive solid 

geometry. 

1. Introduction 

Rapid prototyping (RP) is an important technology in support of product development. In a RP 

process, a solid model is created and sliced into layers and output to a RP machine via a STL 

model. As a STL model is a piecewise approximation of a solid model, there exists a trade-off 

problem: accuracy and efficiency. Accuracy issue arises in RP when a solid model surface is 

tessellated. This can be controlled by the chordal error [1] which is the maximum shape 

difference between the tessellated model and the original model. The efficiency is mainly the 

time cost of slicing algorithm in preparing the data for layer-by-layer deposition. As slicing 

algorithms for STL model are based on triangle-plane intersection algorithms, the accuracy and 

efficiency trade-off is apparent when the tessellated elements increase. Such trade-offs can be 

highlighted in complex tessellated CSG models such as the ring model shown in Fig. 1a. The 

model is tessellated with a chordal error of 2 m, the total number of triangles is 1102632. In 

conventional RP procedure, a mesh-based Boolean operation need to be performed first (Fig. 1b) 

before it is sliced into a layered model (Fig. 1c). However, the mesh Boolean process is usually 

time-consuming, and the resulted Boolean model could be ill-constructed with defects, such as 

gaps, degenerated facets, etc. 

LDNI [2] generates a layered point cloud model. It is an extension of LDI (Layered Depth 

Image) by assigning a unit normal vector to each of the sampled intersection points. LDI shoots 

an array of rays against the solid model and registers the multiple intersection points for each ray 

[3]. It can equally apply to a mesh model or a surface model efficiently with acceleration of 

standard graphic cards using standard OpenGL functions [4]. 

In this paper, an efficient adaptive LDNI slicing algorithm is proposed to achieve a 

compromising solution for the aforementioned trade-off problem. Firstly, adaptive Boolean 

operation is applied to the 1D segments of the adaptive LDNI sampled solids. Secondly, layered 

loop construction is applied to the Booleaned LDNI solid consisting of layered ordered point 
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cloud.  

 
 

Fig. 1. Normal slicing procedure for a CSG ring model: (a) original model before Boolean; (b) 

Booleaned model; (c) sliced model 

 Section 2 of the paper reviews the related work on the slicing technique. An overview of the 

adaptive LDNI slicing algorithm is presented in section 3. The two major components of the 

adaptive LDNI slicing algorithm, adaptive LDNI Boolean and layered-loop construction, are 

detailed in section 4 and section 5 respectively. Efficiency of the algorithm is discussed in section 

6 with support of examples. Finally, section 7 gives a summary and future work. 

2. Related work 

Rapid prototyping is an efficient technology to convert a digital model to a physical model using 

the layered deposition technique [5]. The slicing procedure is an integral step of the RP process, 

consisting of model creation, slicing, path generation, layer-by-layer deposition, and post 

processing [6]. STL model is the most commonly form of RP input. In preparing a layered model, 

the accuracy and efficiency are always the major concern. The solutions addressing this concern 

can be generally classified into four categories. 

 The first category is adaptive slicing, which enhances the slicing efficiency by reducing the 

number of layers. The adaptive slicing algorithm generates a variable slicing thickness given the 

local surface geometry or a given smoothness requirement. Dolenc and Makela [7] proposed the 

cusp height, which is a widely accepted concept, to describe the maximum deviation in RP 

manufacture. Within the user given maximum allowable cusp height, the thickness of current 

layer is predicted by point normal around the boundary of the last horizontal plane. Sabourin et 

al. [8] adopted the cusp height as a criteria and computed each slab thickness by recursive 

subdivision until the layers thickness under a given tolerance. This was further extended by Yan et 

al. [9], who obtained a higher efficiency using a non-uniform cusp height as a criteria. Mani et al. 

[10] proposed a region-based adaptive slicing, where the given model surface is classified into 

critical surfaces which are adaptively sliced, and non-critical surfaces, such as part interior, which 

are sliced using the maximum allowable layer thickness. Although adaptive slicing can alleviate 

the staircase quality problem and improve the slicing efficiency, the approximation error still 

exists during the tessellation step. Thus, adaptive slicing techniques are always used in 

combination with direct slicing techniques (see the hybrid category for more details).  

