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Abstract  The computational consuming and non-robust reconstruction from point clouds to either 

meshes or spline surfaces motivates the direct tool path planning for point clouds. In this paper, a novel 

approach for planning iso-parametric tool path from a point cloud is presented. The planning depends 

on the parameterization of point clouds. Accordingly, a conformal map is employed to build the 

parameterization which leads to a significant simplification of computing tool path parameters and 

boundary conformed paths. Then, Tool path is generated through linear interpolation with the forward 

and side step computed against specified chord deviation and scallop height, respectively. Experimental 

results are given to illustrate effectiveness of the proposed methods. 
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1. Introduction 

Free-form surfaces (e.g., aero-parts and molds) are widely used in manufacturing industries. And 

they are often machined by computer numerical control (CNC) machine tools that move its cutter or 

table along a specified trajectory. In the most common cases, the trajectory is so-called tool path which 

constitutes the core of computer-aided manufacturing (CAM). The automatic generation of tool path 

for free-form surfaces is a fundamental issue in modern CAD/CAM systems. 

Planning tool path is a compromising between precision and efficiency, which mainly involves two 

aspects, path pattern and path parameters. The former is about which shape tool path is. More 

specifically, there are three path patterns so far: direction parallel, contour parallel and spiral. The latter 

concerns geometric parameters of tool path, i.e., forward step and side step bounding chord deviation 

and scallop height, respectively. In this paper, we shall use the terminology interval to refer to 

offsetting distance on surfaces and the step is used to refer to parametric offsetting distance. Fig. 1 

shows the three path patterns and Fig. 2 describes the two path parameters. Tool path planning on a 

surface is closely related to its representations (e.g., spline surfaces, meshes and point clouds). The 

point cloud as a direct description of surfaces has been receiving a growing attention since the paper [1] 

by Marc Alexa et al. And a considerable part of meshes and spline surfaces encountered in CAD/CAM 

are reconstructed from point clouds through approximation. However, the reconstruction process is 

complicated and computational consuming. What’s worse, it is non-robust especially when the point 

cloud is a non-uniform sampling. Therefore, the direct planning of tool path for point clouds is of great 

significance. Compared to mesh or spline surface based representations, the lack of topological 

information simplifies the representation and storage of surfaces. Yet, when it comes to the geometric 

processing (e.g., parameterization and differential properties), it becomes rather tough. That’s why 

most algorithms of tool path planning for point clouds simply employ some junior geometric 

processing methods (e.g., intersection between parallel planes and the point cloud). It is hard to 

parameterization and estimating curvatures, as junior geometric processing, for point clouds without 

topological information, let alone planning tool path which belongs to senior geometric processing. 

The basis for tool path planning was laid around 1990. For instance, iso-parametric method (Loney 

et al. [2]), iso-planar method (Huang Y. et al. [3]) and iso-scallop method (Suresh K. et al. [4], Lin RS 

et al. [5], Sarma R. et al. [6]) are some of the typical approaches. Some developments are, for example, 

iso-phote [7] and C-space [8] methods with tool orientation planning taken into account too. The 

former in fact proposed another method for parameterizing and the latter introduced the classical 
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C-space method for robotics into tool path planning. What should be noted is the work [9] by G. W. 

Vickers and K. W. Quan providing a mathematical method to determine the interval between 

consecutive paths (i.e., side step calculation). And [3] presented a true machining error calculation 

method with which accurate forward step can be determined. While there are enormous literatures 

focusing on tool path planning, these specified for point clouds are few. The earlier methods of direct 

planning on point clouds resorted to resampling, which can be regarded as an extension of traditional 

iso-planar ones. Lin et al. [10] employed a uniform rectangular grid (i.e., the Z-map constructed from 

an original point cloud) to generate tool path for milling surfaces slice-by-slice. Rows on each slice (or 

level) of the grid were picked out as tool path for the slice, with some segments trimmed to avoid 

islands. Another relevant method is the work [11] by Feng and Teng. They adaptively computed the 

forward and side step by the construction of a so-called CL-net which in fact is a variant of the Z-map. 

