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Abstract

Existing mesh and voxel based modeling methods encouriteudties when dealing with objects containing cellular stases on
several scale levels and varying their parameters in spde@lescribe an alternative approach based on using redidna@valu-
ated procedurally at any given point. This allows for maadgliully parameterized, nested and multi-scale cellularcstires with
dynamic variations in geometric and cellular propertidse §eometry of a base unit cell is defined using Function Reptation
(FRep) based primitives and operations. The unit cell ia tieplicated in space using periodic space mappings sucandsah
and triangle waves. While being replicated, the unit cefi eary its geometry and topology due to the use of dynamicrpera
terization. We illustrate this approach by several exasipfemicrostructure generation within a given volume or glangiven
surface. We also outline some methods for direct rendenddabrication not involving auxiliary mesh and voxel reggptations.

Keywords: procedural modeling, microstructures, FRep, direct rendedirect fabrication

1. Introduction variable volumetric as well as surficial cellular structire

Modeling of heterogeneous objects with' internal multi-z_ Related works
scale structures has recently become an important area in
CAD/CAM. Traditionally, objects with geometric structures  Existing approaches to modeling microstructures rely @n su
(on micro, meso and nano levels) are represented by discreteces (triangle meshes or NURBS) and voxels [3][4][5]. Many
data structures such as polygonal meshes or voxels. Despit¢ the known problems and limitations of both representegio
recent advancements in algorithms and hardware that atiow f are amplified by the geometric complexity of microstructure
the manipulation, visualization and processing of largeamts ~ These problems become unsolvable within existing appesch
of data, modeling of highly detailed afml complex geometric when nested multi-scale structures are considered. One can
models such as microstructures is still a computationally e mention the following problems: large model size and prsces
pensive task. For simplicity, we discuss microstructur@®h ing time; loss of model validity (due to cracks in surfaces, f
but proposed methods due to their procedural nature can-be agxample); limited precision caused by the approximatereatu
plied on any level to produce multi-scale superimposed@i@s of various models; limited parameterization and operation
structures. modeling of microstructures (such as blending betweercstru

Recently the computational overhead and handling of comtural elements and a shell); and finally issues involvingtalig
plex models invoving microstructures was simplified by gsin fabrication caused by limited model resolutions and comple
function-based modeling [1][2]. Precise parametrizedstmiz-  slicing for fabrication.
tive modeling based on real functions allows for the procadu  This paper deals with function-based approaches [1][2][6]
definition of multi-scale microstructures, which can urgter which provide solutions to most of the known problems that
blending, deformations, metamorphosis and other geometriplague the traditional approaches to modeling in commiercia
operations. Furthermore, function-based models of miros ~ CAD products. An approach to modeling periodical structure
tures can be directly rendered and manufactured without getfbased on a triangle wave space mapping was presented in [6].
erating any auxiliary representations such as polygonahe® This approach was only applied to algebraic surfaces and the
or voxels. modeling of microstructures was not considered. In [1], pe-

In this work we further develop cellular structures present riodic surfaces are defined as isosurfaces of real functions
in [2]. The main contributions of this work include outlign  volving the summation of trigonometric functions of poimt-c
several methods of generating spatial variations in mionos  ordinates. Some geometric operations such as union, éaters
tures: parameterization with point coordinates and des#dn  tion, difference and modulation were defined using/mix
the external shell, metamorphosis betwedtedént unit cells, functions and algebraic operations. Defining only isosa$a
transfinite interpolation betweenfiirent cellular types with instead of solid objects (with the surface separating sautep
given space partitions and recursive multi-scale repboatWe  with different function signs corresponding to each of them)
show applications of the proposed methods for generation adnd using non-dierentiable functions (min and max) prevent
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Figure 1: Replicating functions: a) Sawtooth wave, b) Tgianvave. Period
a = 2 for both functions.

the application of additional operations on a model, such as .
controlled blending. This approach was further developed i
[2], where microstructures are considered as solid obgets
fined by non-negative values of a real continuous functi@n pr
cedurally evaluated at any given point. The initial per@odi
structures, their extensions for set theoretic, contdotiend-
ing and other operations in function representation (FRepg
been combined using R-functions [7]. Regular latticeslueel -t
lar structures as well as non-regular porous structures der

fined within this approach. However, methods for spatiai-var
ation of cellular structures have not been practically tved.