 The second category is direct slicing, which generates contours directly from the original 

input model without any model representation conversion. It avoids the approximation error that 

happens in the tessellation step. For NURBS models, Rajagopalan et al. [11] proposed a direct 

slicing method using the complete geometric representation. For freeform surfaces, Chakraborty 

(a)  (b)  (c)  



et al. [12] output a layered file directly based on a surface-plane intersection algorithm. For point 

cloud models, Liu et al. [13] proposed an error-based segmentation method for direct RP. The 

point cloud data is first subdivided into regions and feature points are identified in each region. 

These feature points are used to construct an intermediate point-based curve model, where the 

RP layer contours are directly extracted.  This method is further improved by Kumbhar [14] and 

applied to reverse engineering. The point cloud considered by Liu et al. and Kumbhar is 

unordered. However, in practice, points in some model representations are ordered and layered, 

such as the point cloud from medical scanning (see section 4.1). Whatever the input, be it a STL 

model; a surface model or a CSG model, it can be efficiently converted into a LDNI model with 

controllable conversion error using built-in graphic card acceleration. 

 The third category is extra-interpolation slicing, which usually fits the layered polygon 

contour with a biarc curve or a NURBS curve to improve the contour precision [15]. To reduce 

errors between the fitting curve and the sectional curve sliced from the original CAD model, Zhao 

et al.[16, 17] proposed a two-step method. The first step is to compute an interpolation curve to 

approximate the original curve in its normal section using the position of the two vertices and 

their tangent vectors. Then, points of the slice contour are obtained by calculating the 

intersection points between the interpolation curve and the slice plane. 

 The last category is the hybrid slicing algorithms, which are combinations of the above three 

slicing techniques. Since direct slicing technique can avoid the major approximation error 

occurring in the tessellation process and the adaptive slicing technique can improve the slicing 

efficiency, they are usually combined. Wu et al. [18] proposed an adaptive slicing algorithm for 

point cloud data. It projects all points between two consecutive horizontal planes into a 

mid-plane. These projected plane-points are then fitted by a polygon curve and the shape error is 

expressed as the distances between the points and the polygon curve. If the computed shape 

error is less than a user-defined threshold, then the current layer thickness is increased until this 

shape error is very close to the threshold value. However, the shape error definition is not 

invariant under point density. Yang et al. [19] and Qiu et al. [20] proposed an adaptive slicing 

algorithm based on curvature information of a MLS (Moving Least Square) surface. For NURBS 

surface, Ma et al. [21] also combined an adaptive scheme according to surface curvature 

information. 

The proposed adaptive LNDI algorithm has the ability to directly slice CSG solids robustly and 

efficiently. Similar work was done by Sashidhar et al. [22], which constructs a layered model 

directly by computing planar analytic intersection curves while hierarchically traversing the CSG 

tree. Their method is limited to several regular CSG primitives since it is time-consuming to 

compute an analytic intersection between a free form model and a plane. Yan and Gu [23] 

proposed a more efficient method based on a ray tracing technique, where the intersection 

between a ray and a primitive were computed efficiently. This idea was further extended by W. K. 

Chiu, et al. [24] and W. M. Zhu et al. [25], where each primitive is represented in a ray 

representation, dexel. Thus, the Boolean operation for dexel model is also simplified from 3D to 

1D segments Boolean operation. The proposed adaptive LDNI algorithm has the advantage over 

these algorithms in that each CSG primitive is represented as an adaptive LDNI, which have 

sample point normal information to enhance the algorithm’s robustness. An additional advantage 

is the proposed algorithm is memory efficient as adaptive LDNI only stores each primitive’s 

sample points in its own range.  



In the proposed adaptive LDNI slicing algorithm, the input model is assumed to be a 

homogeneous object while discussion of slicing technique for heterogeneous objects can be 

found in [26]. The slicing direction in the proposed prototype system can be set manually to 

axis-aligned direction or automatically after Byun et al. [27]. 