The iso-scallop method [6] for spline surfaces was extended to point clouds by Wei et al. [12]. Apart 

from those, S. C. Park et al. [13] generated contour parallel tool path for pocket milling from a data 

structure point of view (i.e., PSC-map). The preceding review is carried out regardless of the 

approaches based on reconstruction of meshes and spline surfaces from point clouds locally or globally 

which in fact steps backward. Surveys of much more work in tool path planning research can be 

referred in [14, 15]. Unfortunately, the extension of traditional iso-parametric tool path planning, one of 

the most important planning means, to point clouds seems to remain blank. From the above review of 

planning tool path on point clouds, it is evident that much more research is still needed to be carried out, 

especially for parametric methods that avoid the costly computations of surface-surface intersection 

and surface offsetting. 

In this paper, a method of iso-parametric tool path planning for point clouds is presented. Surface 

parameterization, closely related to machine learning and computer graphics [16, 17], is crucial for 

planning tool path iso-parametrically. Yang et al. [18] and Sun et al. [19] employed the harmonic map 

to parameterize spline surfaces and meshes respectively, of which the free-boundary property was 

exploited to plan boundary conformed paths. The property means that boundary of parametric domain 

can be defined arbitrarily. Thus, by mapping spatial boundaries to regular planar boundaries (i.e., 

rectangles and circles), boundary conformed tool path can be generated. However their mesh-based 

mapping methods can’t be applied to point clouds directly, as opposed to the employed method in this 

paper which is specified for point clouds by Schmidt and Singh [20]. Moreover, there is another 

exciting property that their work didn’t cover, i.e., the angle preserving property. The advantage of 

conformal parameterization over conventional ones is the conformality (i.e., angle preserving) with 

which the computation of side and forward step can be simplified significantly. As known, a single path 

on a free-form surface is offset from a previous one along the direction orthogonal to forward (or feed) 

direction. As the conformal parameterization is angle preserving, the direction on a surface is consistent 

to that in its parametric domain. Therefore, for iso-parametric tool path, the forward direction is the v

-direction (or u -direction) and the offsetting direction is the u -direction (or v -direction). What's more, 

the step size calculation is avoided if the parameterization is conformal, since for any point on the 

surface, its local shape is similar to its parametric image, with respect to a factor. Namely, a small 

interval on the surface and its corresponding step on the parametric domain are proportional. The 

assumption that each point of tool paths should be one of the existing points of a point cloud is 

unreasonable. Thus, interpolation is inevitable. The one we choose is of linear precision but much 

simpler than rational spline interpolation. It allows a point to be expressed as a weighted linear 

combination of its neighbor points. What’s more, it is consistent to the conformal parameterization. In 

fact, these presented approaches can also be exploited to generate iso-scallop tool path for point clouds 

as an extension of the work [4, 5]. 

The remaining parts of this paper are: 

Section 2 introduces the conformal parameterization for point clouds; 

Section 3 presents the simplification of path parameters calculation; 

Section 4 describes the proposed iso-parametric tool path planning; 

Section 5 shows experimental results;  

Section 6 concludes the paper. 
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            (a)                                (b)                              (c) 

Fig. 1 Illustrations of tool path patterns. (a) Direction parallel tool path; (b) Contour parallel tool path; (c) Spiral tool path. 
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                     (a)                                             (b) 

Fig. 2 Definition of tool path parameters. 

 

2. Conformal point cloud parameterization 

In continuous cases, parameterizing a surface   embedded in 𝑅3 can be modeled as 

𝜑: 𝐷 → 𝑆, 𝐷 ⊆ 𝑅2, 

where D  is a planar domain. An alternative method for conformal parameterizing via harmonic map 

instead of conformal map is much simpler. A harmonic map satisfies the Laplace equation 

2 0f = , 

with respect to the Dirichlet boundary condition: 1 2:f  →  is homeomorphism, where 
2  

donates the Laplacian and f  is a map over one surface 1  to the other 2 . If 2  is planar, the 

Laplace equation has a unique solution. Thus, its inverse is a conformal parameterization for the 

surface 1 . Similarly, in the cases of point clouds, such parameterization can be obtained by 

constructing discrete Laplacian and solving discrete Laplace equation. 

2.1 Discrete Laplace equation 

  The discrete Laplacian L  for a point cloud 𝑆 = {𝑝1 , 𝑝2 , ⋯ , 𝑝𝑛} ⊆ 𝑅3
 is a linear operator which takes 

a map on S  as input and another map on S  as output. If the size of S  is n , a map on S  is an n

-dimensional vector. Therefore, L  is a linear map between two n -dimensional vector spaces, which 

can be represented as a n n  matrix. Generally, most methods for constructing such matrix fall into two 

categories, the Graph based methods and the Finite Element Method (FEM) based methods. 