Also, some applications require microstructures to be gead Figure 2: Connectivity types: a) Unit cell for the model wiggometric con-
based on the proximity and features of an object surface. Bearectivity, b) Function field for model in a), c) Unit cell foné model with full
low, we present methods of modeling variable volumetric andonnectivity, d) Function field for model in c).

surficial cellular structures.

wave function for non-symmetric cells and triangle wavecfun
tion for symmetric cells. The definition of symmetry for cell
will be presented below.

. . L e A sawtooth function [8] (see Fig. 1a) can be defined by sev-
As it was shown in [2], cell replication similar to texture eral diferent formulations, for example:

tiling can be applied to any geometric model or part of a model
defined inside a bounding box (called unit cell) such that thi 1t t 1
unit cell is replicated in infinite Cartesian space. For FRep 9(t) = >t (5 - roor(a + 5)) (2)

models, infinite cellular structure can be generated byyappl . . ' .
ing a periodic function defining a space mapping to the FRe%.f? trlartw?Ie Wal"?, [9](s$e Fig. 1b|) can also be defined by using
model of the unit cell geometry. lterent formutations, for example-

Given a geometric point set defined by a continuous real
function f(x,y, 2) on the domail = (Xmin < X < Xmax Ymin <
Y < Vmax Zmin < Z < Zmay and a periodic replicating function ) .
g(t) such agy(t) € [0, 1]vt, the cellular solid model is defined by In 'these functlon's'i represents the penod. .Note that these
the inequalityr(x,y,2) > 0, and its surface (sometimes called functions are modified to comply with requirements of the
implicit surface for historical reasons) is defined by thei@q rlepllcatmg function - i.e. the value of the function lies[Dy

tionr(x,y, 2) = 0 where: 1 . ) o )
As it can be seen, the sawtooth function has periodical dis-

continuities, therefore the resulting cellular model hssah-
r(XY,2 = f(Xmin + 9(X) * (Xmax— Xmin) tinuity on the faces of each cell in the cases where the ulit ce
Yinin + G(Y) * (Ymax— Yanin), 1) has no .connectlvny. We fjlstlngwsh two types of connettivi
in function-based models:
Zmin + 9(2) * (Zmax— Zmin))

3. Function-based cellular structures

i I |
glt) = 5+ —sin l[sm(;rgl)] (3)

_ _ _ _ _ e Geometric connectivity - the objects boundary curves at
The object defined by the functidnon| is called a unit cell. the opposite faces of the unit cell bounding box have to be
Any periodic function can be used as a replicating functji) equal (see Figs. 2a and 2b);

however in practical modeling periodical functions withdar

nature can be used. The reason for this choice is to avoid non- e Full connectivity - the function field is equal on the oppo-
linear deformations of the unit cell during the replicatjom- site faces of the unit cell bounding box (see Figs. 2c¢ and
cess. In this paper we use two replicating functions: sathitoo 2d).
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Figure 3: Non-symmetric unit cell: a) Replication with trgle wave, b) Repli-
cation with sawtooth function.

These types of connectivity can be represented formally.
Given the unit cell defined by the functidifx, y, 2) on the do-
main|, the unit cell has geometric connectivity if

{(Y, DI (Xmin, V> 2) = O} = {(Y, DI f (Xmax ¥, 2) = 0} Y, z€ |
{(% DI (X, Ymin, 2) = O} = {(X, DT (X, Ymax D) = 0} X, z€l

{WIFGY, Zmin) = O = {(XWIT(X.Y, Zmay) =0} X,y el
(4) ()

The unit has full connectivity if the following condition is Figure 4: Aregular cellular structure with union of threei @s a unit cell: a)
met: Unit cell, b) Cellular structure.