3. Overview 

For resolving the above compromising issue, a new slicing procedure based on adaptive 

LDNI is proposed. The algorithm requires a preset slicing direction and consists of two steps 

which are illustrated with a simple CSG tree model shown in Fig. 2:  

 Adaptive LDNI Boolean 

Each component in the CSG model (Fig. 2a) is converted into a LDNI solid, adaptively 

(Fig. 2b) assisted by graphic card acceleration. The depth and normal information of 

each intersection point between the LDNI ray and the primitive are read directly from 

the pixel’s depth and color buffer respectively. Thus each component can be tessellated 

with small approximation error and minimum loss of efficiency as no triangle-triangle 

intersection computation is necessary. Instead, the traditional 3D mesh Boolean 

operation is converted into 1D segments Boolean operation. It is more robust since the 

normal information in LDNI solid can help the point membership classification process 

(Fig. 2c).  

 Layered loop construction 

Since the input point cloud from the first stage is a layered, ordered, and classified 

point cloud (IN: red point; OUT: green point, shown in Fig. 2c), each layer-loop can be 

easily obtained by connecting the points with the assistance of the 1D neighborhood 

information (Fig. 2d). The 1D neighborhood information is derived from the universal 

continuous principle (introduced in section 5).  

 

Fig. 2. Overview of the efficient slicing procedure based on adaptive LDNI 

 Compared with the previous mesh based slicing procedure under the same accuracy, the 

efficiency of the proposed slicing algorithm is manifested by its lower storage and much less time 

to generate a layered model (in .SLC file format) for fabrication, even for a complex CSG product. 

4. Adaptive LDNI Boolean 

Suppose the input model is a faceted surface model whose tessellation is controlled by chordal 

error λ (shown in Fig. 3a), defined as the Hausdorff distance between the tessellated model and 

the original model. The facet number will increase dramatically when λ decreases. For a sphere 



with radius 1mm shown in Fig. 3b to Fig. 3c, the mesh facet number increased from 1572 faces to 

20052 faces while λ is changed from 0.01mm to 0.001mm. Thus, an efficient LDNI Boolean 

operation with slicing procedure is introduced, which is dependent on the ray resolution but 

almost independent of the facet number. 

       

 

Fig. 3. Chordal error based tessellation for a sphere with a radius of 1mm 

4.1. Adaptive LDNI solid 

LDNI solid is a layered point cloud model constructed efficiently with the help of a graphic card’s 

rendering pipeline. First, it renders the input model under a special rendering configuration. Then 

it is sampled with a certain resolution, denoted as LDNI resolution. In practice, LDNI resolution is 

represented by two variables: layer thickness, Dlayer, and ray width, Dray. As shown in Fig. 4a, if the 

left-bottom point of the sphere’s Enlarged Bounding Box (EBB) is (0, 0) and right-top point is 

(Width, Height), then the view-port is a screen rectangle which contains an array of Total_rays 

rays in the horizontal direction and Total_layers layers in the vertical direction. The Total_rays and 

Total_layers are computed by 

,      (1) 

Where Width and Height are the width and height of the EBB. In the following example, the 

rendering environment configuration is specified by LDNI resolution, Width, and Height.     

The unsorted depth and normal value is read from the depth buffers and color buffers. A 

detailed view of the ith layer in Fig. 4b shows that the depth value and the normal vectors (blue 

arrow at point A and B) are retrieved. The coordinates (x, y, z) of a sample point A on the jth ray 

in the ith layer can be computed as: 

x = j /Total_rays*Width of EBB        (2) 

y = depth value of A*Depth of EBB        (3) 

z = i /Total_layers*Height of EBB        (4) 

Where Depth is the depth of the EBB.  

 

(a) Chordal error λ (b) λ=0.01mm, 1572 faces (c) λ=0.001mm, 20052 faces 

(a)  (b)  



 

Fig. 4. Adaptive LDNI solid generation. (a) Rendering environment setup, ray direction is 

perpendicular with the paper; (b) detailed view of the ith layer (IN: circular point; OUT: triangular 

point). 

In this paper, there are several major modifications compared to the previous LDNI 

techniques [2, 3, 28] since it is applied to slicing procedure. 

 Firstly, a single LDNI is adopted instead of the original three LDNIs (x-LDNI, y-LDNI, and 

z-LDNI) for speed efficiency. This is because a much higher resolution is used (800*800 in most 

cases) in the slicing procedure. Though some small features (gap or thin-shell) will be lost, this is 

acceptable in RP since such a small feature cannot be processed in RP. 