The graph Laplacian L  is defined as 
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where deg( )ip  donates the degree of point ip . And subsequently, the Laplacian ( ( ))iL f p  of a  
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map f  at a point ip  can be expressed as a local sum 

( )

( )( ) ( ) ( )
j i

i

pN

j

p

p pLf i f f


= −   , 

where ( )iN p  is a set of points neighbor to ip , e.g., the K nearest neighborhood (KNN). As for the 

FEM based methods, it is defined as  

( )

( )( ) ( ) ( )
j i

ij

N p

i j

p

Lf i w f fp p


 = −  , 

where ijw  donate the introduced weights. In the literature of parameterization, there have been 

several weights presented for meshes. For example, the famous cotangent scheme proposed by Pinkall 

et al. [21] and the mean-value scheme proposed by Floater [22]. Since most of the weights were 

derived on triangular meshes, it is hard for them to be applied to point clouds directly. However, 

Floater and Reimers [23] were able to extend their weights to a point cloud, which needs local 

triangulating. A weight scheme specified for point clouds has recently been proved to converge to the 

continuous Laplacian as sampling getting denser, Belkin and Niyogi [24]. The weights are as follows 

𝑤𝑖𝑗 = 𝑒−
‖𝑝𝑖−𝑝𝑗‖

𝑡 , 𝑡 ∈ 𝑅+ 𝑎𝑛𝑑 𝑝𝑗 ∈ 𝑁(𝑝𝑖), 

where parameter t  is constant for a point cloud. However, it is very hard to choose a proper t  for a real 

model. There is another weight scheme (optimal weights) coinciding with Belkin’s [24]. Schmidt and 

Singh [20] parameterized point clouds conformally with such optimal weights which minimizes a 

quadric error 

2

, ( )i ij j j ip w p p N p = − , 

subjecting to a constraint 1ijw = . The error   can be rewritten as  

2

( )ij i jw p p = − . 

Then, minimizing the error becomes a least-square problem. Re-donate the indices of neighbor points 

as {1, ⋯ , 𝑚}, where m  is the number of neighbor points. The solution is to solve a linear system 

1, ( ) ( )T

jk i j i kCW c p p p p= = − − , 

where 1  is the one-vector. And rescale the weights so that they concide with the constraint. 

  Once the discrete Laplacian for a point cloud has been constructed, the Laplace equation for a point 

cloud becomes 0Lf = . Suppose that 𝜕𝑆 = {𝑝𝑟+1, ⋯ , 𝑝𝑛}, 𝜕𝐷 = {𝑞𝑟+1, ⋯ , 𝑞𝑛} and the boundary map 

: ,i if p q r i n  . Then the conformal parameterization problem comes to solve a linear system 

                                 0 I BLf AU BU=  = − ,                          (1) 

where  

( ) =Ln r n n rA B  −
   ,  2 1

TI

r rU q q =  and  ( ) 2 1

TB

n r r nU q q−  += . 

However, in continuous cases, there is no differential property for boundary points. Therefore, rows 

associated with boundary points should be removed. Namely,  

( )

( )

=L
r r r n r

n r n

A B

C

  −

− 

 
 
 

.

 

This can also be rewritten as 

( )\ ( )

, 1, 2, , .
j i j i

i ij j ij j

p N p S p N p S

q w q w q i r
   

− = =   

Note that [ , ]T

i i iq u v=  and the equation (1) is solved twice, one for u  and the other for v  coordinate. 
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2.2 Boundary points mapping 

The pre-step for constructing conformal parameterization is to define boundary map, with mainly 

two aspects involved, shape of planar boundary and distribution of boundary points. When planning 

contour parallel tool path, the boundary is mapped to a circle in a Polar coordinates system. Thus 

concentric circles (i.e., iso-curves with respect to radius) are corresponding paths in parametric domain, 

which are free from the intersection detection and trimming, as opposed to conventional offsetting 

methods. Paths are generated in a manner as they morph inward from the boundary and get smoother 

along the morphing. When planning direction parallel tool path, the boundary is mapped to a rectangle 

in a Cartesian coordinates system, so that the paths can be simply generated by selecting segments 

parallel to either of the two edge pairs. What’s more, this regular domain can help to avoid paths of 

small size (i.e., not boundary conformed), if the underlying surface is trimmed, as opposed to 

conventional iso-planar methods. This merit was shown by Yang et al. [18]. As for distribution, there 

are two procedures involved, ordering points and assigning them.  