symmetric unit cells without mirroring can be obtained with

F(min. ¥.2) = T (Xmax y.2)  Vy.z€ | sawtooth wave (see Fig. 3b).
f(X Ymin, 2) = F(X, Ymax 2 VX z€l (5) If we select not to use a replicating functigft) from the
(XY, Zmin) = (XY, Zma) VX Y€ equation 1, but to use a linear function instead, for exam-

pleg(x) = X j“ we can obtain a cellular structure where

From the practical point of view, if the unit cell has full con replication takes place only along some of the coordinags.ax
nectivity, by using sawtooth wave we ha@@-continuous func-  Therefore we can distinguish several types of replication:
tion in the entire domain. In case of geometric connectwi€y  ear replication, where only one functiong(i), g(y) andg(2) is
obtain geometric continuity of the entire model, however th periodical; plane replication has two periodical funcépand
resulting function can b&°-discontinuous on the faces of each volumetric replication, where all three functions are péital.

cell. In case where no full or geometric connectivity coiuatis An example of simple volumetric replication is shown in Fig.
are met, the resulting cellular model has geometric dissont 4. In this example we take the set-theoretic union of thré@s
ity on the faces of the cells. the unit cell using R-functions [7]. Because of the symneatri

Unlike the sawtooth function, the triangle wave does noehav nature of the unit cell, we apply a triangle wave functiontees t
CP-discontinuities. However the nature of the triangle wavereplicating function for all three coordinate axes. Thelieip
function requires the unit cell to be symmetrical around thedefining procedure for this model can be found in the Appendix
centre of the unit cell in respect to the coordinate axes. eéMor (Algorithm 1) of this paper.
formally, the symmetry of the cell can be defined as following

4. Variable cellular structures

F (Xmin + T (Xmax = Xmin). ¥, 2) = The mathematical nature of the definition of the cellular
f(Xmax— t* (Xmin — Xmax), ¥,2)  Vy,ze I,t€[0,1] structures allows us to obtain a large variety dfefient models
f(X, Ymin + t * (Ymax— Ymin), 2) = by replacing parameters of the cellular structure by patdame

£(X, Ymax— £ * (Vmin — Yma)» 2 VX, z€ I, te[0,1] (6)  functions. This parameteriza?ion_of the structure can ipdieg
F(X.Y, Zoin + L ok — Zonr) = to the pa_rameters of the_ replicating function, to the patarse
> ¥ Zmin ax n of the unit cell or be a mixture of both.
f(X. Y, Zmax— t* (Zmin — Zmay)) VX Y€1, t€[0,1]
4.1. Variable cellular structures with parameterized wetl

In the case where the unit cell is not symmetric in the result- We can see that the equation 1 can be rewritten in the form

ing cellular structure every second cell is mirrored witbpect
to the centre of the unit cell (see Fig. 3a). Replication af no r(x.y,2) = r(rx(g(x)). ry(a(y)). r(a(2))) @)
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Figure 5: A variable cellular structure with the unit cell ta@orphosing in
space from a ball to a union of three tori.

Figure 6: A variable cellular structure with the period paeterized by the

where distance to the external object shell.

rx(9(X)) = Xmin + 9(X) * (Xmax— Xmin)

ry(9(Y)) = Ymin + 9(Y) * (Ymax— Ymin) (8)  wheregx(x, Y, 2), gy(X. Y, 2) andgy(x, y, 2) in the case of the saw-
r9(2) = Zmin + 9(2) * (Zmax— Zmin) tooth function as the replicating function can be written as
We obtain variable cellular structures by replacing linear g, (x y,2) = 1 +(———— — floor(——— + }))
functionsfy, f, and f, by arbitrary non-linear functions. Note 2 “axy.2 a(x.y.2 2
that for cellular structures these arbitrary functionsudtidave Y V. 7) = 1 Y _ floor y 1
a replicating function over the coordinate variables asatige- 9(xy.2 7 (ay(x, Y, 2) (ay(x, Y, 2) " 2)) (11)
ment. In the general case, the cellular function with thepar 1 z 1
eterized unit cell can be defined as: G(xy.2) = 2" (az(x, .2 Floor( (XY, 2) ’ 5))
r(xy.2) = r(r(9(x). o). 9(2). whereay(x,y,2) > 0,a,(x Y, 2) > 0,8y, 2) > 0,¥x.y, z€ R.
ry(9(x), a(y), 9(2), 9) As an example of a variable cellular structure with a param-
r(9(X), 9(y), 9(2)) eterized replicating function, consider a model where &pdi+