 Secondly, the original LDNI is modified into a memory efficient technique, denoted as 

adaptive LDNI. In a CSG model with multiple components, the Normal LDNI adopts the Global 

EBB (GEBB), as shown in Fig. 5, which contains all the components instead of the LBB (Local 

Bounding Box). And the ray correspondence is automatically created. However, the amount of 

memory space required by each LDNI solid becomes a problem when the component number 

increases. For example, for a sphere in 800*800 LDNI resolution (this resolution is normal in our 

projects), the data from depth buffer (4 bytes) and color buffer (3 bytes) need to be stored in a 

LDNI solid. The storage needed is about 4.5MB (Megabytes). If the CSG model is composed of 

400 components and each component needs two depth buffers (at least), 3600MB will be 

required to store the LDNI solids. This is a considerable burden for desktop computers (this 

component scale is not unusual in items such as jewelry design). Therefore, the Adaptive LDNI is 

proposed to store only the necessary information for each component. Taking the CSG model 

shown in Fig. 5 for example, it contains components A, B, and C. For each component, when it is 

converted into a LDNI solid, only the data whose corresponding pixel contained in its LBB is 

stored. Thus, our scheme is to create a map between the GEBB and LBBs. This can be easily 

achieved by recording a pair of index (rayStartIndex, layerStartIndex) for each LBB. Such as for C 

component,  

rayStartIndex—the ray index in GEBB of the ray which first intersect with C. 

layerStartIndex—the layer index in GEBB of the layer which first intersect with C. 

Then, the corresponding global position of the ith local ray in C can be computed by 

(rayStartIndex +i) th ray. 

 
Fig. 5. Adaptive LDNI converts an object in its LEBB instead of the GEBB. 

 Thirdly, intersection points are classified into IN/OUT with the help of normal information 

from LDNI (this is similar to the method used in dexel model [24, 25]). As shown in Fig. 4b, the 

blue arrows are the unit normal vectors of the sample points, and the gray arrow is the ray 

direction. If the dot product between a sample point’s normal vector and the ray direction vector 



is less than zero, then this sample point is colored as IN (circular red color, such as sample point 

A); otherwise, it is classified as OUT (triangular green color, such as sample point B). These 

classified points are useful in the loop construction step.  

4.2. LDNI Boolean 

The LDNI Boolean is performed layer-by-layer and ray-by-ray. The 1D ray Boolean operation is 

computed by hierarchically traversing the CSG binary tree. The ray intersection mainly consists of 

three steps (shown in Fig. 6): firstly, classify the end points of intervals rA(i, j) with respect to the 

intervals rB(i, j) as outside/inside; intervals rA(i, j) means the intervals on the ith ray of the jth layer 

of primitive A. Secondly, do the same classification for the end points of rB(i, j) with respect to the 

intervals rA(i, j). Finally, construct the resultant intervals according to the following rules: 

 If rA(i, j) union rB(i, j), keep the outside end points of both rA and rB. 

 If rA(i, j) intersect rB(i, j), keep the inside end points of both rA and rB. 

 If rA(i, j) subtract rB(i, j), keep the outside end points of rA and inside end points of rB. 

 If rB(i, j) subtract rA(i, j), keep the outside end points of rB and inside end points of rA. 

The outside/inside classification is only conducted on the Depth coordinate since the rays 

with the same global index have the same width and height coordinates.  Thus,  is considered 

inside the interval  when  and ;  is outside the interval 

 when  and , where =10e-4 is chosen in our implementation. 

The special cases happen when  or . However, this can be handled 

easily using the neighborhood information [29] with the help of normal information of each 

sample point. An illustration of the LDNI Boolean operation is given in Fig. 6. 

 

Fig. 6. Ray Boolean operation (IN: circular point; OUT: triangular point) 

Fig. 7 is a simple example demonstrating the application of the adaptive LDNI solid and LDNI 

Boolean operation introduced in this section. Since the LDNI solid is constructed by putting a 

single camera at the scene (left to right in this example), some of the points in the perpendicular 

direction at the base of the Athena model (Fig. 7a) are lost (Fig. 7b and Fig. 7c). However, this can 

be handled successfully in the post loop construction process. 