The method used to order boundary points is inspired by the material in Floater’s [22]. First, a point 

cloud is classified into two subsets, interior and boundary. Then, these boundary points are manually 

broken into several simple parts, as shown in Fig. 3(a). For each part, boundary points are 

parameterized into the unit interval [0,1]  by the method similar to section 2.1. Their boundary points 

are the end points of each part (i.e., the breaking points). And their weights are 

1 , ( )ij j i j ipw pp Np = − . 

The ordering of the parameter values is used to order the 3D boundary points. Finally, all parts are 

combined into an ordered boundary according to the ordering of breaking points. 

            

                     (a)                                                 (b) 

Fig. 3 Ordering boundary points. (a) Boundary breaking; (b) Bounadry parameterization. 

 

The boundary points are assigned along the planar boundary according to chord length between 

adjacent points on the 3D boundary. Specifically, when planning contour parallel tool path, boundary 

points are mapped to a circle in a Polar coordinates system with 

0: ( , 2 ),i i if p R p S   , 

Where radius 0R  can be set arbitrarily and we set it to be / (2 )L   with L  being length of the 

ordered boundary. i  is the distribution parameter with 1 0r + =  and for 1r i n+    

1

2

i

i j j

j r

p p L −

= +

= − . 

Intuitively, points are proportionally mapped around the whole boundary, with respect to chord length. 

  When planning direction parallel tool path, the boundary points are mapped to a rectangle. They are 

first divided into four parts manually, so that four breaking points are consistent to the four planar 

corner points. Inherently, each part has a local ordering. Then, each part is mapped to its corresponding 

planar edge proportionally. Suppose that consecutive lengths of the four parts are 1L , 2L , 3L  and 4L . 

Then the lower left point is set to be (0,0) and the upper right point is ((𝐿1 + 𝐿3)/2, (𝐿2 + 𝐿4)/2). 
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The first part is mapped to the u -axis with  

1 3: ( ( ) / 2,0),i i if p L L p first part of S  +   , 

where i  is the assigning parameter with 1 0r + =  and for the rest points 

1 1

2

i

i j j

j r

p p L −

= +

= − . 

And correspondingly for the rest three parts.  

As the preceding shows, conformal point cloud parameterization can be boiled down to solve a 

sparse linear system. And it provides some perfect properties for tool path planning. The angle 

preserving property helps to simplify the computation of tool path parameters, the free-boundary 

property provides natural parametric domains for planning tool path iso-parametrically and the shape 

preserving property makes the 3D shape of paths consistent to that of 2D parametric ones. 

 

3. Path parameters calculation 

Determining the geometric parameters for tool path (i.e., forward and side step) is closely related to 

differential properties of a surface. Some basic notions about differential geometry are introduced and 

it is also shown how to simplify the computing of forward and side step in this section. 

3.1 Differential geometry 

There are many curvatures for a surface (e.g., Gaussian curvature, mean curvature and principle 

curvatures). And the one involved with tool path planning is normal curvature. Normal curvature is 

defined as the curvature of the curve that is the intersection between the surface itself and a plane 

containing both the normal vector n  and a direction vector e  on the tangent plane. Consider a 

parametric surface Σ = {𝑟 ∈ 𝑅3|𝑟 = 𝑟(𝑢, 𝑣), (𝑢, 𝑣) ∈ 𝐷 ⊆ 𝑅2)}, the normal curvature is expressed as  

2 2

2 2

2
=

2

Ldu Mdudv Ndv

Edu Fdudv Gdv


+ +
=

+ +

Ⅱ

Ⅰ
, 

where u uE r r=  , u vF r r=  , v vG r r=   are the coefficients of the first fundamental form Ⅰ and 

uuL n r=  , uvM n r=  , vvN n r=   are the coefficients of the second fundamental form Ⅱ. The pair 

( , )du dv  represents the direction e . For instance, the normal curvature along the direction ( ,0)du  is 

= / /uu u uL E n r r r =   . 

If the parameterization is conformal, it can be derived that E G=  and 0F =  which implies that 

directions (0, )dv  and ( ,0)du  are orthogonal on the surface. What’s more, the local shapes around 

p  and q D , where ( )p r q= , are similar with respect to a factor  . The factor can be derived 

with  

2

v v

v u

r r dvdr
r r

dv dv dv



= = = = =

Ⅰ
. 

Therefore, a small increment on a surface is 
ur  times of the corresponding parametric increment. 