cation period depends on the distance from the given point to
By using dependency of the unit cell parameters, we can olthe boundary of the external carrying shell (see Fig. 6).
tain a diferent shape of the unit cell within the cellular struc- As a more complex example we consider a model obtained
ture. For example, in the case of a unit cell that is defined irwith the transfinite interpolation [10] of the period of trepli-
4D spaceX,y, z t) with the additionat parameter, we can ob- cating function (Fig. 7d) and the transfinite interpolatadrthe
tain metamorphosis inside the cellular structure by useqeth-  shape of the unit cell using metamorphosis (Fig. 7e) between
dency of thet parameter on the coordinate valuasy(2) (see  two unit cells (Figs. 7a and 7b). In both cases, two spacé part
Fig. 5 and Appendix, Algorithm 2). tions are defined by spheres with constant values of coresider
parameters inside of them. For visualization purposesdn Fi
4.2. Variable cellular structures with parameterized iiept- 7 we used plane replication while defining cellular struetur
ing function however the same technique can be applied for cellular-struc

We can vary parameters of the cellular structure by using adures defined by the volumetric replication.
ditional parameterization of the replicating function. den-
eral, we obtain parameterization of the replicating fumely 5. Applications of volumetric microstructures
replacing arguments of the replicating functipin equation 1
by functionsgy(x, Y, 2), gy(X, Y. 2) andg,(x,y,2). However, in Variable cellular structures defined by function-based mod
practice the only parameter that can be variable in the-repliels are yet to be used in practical modeling and design. # thi
cating function is the period denoted hyin equations 2 and section we present some potential applications of celbifaic-
3. Therefore by introducing a variable period for the caltul tures including variable volumetric and surficial struetr
structure, it can be defined by the following function:
5.1. Volumetric cellular structures in multi-scale furostk

r(X.Y,2) = 1(Xmin + 9x(X, ¥, 2)  (Xmax— Xmin), based modeling
Ymin + Gy(X, Y> 2) * (Ymax— Ymin), (10) Modeling with cellular structures using variable replioat
Znin + G2(%, Y, 2) * (Zmax— Zmin)) takes place inside function-based modeling framework.s Thi



means that the resulting model is a solid object itself thatlme
taken as an input for another function-based operationilggss
including another cellular replication.

The first example we would like to consider is metamorpho-
sis applied to a cellular microstructure and a larger scajead
(see Fig. 8 and Appendix, Algorithm 3). In this example we
take the cellular structure with a unit cell as union of thie@
and apply metamorphosis operation (using the linear ioterp
lation of defining functions) between the cellular struetand
another torus model on a larger scale. The application df suc
an operation can be useful in artistic design.

Another example of a cellular structure applied in CAD is
a model of the filter with several levels of scale for the daliu
replication. First, we define the cellular structure based ba-
sic unit cell (union of three cylinders), apply a few setetwtic
operations to the cellular structure (Fig. 9a) and then hee t
result as the unit cell for another cellular structure (F&h).
The resulting multi-scale cellular structure also can kegfsr
further operations including replication (Fig. 9c).

5.2. Surficial structures

Cellular structures can be used not only for modeling volu-
metric microstructures. Surficial or on-surface struciwan be
created by using cellular structures located near the ceida
some solid object. Obviously, the surface in the geometrnice
has zero thickness, so we are finding a way to increase the thic
ness and therefore we discuss on-surface structures thtrer
purely surface structures. Below we consider possible ways
construct surfaces microstructures based fbsetting and set-
theoretic operations.