 

 

Fig. 7. LDNI Boolean results of Athena subtracting a torus 

5. Loop construction 

The main purpose of loop construction is to find the correct connectivity for each sample point.  

5.1. Rules for loop construction 

Several simple rules are proposed to lay down the mathematical foundation for loop 

construction. 

Definition 1 Continuous 1D-neighborhood: On a line (Fig. 8a), the continuous 1D 

-neighborhood for a reference point is an open interval, which is the intersection between the 

line and an open disk centered with the given point and radius . 

According to the continuity definition in calculus, the point number in its -neighborhood is 

infinite and if the reference point is tagged, there exists a small positive value , and all the 

points in the -neighborhood must have the same point type with the reference point.  

If this definition is extended to a 1D discrete set, we get 

Definition 2 Discrete 1D-neighborhood: In a discrete set on a line (Fig. 8b), the discrete 1D 

-neighborhood for a reference point is a finite point set, where  is the sample resolution with 

. 

Here,  is to guarantee that a point’s -neighborhood is not an empty set. For the case 

of a partial neighborhood, either the left- or right-neighborhood may be empty. In such case, the 

reference point is called the turning point, such as the points on the first or last ray. This case will 

be handled differently in the loop construction process. Thus, similar properties for the reference 

point can be derived from definition 2:  

 If a reference point is an internal point, there exists one left and one right nearest point 

having the same point type as the reference point. 

 If a reference point is a turning point, there exists one left or one right nearest point 

having the same point type as the reference point.  

 

(a) Athena subtract torus (b) LDNI solids  (c) LDNI Boolean result 



 

Fig. 8. 1D-neighborhood for (a) continuous and (b) discrete cases 

Now, three simple rules for loop construction are introduced.  

Rule 1 Manifold principle: the input model is a valid manifold mesh model. 

 Manifold mesh model means each ray must intersect the model even times (even number of 

times) and each point must have two connections to its left and right point. A valid manifold 

mesh model further restricts the input model to have no small features whose dimensions are 

less than the sample resolution . Otherwise, these small features will be ignored in the 

resulting RP model. The resolution is chosen to be better than the accuracy of most major RP 

machines. Additionally, this rule also implies the given model has a consistent orientation. It is 

important since the normal is used for the point type classification and to improve the algorithm 

robustness.  

Rule 2 1D-neighborhood principle: In a valid manifold model, a point on an internal ray may 

find its two connections at the two nearest neighborhood points on adjacent rays with the same 

point type (IN or OUT) under the prerequisite that there are no other points between them. 

 A simple illustration of this principle is shown in Fig. 9. P1P2 is a valid connection. However, 

P1P3 is not since P4 is located between P1 and P3. In a LDNI solid, the principle can be derived from 

definition 2 and rule 1.  

 
 

Fig. 9. Find point connectivity using the 1D-neighborhood principle 

In order to find the two connections of a turning point, we have, 

Rule 3 Half 1D-neighborhood principle: for a turning-point, one connection can be found on 

its left or right next ray according to rule 2. The other connection can be found on the nearest 

point on the same ray. 

 As shown in Fig. 10a, one of the connections of the turning-point P1 is found, point P3, on 

the next ray according to rule 2, and the other, point P2, is found on the same ray according to 

rule 3. 

5.2. Loop construction 

Before constructing the loops in each layer, the connections of each point are found. Since the 

input is a manifold model (rule 1), each point should only have two pointers: pre and post. If a 

CSG model has multiple loops in a single layer, it may be difficult to detect the turning-points. A 

better way is first finding the pre and post pointers for each point according to rule 2. Then, the 

connectivity of each point is checked. If its connections are less than two, we apply rule 3. After 

these two steps, each point (shown in Fig. 10a) can find valid points as its pre and post 

connections. If there are still points whose connections are less than two, they will be considered 

as invalid points and ignored (this may happen if the model has some defects). 

After the connections of each point are found, loops are constructed by tracing the point’s 

(a) Correct connection (b) Incorrect connection 



connectivity information, as shown in Algorithm 1.1. The neighboring point in a loop is connected 

with a polyline, as shown in Fig. 10b. 