For discrete cases, the difficulty is an approximation of the first and second order differential 

properties and the unit normal estimation. The first idea may be rational spline surface reconstruction 

and analytical evaluation. However, this is rather complicated. We next use a well-known difference 

scheme to approximate the two properties. Consider a planar point 0q  and its KNN. Their 

corresponding spatial points can be obtained with the previous parameterization. Insert two points 1q  

and 2q  into the KNN, as in Fig. 4. Their corresponding spatial points are computed using the method 

described in section 3.3 and the u  is chosen as the shortest distance between 0q  and its KNN. 

Expand 1p  and 2p  as the Taylor series 

2 3

1 0 0 0 0 0 0 0 0 1( , ) ( , ) ( , ) ( , ) ( )u uup r u u v r u v r u v u r u v u u= − = −  +  +  ; 

2 3

2 0 0 0 0 0 0 0 0 2( , ) ( , ) ( , ) ( , ) ( )u uup r u u v r u v r u v u r u v u u= +  = +  +  +  . 
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Then 

2 1

0 0( , )
2

u

p p
r u v

u

−
=


 and 

2 1 0

0 0 2

2
( , )

2
uu

p p p
r u v

u

+ −
=


. 

And correspondingly for vr  and vvr . Note that the coefficients ,F M  are not needed in our method. 

  As to the unit normal estimation, it can be regard as a local tangent plane approximation problem 

which in turn becomes a least-square fitting one. Then, it can be reduced to a spectrum analysis of the 

local covariance matrix [1]. Specifically, for a point ip  and its KNN, the local covariance matrix is 

( )

1
(

(
( )

)
)

ij

T

j i i i

p N pi

C p c p c
N p 

= − −  

where ic  is the barycentric point. The optimal unit normal is the normalized eigenvector corresponding 

to the smallest eigenvalue. 

0 0 0: ( , )q u v

2 0 0: ( , )q u u v+ 

1 0 0: ( , )q u u v−

v

u

1q
0q

2q

      

0 0 0( , )p r u v=

2 0 0( , )p r u u v= + 

1 0 0( , )p r u u v= −

z

x
y

1p 0p 2p

 

(a)                                           (b) 

Fig. 4 Differential properties approximation. (a) Planar points; (b) Spatial points. 

 

3.2 Forward and side step 

Forward step is responsible for chord deviation. A single tool path is usually discretized to be a series 

of line and arc segments (this paper focuses on line segments) for the limited capacity of CNC 

interpolator. The chord deviation is defined to describe the error of approximating a curve segment with 

a line one, details see [3]. Maximizing the forward step which determines the length of each segment is 

significant for machining efficiency. 

The forward surface interval for machining can be expressed as 

28 4fl eR e= − , 

where R  is the normal curvature radius along the forward direction of a point and e  is the chord 

deviation. For iso-parametric tool path, the forward normal curvature radius along the direction (0, )dv  

can be simplified as  

1
= v v

f vv

r rG
R

N n r


= = =



Ⅰ

Ⅱ
. 

To generate a single iso-parametric tool path, the forward step should be computed. As mentioned, 

conformal maps preserve shapes infinitesimally, namely, the 3D shape is similar to the 2D counterpart 

in a small range. Therefore, locally, the forward step is proportional to the forward surface interval with 

respect to a factor   implying 

1

fi fi

i i i

i v

l l
v v v

r
+ = − = = . 
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Eventually, the forward step can be iteratively computed with the expression  

                                     
1

fi

i i

v

l
v v

r
+ = + .                                (2) 

Side step is responsible for scallop height. For machining free-form surfaces, they are often 

discretized to be a series of paths. The interval between two consecutive paths determines the scallop 

height that represents the error of approximating a surface with curves. Maximizing the side step is 

significant for machining efficiency too.  

The side surface interval for machining can be expressed as 

8s

R
l hr

R r
=

+
 or 8s

R
l hr

R r
=

−
, 

where R  is the normal curvature radius along the side direction of a point, h  is the scallop height and 

r  donates the ball-end cutter radius (so that tool orientation doesn't matter). The former expression is 

for convex surfaces and the latter is for concave ones. The side direction is orthogonal to forward 

direction on the surface, which is consistent to the parametric direction ( ,0)du , i.e., s u =  if the 

parameterization is conformal. Similar to forward step, the side normal curvature radius along the 

direction ( ,0)du  can be simplified as  

1
= u u

s uu

r rE
R

L n r


= = =



Ⅰ

Ⅱ
. 