5.2.1. Surficial microstructures as feature-based volumes

We can obtain surficial microstructures by using bounding
volumes that enclose the intersection curves [11]. Given th
initial object defined by the functiofj(X, y, 2) > 0 and cellu-
lar structure defined by the functidg,(x,y, 2) > 0, the implicit
curve that defines the intersection of the surfaces of thilini
object and the cellular structure can be defined by the fatigw

9x) = (-f3)&(~12) = 0 (12)

Here & denotes set-theoretic intersection operation uRing
functions [7]. This definition arises from the fact that farya
solid object defined by inequalitf(Xx, y, 2) > 0 the set of points
lying on the surface is defined by inequality?(x,y, 2) > 0, as
the given function is equal to zero on the surface of the dbjec
and is negative everywhere else.

The bounding volume for the intersection curve can be found
by applying dfsetting operation to the function defining the in-
tersection curve. A number of varioufiget operations exists
for functon-based modeling. Depending on the defining func-
tions for an initial object and the cellular structureffeient
offsetting operations can be used When choosingfiseting
operation, we should balance between easiness and speed of
Figure 7: Transfinite interpolation in cellular structurag Hexagonal unit cell CaIC_UIatlonS E.md the prqper_tles of the resulting shapes,‘ﬂhe
b) Rhombic unit cell, c) Hexagonal cellular structure; dyie interpolation ~ €@siest fisetting operation is the constant-valugset defined

between space partitions denoted by spheres with assigmestdaat periods; as.

e) Cell shape interpolation between space partitions éenloy spheres with feons(X) = f(X) +d (13)
assigned constant cell shapes using metamorphosis belwragonal unit cell

and rhombic unit cell. 5




Figure 8: An object modelled as a metamorphosis betweerudarehicrostru-
ture and a larger scale torus in space: a) Torus, b) Celltdactare, c) Result-
ing model. The formulation for this example can be found mappendix.

Figure 9: Nested cellular structures in modeling: a) Cetltructure for the
unit cell with additional CSG operations, b) Cellular strre from the unit cell
defined in a) with additional CSG operations (zoom out leeghparing to a)
is 8x times), c) Resulting model (zoom out level comparing)t 6x times).



wheref.ons(X) = 0 corresponds to the solid object representing
offset of the object defined bf(x) > 0 andd the dfsetting
amount. This €setting is simple to implement and extremely
efficient, however it depends heavily on the distance propérty o
the function and therefore it can produce unpredictablpaha

Another approach toftsetting uses function normalization.
Then the dfsetting operation is:

f
from= ———— +d
Tt (V2

here frorm = frorm(X) = O corresponds to the solid object rep-
resenting set of the object defined bi(x) > 0 andd is the
offset amount. In general, the shape after the normalization is
closer to the constand-radiuffiget in the sense of Euclidean
distance, however the normalization may produce unexgecte
results for functions with the not well behaved gradient.

In Fig. 10 we show a surficial structure obtained by the de-
scribed method. We take the model of the vase as the initial
solid object (see Fig. 10a) and the variable cellular stmact
where period varies over the z axis. Then the bounding volume
was constructed as described above. In Fig. 10b, constant-
value dfset was used and in Fig. 10€fget with the normal-
ization was used. It can be seen from the examples that the
shape of the resulting surficial structures is not ideal wien
ing a simple dfsetting operation. Better shapes can be obtained
using a geometricféset by applying a Minkowski sum [12] of
the intersection curves with a sphere, however this oparadi
computationally very expensive.

(14)

5.2.2. Surficial structures after set-theoretic operasion

© Surficial structures can be obtained in more traditional way

by using mostly set-theoretic operations. Thus, the ofasar

Figure 10: Surficial microstructures: a) Initial model, [gafure-based volume  gtrycture can be a result of set-theoretic intersection sifedl
after intersection with the volumetric cellular structuvéh the unit cell as a o . . .
sphere, constant valudfset, c) Feature-based volume after intersection with of the initial solid ObJeCt and_ some vo-lumetn(-: ceIIanmﬂure.
volumetric cellular structure with the unit cell as a sphetéset with the func- 1 ne shell here can be obtained by either usifigedting opera-
tion normalization tion or by re-modeling. When using afffeetting operation we

can apply one of the following approaches to create a shell:

o Take the surface of the object a$?(x,y, z) > 0 and then
apply the dfsetting operation as described above;

o Apply offsetting operation with positive value to the object
and subtract the initial object from the result;

In the case of re-modeling, the same object is modeled Bfight
smaller or larger by copying the original object and modifyi
its parameters to shrink or expand the overall shape. A ghell
obtained by a set-theoretic subtraction of the two objects.