Algorithm 1.1 Layer-loop-construction 

While (there is still an unused point) 

Create a new loop, Lnew. 

Start point, Ps, is selected as an arbitrary point, and flagged as used. 

Do  

The next point Pn = Ps->post. 

If Pn is not NULL and unused 

 Add to the new loop Lnew and flag as used. 

While (Pn not equal Ps) 

 
 

Fig. 10. Loop construction for one layer of the sphere in Fig. 4 

6. Experimental results and discussions 

This slicing algorithm has been tested in the commercial software JewelCADPro [30]. Several tests 

are used to demonstrate the main features of this algorithm (Note that all the tests mentioned in 

this paper are run on a Window XP system PC with Intel® Core™ i5 CPU750@2.67GHz, 2.86GHz, 

and 3GB RAM).  

 TC is the time used to convert all primitives to adaptive LDNI solids according to the method 

described in section 4.  

TL is the time used to construct the layered loops using the method described in section 5.  

TT is the total time cost, equal to TC plus TL. 

 The slicing direction can be selected from one of the standard axes for models in 

JewelCADPro.  

This section starts with some examples to show the main features of our algorithm. Then it 

is applied to two complex CSG models to demonstrate the algorithm’s capability and efficiency. 

We also compare the speed of our algorithm with that of InfinySlice [31] and Rhinoceros [32]. 

The Width, Height, and LDNI resolution for each example model are given. The unit for each 

model’s dimension is in millimeters (mm). For RP process, it is useful that the layer number can 

be computed indirectly from the parameters given. In the efficiency comparison of the 

algorithms, the layer number for the output layer model is adjusted to be equal. 

6.1. Examples  

The first feature is that the algorithm’s speed efficiency is almost independent of the mesh 

density which relates to the chord error. This is tested and verified by the ring model shown in Fig. 

11. The LDNI resolution is fixed to 0.0762mm*0.0762mm and the mesh density is varied (Fig. 

(a) Find connections according to rule 2 and rule 3 (b) Connected loop 



11b). The algorithm time cost is listed in Table 1. From the table, the conversion time TC increases 

marginally since the LDNI solid conversion process needs to access all the face information on the 

original mesh model. However, the time cost on loop construction TL is almost constant since it 

only depends on the node number of the LDNI solid, which is only controlled by sample 

resolution. Therefore, the original surface model can be tessellated finely to decrease the 

approximation error while having little reduction in slicing efficiency. This model is also used to 

compare the algorithm efficiency against Rhinoceros, and InfinySlice.  

 

 

Fig. 11. A ring model is used to test the effects of chordal error (λ) on the algorithm speed (LDNI 

resolution: 0.0762mm*0.0762mm; Width is 19.96mm, Height is 21.0mm) 

Table 1 Statistical data of Fig. 11 to show the effects of mesh density (LDNI resolution: 

0.0762*0.0762) 

λ (mm) Triangle # 
Our algorithm InfinySlice Rhinoceros 

TC (s) TL (s) TT (s) TT (s) TT (s) 

0.1 1,530 0.109 0.188 0.297 1 < 1 

0.01 17,308 0.156 0.172 0.328 2 2 

0.001 113,692 0.266 0.187 0.453 5 13 

0.0001 1,401,978 2.313 0.187 2.500 13 106 

 The second feature is that the LDNI resolution is a key factor affecting the slicing algorithm 

efficiency. This is tested by the horse model shown in Fig. 12. From the statistics given in Table 2, 

we know that the layer construction time TL is almost proportional to the LDNI resolution. When 

the LDNI resolution becomes nine times finer, from 0.0381*0.0381 to 0.0127*0.0127, the layer 

construction time increases about nine times, from 485ms to 3984ms. This is because the layer 

construction algorithm introduced in section 5 has linear complexity with respect to the 

intersection point number which is determined by LDNI resolution. The LDNI conversion time TC 

also increases since the conversion process not only depends on model’s mesh complexity, but 

also on the LDNI resolution since an LDNI solid mainly stores the depth and normal information 

(a) Original model (d) Sliced model-3D view (c) Sliced model-front view 



which is proportional to the LDNI resolution. In the following example models are tessellated by 

chordal error λ=0.001. 