To generate the next iso-parametric tool path, the side parametric interval (i.e., side step) should be 

computed. Locally, for conformal parameterization and iso-parametric tool path, the side parametric 

interval is 

1

si si

i i i

i u

l l
u u u

r
+ = − = = . 

Eventually, the side step for each point can be iteratively computed by 

                                     1

si

i i

u

l
u u

r
+ = + .                               (3) 

Note that, in the cases of point clouds, the ur  and vr  are only approximations of the continuous cases 

where 
u vr r = = . Therefore, the mean value of them is taken as the similarity factor for point 

clouds. 

3.3 Non-conformality error analysis 

According to the Riemann Mapping Theorem, if the boundary shape of parametric domain is given, 

a conformal parameterization always exists in continuous cases. However, in discrete cases, mapping a 

complex 3D boundary to either a rectangle or a circle will inevitably cause distortion of conformality at 

points near boundary, since the Laplacian and boundary map are approximations. But the distortion is 

liminted to points near boundary, as shown in Fig. 9 (a) (b). There are some ways to avoid this by 

computing boundary map as part of the solution, with a trade-off being that the free-boundary property 

is lost. However, as demonstrated in [18, 19], such property is of great significance for planning 

boundary conformed tool path. We next show the effect of such distortion on tool path. 

For a point on the surface, its local shape is linearly related to its image in the parametric domain, 

with respect to a Jacobian. Suppose that side interval vector 1 2s u vl k r k r= + . Its corresponding 

parametric increment is  

1

1 2 1 2[ ] ( ) [ ]u v u vu v J k r k r k r k r−  = + = , 

where ( )
3 2

 u vJ r r


=  is the Jacobian at the point, and the coefficients are ( )1 cos | / 2 |sk l  = − , 

( )2 sin | / 2 |sk l  = − . The angle ( )angle ,u vr r = . Subsequently, take u  direction as side direction,  
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the side step can be computed with 

( )

8 ( )

cos | / 2 |

s s

u

hr R R r
u

r 


 =

− 
, 

where sR  is the normal curvature radius along the direction orthogonal to the forward direction. 

According to the Euler Theorem, the side normal curvature is 2s fH = − , where H  donates the 

mean curvature. For a point cloud, it can be easily estimated by the method [25]. This is the original 

expression for computing side interval. If we still employ the expression (3) at non-conformal points, it 

gives  

8 ( )u u

u

hr R R r
u

r


 = . 

If  u u   , the simplified expression will give conservative paths, i.e., the tool path is less efficient 

but the precision is guaranteed. Otherwise, the simplified formula will give incorrect steps at the point. 

Although the Euler theorem can relate uR  with sR , The sign of u u −   is undermined. However, if 

the normal curvature radius at the point is much greater than the cutter radius (i.e., ( ) 1R R r+  ) or the 

local surface is isotropic (i.e., the normal curvature is constant at the point), the sign is negative, 

namely, the expression (3) tends to generate denser tool path for points near boudary.  

The difference between expressions (3) and the original one is a projection procedure 

( )1 cos / 2u

s sl k l  = = − . 

Then, for iso-parametric tool path, the side step is 

                                     
1

u

si

i i

u

l
u u

r
+ = + .                               (4) 

Never can all point clouds satisfy the previous conditions, i.e., for a few point clouds, the effect of 

boundary mapping on tool path planning is uncertain. And actually, distortion caused by boundary 

mapping only appears at the points which are very close to boundary or boundary corners. Thus, in this 

paper, the expression (4) instead of (3) is employed for paths near boundary. According to the 

experiments we conducted, the number of these paths is 3-5. This is rather conservative. A better way 

maybe choose the expression according to a criterion / 2  −  . However, we do not yet know of a 

principled way to choose the threshold for each point cloud. 

3.4 Linear interpolation 

Given a point and the forward direction, its next parametric forward point and side point can be 

obtained with expressions (2) (3) (4). To compute the corresponding 3D coordinates, interpolation 

is needed. In order to be consistent to the conformal parameterization, the one used in this paper is 

linear interpolation which can help to obtain linear precision [26].  

Consider a planar point 0q  with its KNN being  1 nq q , its corresponding spatial point 0p  is  

0

1 1

, 1
n n

i i i

i i

p w p w
= =

= =  , 

where  ip  are the corresponding spatial points of the planar KNN. Although there are many schemes 

of the weights, they are chosen as the optimal one as in the conformal parameterization. 