Fig. 11 shows the results of an intersection between a vari-
able volumetric cellular structure with the shell of an abjén
this example, to obtain the shell we subtracted the initigéct
from its positive dfset.

5.3. Practical modeling of volumetric microstructures and
comparison with other models

Figure 11: Set-theoretic subtraction of the volumetridutat structure from Due to the parametrized nature of FRep, the modeling of
the initial object shell. cellular structures is not flicult from a user point of view.



Simple identification of the spacial area that should bei+epl
cated by a bounding unit cell is enough to make even very
detailed and complex regular micro-structures such asxhe e
ample filter given in Fig. 9, where a micro-structure is used
in modeling another micro-structure. For even more complex
non-regular examples it is possible to simply constructamny
bitrary volume (or take another another model) and ideritify
as a boundary (with arbitrary soft transitions as requirfed)
any non-regular and localized operation such as scalejnearp
change in the microstructures parameters, metamorplatsis,
In addition any micro-structure can be used and incorpdrate
into any model or combined with other any other operations
such as joining or blending of the micro-structure with allshe
as seen again in Fig. 9. An Frep based system can easily pro-
vide a robust and dynamic framework for complex multi-scale
micro-structure modeling for designers.

Using FRep to model volumetric microstructures not only (c) (d)
performs better but can easily create models that tradition
modeling system fail to create. In a simple example of theigure 12: Results from making the torii and following constion of the
torus ball three tori are placed on each axis and unioned tdéeplication in raditional polygon®iURBS CAD systems.
gether into a "ball” (see Fig. 4). They are then placed in an

array of 10x10x10 in X, Y and Z. The "ball" is arrayed such oq,ire specific procedures for model rendering and fativica

that each ball overlaps or loses part of the the outer diametec,rrently, a function-based model has to be converted teesom
This aIIows_the microstructure Fo b.ejomed tqget_her a;vj/bel auxiliary representation such as a polygonal mesh or a xel
necessary in a real world application, resulting in a mict®s 5y for subsequent rendering using modern graphics haedwar
ture block of & thousand joined tori balls forming a 3-malifo 'ty manufacturing using additive or layer based comnagrci
that is ready to be sliced for layered or additive manufactur,ocess and hardware. The conversion to a mesh involves iso-
ing. The same example was attempted with traditional seéwa g ,rface polygonization (tessellation) while voxelizatialgo-
systems. Several industrial modeling packages where e@nabfinms must be used to produce a voxel array. The known draw-
to even union three tori in a simple and correct manner S0 §,.ks of both these representations in the case of micobsteu

test with NURBS counterpart for the example tori microstruc qqejing were discussed above. Approaches to direct render
ture has not been preformed. A more in depth investigation an;, o and faprication have to be considered to overcome these
comparison with NURBS based microstructures will be a fo-y,awbacks.

cus of future work. Several packages had grefitodilty when

attempting the same procedurg with mgshes. Only after S€¥% 1. Direct rendering

eral attempts and at low resolution (at higher mesh reswisti ) i )

it failed or produced bad results) was it possible with léssnt By direct rendering we mean accelerated ray-tracing or ray
satisfactory results (see Fig. 12a and 12b). casting of function-based object surfaces without invavi