The third feature is the algorithm can be applied to a complex CSG model and its primitives. 

As shown in Fig. 13, the proposed slicing algorithm is directly applied to the complex CSG model 

(Fig. 13a). Since it has 55 primitives, the total number of mesh triangle is 1.2 million if each primitive 

is tessellated with a chordal error λ=0.0001. This will take several hours for the mesh-based Boolean 

operation. However, the proposed slicing algorithm can output a RP model (.SLC file) in about 11 

seconds. In the implementation, there are two methods to create a CSG Boolean tree. One is to select 

the entity pair, and then assign a Boolean operator to them but without carrying out the actual 

Boolean operation. The other is to perform actual Boolean operation using a very coarse mesh and 

record the Boolean operation order in a CSG Boolean tree. Another CSG example is shown in Fig. 16. 

 

 

Fig. 12. A horse model is used to test the effects of LDNI resolution on the algorithm speed (LDNI 

resolution: 0.0762*0.0762; Width is 19.25mm, Height is 16.04mm) 

Table 2. Statistical data of Fig. 12 to show the effects of LDNI resolution on the algorithm speed 

LDNI resolution (mm) TC (ms) TL (ms) TT (ms) 

0.1524*0.1524 359 63 422 

0.0762*0.0762 406 140 546 

0.0381*0.0381 562 485 1047 

0.0127*0.0127 2328 3984 6312 

The fourth feature is that the algorithm is memory efficient. Compared with the Normal 

LDNI, the adaptive LDNI is much more memory efficient since only the necessary information is 

stored in each LDNI solid. This is a more obvious problem when it is applied to complex CSG 

models with many small primitives/components, such as Fig. 13 and Fig. 16. Their memory usage is 

given in Table 3. In addition, the algorithm speed also has minor improvements since the 1D segment 

Boolean only performed in the local EBB area. 

(b) Original model (d) Sliced model-3D view (c) Sliced model-front view 



  
 

 
 

Fig. 13. A ring model composed of 55 components (LDNI resolution: 0.0762*0.0762; Width is 

20.61mm, Height is 24.40mm) 

Table 3 Storage and speed comparison between Normal LDNI and Adaptive LDNI 

Model LDNI resolution (mm) 
Normal LDNI Adaptive LDNI 

TT (s) RAM(MB) TT (s) RAM(MB) 

 

Fig. 13 

0.1524*0.1524 5.4 6.45 4.8 0.39 

0.0762*0.0762 10.5 27.26 10.1 1.89 

0.0381*0.0381 32.3 130.47 28.0 8.95 

0.0127*0.0127 232.3 1289.03 215.7 86.50 

Fig. 16 

0.1524*0.1524 4.3 1.38 4.0 0.05 

0.0762*0.0762 5.1 5.6 4.9 0.25 

0.0381*0.0381 7.3 22.12 6.5 1.11 

0.0127*0.0127 26.6 216.11 19.4 10.38 

To illustrate the application of the adaptive LDNI slicing algorithm, the sliced model of two 

commonly used benchmark models “Angel” and “Happy Buddha” are shown in Fig. 14 and Fig. 

15. 

(a) CSG model (b) Booleaned model with texture 

(c) Sliced model-front view (d) Sliced model-3D view 



 

Fig. 14 Sliced Angel model (LDNI resolution: 0.0762*0.0762; Width is 14.88mm, Height is 

22.09mm) 

 
Fig. 15 Sliced Happy Buddha model (LDNI resolution: 0.0762*0.0762; Width is 7.68mm, Height is 

11.64mm) 

6.2. Comparison 

The speed of our slicing algorithm is compared with the slicing algorithm of InfinySlice and 

Rhinoceros 4.0. InfinySlice is a popular and efficient slicer. Rhinoceros is selected since it has the 

same NURBS library openNURBS [33] with our test prototype JewelCADPro, which may minimize 

the data access difference. Both software packages have the same layered model output format 

(.SLC file). 