 

4. Tool path planning 

Planning tool path is to represent a surface with a series of curves against some error criteria (i.e., 

chord deviation and scallop height). Iso-parametric tool path consisting of m  parametric curves (e.g., 

 0( , ), , ( , )mr u v r u v ) are generated by keeping one parameter (e.g., u ) constant. We next show how 

to generate such curves on a surface for the two parallel tool path patterns respectively. 
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4.1 Direction parallel tool path 

In order to construct row-like curves on surfaces by the iso-parametric method, the parameters u  and 

v  should be variables of a Cartesian coordinates system. As mentioned, the conformal parameterization 

has a free-boundary property. Therefore, the parametric domain for planning direction parallel tool path 

is set as a planar block, which means that the boundary is mapped as a rectangle. If the lower left point 

of the rectangle is set to be original point and its adjacent edges to be u -axis and v -axis respectively, 

forward direction can be chosen as the positive direction of v -axis and side direction as the positive 

direction of u -axis.  

For each path, start from an initial point ( ,0)iu , iteratively determine the next forward point 

1( , ) ( , )i j i ju v u v +→  by the expression (2) and linear interpolation until v -coordinate is out of range, 

1jv b+  , and set the last jv  to be b . The first initial point is (0,0) , all other initial points are 

determined by side step.  

For consecutive paths, compute side step for each point on the previous path with expressions (3) or 

(4), where the expression (3) is for interior points and (4) for points near boundary. Then select the 

minimal step as side step for next path. It is a two-stage procedure. First plan 3-5 paths from each side 

with the expression (4) resulting in a narrowed rectangular parametric domain, which is shown by 

dotted segments in Fig. 5 (a). Then iteratively determine side step from 0u  to 1u , as shown by the solid 

segments in Fig. 5 (a).  

Note that the tool paths are generated without offsetting boundary inward a cutter radius distance. 

4.2 Contour parallel tool path 

The difference between contour and direction parallel tool path is the coordinates system used. For 

contour parallel tool path, the parameters u  and v  should be variables of a Polar coordinates system. 

And the boundary is mapped as a circle with its center being the original point and R  the radius. 

Forward direction can be chosen as the positive direction of 
 -axis and side direction as as the positive 

direction of  -axis. 

For each path, start from an initial point ( ,0)i , iteratively determine next forward point 

1( , ) ( , )i j i j    +→  by the forward step computing and linear interpolation until  -coordinate is out of 

range 2 . And set the last j  to be 2 . 

For consecutive paths, similar to direction parallel tool path, it is divided into two parts. First plan 

3-5 paths from the boundary, which also results in a narrowed circular parametric domain. Then 

compute side step for each path from the original point to the circle R . 

Note that the first path is a point (the original point). Its side step is select as the minimal one from 

the side steps calculated along different direction around it. 

0u 1u0 a
     

R

R

 

(a)                                                    (b) 

Fig. 5 Iso-parametric tool path planning. (a) Direction parallel tool path; (b) Contour parallle tool path. 
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5. Experimental results 

In this section, the proposed method is implemented on real data. Three typical models are chosen to 

illustrate the effectiveness of it, as in Fig. 6. A cockpit surface (a) is used to plan direction parallel tool 

path, a human face (b) is used to generate contour parallel tool path and a free-form surface (c) with 

complex boundary is used to show both paths. The former two point clouds were generated by a 3D 

scanner (a coordinate measuring machine). The latter was generated by the UG software. Their ranges 

are 221.49 105.83 58.25  , 139.57 118.93 32.76   and 83.50 48.21 18.46  , respectively. 

   

            (a)                                (b)                              (c) 

Fig. 6 Tested point cloud models. (a) The surface of a cockpit; (b) The surface of a human face; (c) A free-form surface. 

 

For planning iso-parametric tool path, the first thing to do is parameterization. The K-d tree is 

exploited to quickly search for KNN and the number of neighbor points is 12. When ordering boundary 

points the number is 4 . The algorithm in [24] is adopted to extract boundaries from point clouds. The 

algorithm GMRES is chosen to solve the sparse equations. Note that the former two point clouds are 

smoothen by the Laplacian fairing method and the Laplacian scheme is consistent to those in section 

2.1. The results of parameterization are presented in Fig. 7, Fig. 8 and Fig. 9. Fig. 7 (c) shows the angle 

preserving property of the cockpit point cloud with a rectangular domain. Fig. 8 (a) shows the angle 

preserving property of the face point cloud with a circular domain. Fig. 9 (a) and (b) shows the angle 

preserving property of the free-form point cloud with both domains. 