Even with a reduced polygon count (flat faced tori ball) thePClygonization. The acceleration can be either by usinglgra
construction of mesh based 10x10x1 manifold sheets and tHgS hardware (GPU)[13][14] or by using multi-threading on
entire 10x10x10 manifold microstructure block is a veryaim CPUIL5]. Note that the nature of microstructure models re-
and memory consuming operation that finally proved unsucdUires rendering to be rellable_. In[16], reylse{ﬂraae ar|thmet!c
cessful. The process to union the units into 10x10x1 "sheets¥@S shown as a fast and reliable technique for ray-tracing of
alone took 6 minutes to complete and while it was possible tdMPlicit surfaces. Also by using the same technique, we can
copy the sheets 10 units high it was impossible to union teget constructreliable enumeration of the object in 3D-spacktgn
the final structure. Attempting to do so resulted in the safay  USINg enumeration information decrease the number of cempu
and hardware failing when using several industrial package tations by the calculation of ray-surface |ntersectlon5/mm
software - one designed for additive fabrication. Even ke, t tN€ areas of space where a zero value of the function can be
non-manifold and therefore un-manufacturable model was hu Présent. Most of the pictures in this paper were obtained by
dreds of megabytes in size. By comparison the same model casing descriped direct rendering with modified.version of-Po
be represented by less that hundred bytes and take only a fé@Y ay-tracing software and our own ray-casting software.

minutes to construct using FRep modeling tools.

6.2. Direct fabrication

An approach to directly fabricate FRep models without aux-
iliary formats such as traditional STL (triangle soup) isaam

Application areas for the modeling of multi-scale struesir tive direction of research. One possibility to fabricateepR
such as material and biomedical tissue design and engmgeeriobjects directly is to produce a raster image for each layer o

8
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3D printing at the machine resolution, which is an accetabl

input for some existing machines. Thus the modelled stractu i i i )
could be procedurally defined on a grid of voxels that Cc)rreAIgonthm 2 Construction of a variable cellular structure with

sponds directly to the layer thickness and to the pixel supat
the machine resolution. Another approach is to directiyti@n

the unit cell metamorphosing in space from a ball to a union of
three tori (Fig. 5)

the material deposition process. However, there are destac Procedure: variable, y, z)

presented by the proprietary nature of most digital fabioca

technologies, such as access to machine protocols andbtontr

Coordinate transformation by using triangle wave:
X = 3 + simi[sin(z3)]

commands. The wide adoption of direct fabrication requires Yt = % + ;{sin*l[sin(n%’)]

open standards for low level hardware friendly formats.

7. Conclusions

In this paper we presented an approach to modeling of vari-

able cellular structures and their applications. The tagyl
models are defined procedurally within the function repnése
tion framework. This allows for further operations on thedno
eled structures including the creation of nested multlescal-
lular models. In practical modeling, our method has on®seri
restriction - there is no easy way to use existing microstmas
defined using other types of representations or in tradition
CAD packages. This can be resolved using polygon-to-foncti
and voxel-to-function conversion procedures. We alsaroedl
how traditional problems with modeling microstructurestsu
as polygonization or voxelization for rendering and fahticn
can be avoided by using direct rendering and direct faboinat

z = 3 + isin[sin(r3)].
Calculate replicated tori and replicated spheres by using d
formed coordinates:

torus, = 0.22 - x2 —y2 - 22 - 0.82 + 2+ 0.8« /y? +
X2 +

X+ e

torus, = 0.22 - x? —y2 -2 - 0.82 + 2% 0.8

torus, =022 - x2 —y? -7 - 0.82+ 2+ 0.8«
sphere= 1 -2 —y? - 7

Perform union operation over replicated tori:

tori = torus, v torus, v torus,

Perform metamorphosis depending on z-coordinate:
t=(z+10)/20

result= tori =t + spherex (1 -t)

return result;

HiH

Appendix A. Procedures defining some of the examples Ajgorithm 3 Construction of an object defined as a metamor-

presented in the paper

Algorithm 1 Construction of a regular cellular structure with Pr

union of three tori as a unit cell (Fig. 4)

Procedure: regularf, y, 2)
Coordinate transformation by using triangle wave:
X = 3+ Zsini[sin(z%)]
Yi = 3 + Isin[sin(r})]
z = 3 + sin[sin(x2)].
Calculate replicated tori by using deformed coordinates:

torus, = 022 - x2 —y2 - 22— 0.82 + 2+ 0.8 |y? +
X2 +
X+

torus, = 0.22 - xZ —y2 -2 - 0.8+ 2% 0.8

HiH

torus, =022 - x2 -y -2 - 0.82+2+ 0.8+
Perform union operation over replicated tori:
result= torus, v torus, v torus,

return result;
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