 The simple ring model shown in Fig. 11 is selected as the test model since the slicing 

algorithm in InfinySlice and Rhinoceros are not designed for CSG solid. The ring model is 

tessellated under different chordal errors and exported as STL files from JewelCADPro. They are 

imported to InfinySlice and Rhinoceros 4.0 evaluation version. All exported .SLC files have the 

same layers and the same file size. The output .SLC file size in JewelCADPro can be adjusted by an 



extra smooth parameter. Thus, we can make the exported .SLC files have the same size under the 

same layer thickness. The time cost in InfinySlice is read directly from its statistical data and the 

time cost in Rhinoceros 4.0 is estimated from the clock since there is no way to read it directly.  

 Based on above configuration, the time cost is listed in Table 1. The slicing algorithm in 

InfinySlice is hardware optimized (parallel computation using multi-core technique) and it is 

much faster than Rhinoceros. But it is about 10 times slower than the proposed algorithm. The 

slicing algorithm in Rhinoceros is mesh based, i.e. intersection points are computed by 

intersecting the mesh model with a set of horizontal planes. The time cost of the slicing algorithm 

depends on the mesh complexity. This is also verified by the data in Table 1. However, the mesh 

complexity has much less effect on the proposed algorithm. From Table 1, it also can be found 

that the proposed algorithm is more efficient than that of InfinySlice and Rhinoceros. It is about 

10~30 times faster than Rhinoceros for normal mesh complexity (10 thousand to 100 thousand 

triangles). If the mesh number increases, this difference will be even larger. 

 

 

 
 

Fig. 16. A submarine pendant made up of 74 components (LDNI resolution: 0.0762*0.0762; 

Width is 11.51mm, Height is 7.36mm) 

6.3. Discussions 

In a CSG model with m primitives, the memory complexity for Normal LDNI is 

, where  is the maximal depth buffer number,  and  are the 

maximum layer and ray number computed from the global enlarged bounding box. Usually, 

parameter m and  are much less than .  and  usually have the same 

magnitude. In the worst case, i.e.  and , the memory cost for the 

slicing procedure is bi-quadratic. Adaptive LDNI has a similar complexity in the worst situation. 

However, its total memory cost is equal to , where  

are all local values of the ith primitive. In most cases,  are much less than 

, thus, the memory usage of adaptive LDNI is much more efficient than normal LDNI. 

 The approximation error during the tessellation process is a major error source for the 

(c) Sliced model-front-view (d) Sliced model-bottom-view 

(a) CSG model (b) Booleaned model with texture 



previous mesh-plane intersection based slicing algorithms. The proposed algorithm can 

successfully alleviate this issue efficiently despite introducing a new LDNI resolution error which 

is controllable. These points are sampled at a certain resolution (sample error). The proposed 

algorithm can strike a compromise and obtain a high speed in very fine LDNI resolution. The 

examples in the paper have clearly demonstrated this. 

7. Summary and future work 

This paper focuses on alleviating the classic trade-off problem between approximation error and 

algorithm efficiency in rapid prototyping. Our method is based on the LDNI solid representation. 

The LDNI solid representation is actually a layered and order point cloud model, which has two 

major advantages in slicing procedure: first, the Boolean operation can be reduced to 1D 

segment Boolean operation which can be performed efficiently and robustly; second, it simplifies 

the layered model construction in the slicing procedure.  

In the proposed adaptive LDNI algorithm, first convert each primitive into an LDNI solid 

adaptively which is accelerated by the graphic card. Then, the 1D Boolean operation on the LDNI 

solid is performed efficiently. Finally, the two connections of each point are obtained according to 

the three prescribed rules and loops are generated efficiently based on each intersection point’s 

connectivity. The normal information in LDNI solid is useful in two aspects: support intersection 

classification and resolving special cases in Boolean operation. In addition, the algorithm is also 

memory efficient since only the necessary data for each primitive/component is stored. The 

efficiency of this algorithm has been demonstrated by applying not only to a single object, but 

also to a complex CSG object. 

 One future improving direction is the topology-preserving slicing procedure with the help of 

normal information in LDNI solid representation. In the current algorithm, if an object has a thin 

gap less than the LDNI resolution and this gap is parallel to the current ray direction, it will be 

ignored. This will lead to a wrong topology in the output layered model.  
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