As point clouds have become parametric ones, a series of forward and side points can be computed 

using the analytical expressions in section 3.2. And subsequently, the corresponding tool path can be 

generated by linear interpolation. A ball-end cutter with radius 4r mm=  is chosen to illustrate the path 

generation so that tool orientation doesn’t matter. The limited scallop height is 1h mm=  and chord 

deviation is 0.01e mm= . In order to clearly showing tool paths, the error criterion (scallop height) is 

set to be much greater than real cases. Fig. 7 shows the direction parallel paths on the cockpit point 

cloud. A comparison between proposed method and the conventional iso-planar method is also given. 

Fig. 7 (a) and (b) show paths generated by the iso-planar method. Fig. 7 (d) and (e) show corresponding 

paths by the proposed method. Fig. 8 shows the contour parallel paths on the face point cloud and a 

comparison between proposed method and the conventional offsetting method. Fig. 8 (b) shows paths 

generated by the proposed method. Fig. 8 (c) show corresponding paths by the offsetting method. Fig. 9 

shows both path patterns planned for the free-form point cloud. Fig. 9 (c) shows direction parallel tool 

path and Fig. 9 (d) shows contour parallel tool path. 

As the figures show, for direction parallel tool path, the lengths of paths are rather even and it is 

boundary conformed, as opposed to iso-planar methods which often generate uneven paths in terms of 

length if the initial plane is chosen poorly. And, for contour parallel tool path, boundary morphs inward 

gradually making tool path boundary conformed, as opposed to conventional offsetting methods 

needing the post-process of removing intersection between offsetting paths. Another problem of 

conventional contour parallel tool path is that they preserve sharp corners of boundaries, which limits 

the feed-rate when approaching the corners. And then, machining efficiency and tool wear are reduced. 

However, the method proposed rounds these corners automatically and gradually. 

  As mentioned, discrete boundary mapping will cause distortion near boundary. In Fig. 10, the effect 

of different assignments is shown, one assigns boundary according to chord length between adjacent 
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3D points (the adopted method) and the other assigns boundary uniformly. It is shown that chord length 

based method can give better results, especially when the 3D boundary points are irregularly 

distributed. In Fig. 11, the effect of corners of different angles on tool path is shown. These corners are 

mapped to be right angles when planning direction parallel tool path, which causes local 

non-conformality. The effect of these corners seems to make side intervals conservative when 

employing the simplified side step calculation formula, as shown in Fig. 11 (c). The model is chosen to 

illustrate the effect because its normal curvature radius is much greater than the cutter radius and it has 

three typical angles, obtuse, acute and right angles. The acute angle is 25.56
 
and the scallop height 

is limited to 0.03h mm= . The number of paths in (b) is 26 and 30 in (c). Fig. 12 shows side interval 

approximation error (%) (| | ) 100s s sl l l = −   where sl u  =    and sl  donates side interval between 

two adjacent paths of the human face model (Fig. 8). Fig. 12 (b) shows error of two interior adjacent 

paths and (c) shows error of two paths near boundary. The mean value, maximum value and minimum 

value of (b) are 1.4083, 3.1971 and 0.0380 respectively. The corresponding values of (c) are 2.2442, 

4.884 and 0.1945. This side interval error can be transferred to the error of scallop height e  with a 

simply linear expression, which is shown as follows 

28 / ( ) 2s s s sl hrR R r l l l= +   +  8 / ( )hrR R r=  + , 

Divide both sides by 
2

sl , having 

2 / / 2s sl l h h e  =   = . 

Therefore, the corresponding mean error of scallop height is around 5%. 

      

(a)                                     (b) 

 

(c)                            (d)                             (e) 

Fig. 7 The results of a cockpit surface. (a) (b) Tool path generated by the iso-planar method; (c) Angle-preserving property 

with a rectangular domain; (d) Direction parallel tool path in one direction; (e) Direction parallel tool path in the other direction. 
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(a)                                     (b)                             (c) 

Fig. 8 The results of a face surface. (a) Angle-preserving property with a circular domain; (b) Contour parallel tool path; (c) 

Tool path generated by the conventional offsetting method. 

         

(a)                                      (b) 

         

(c)                                       (d) 

Fig. 9 The results of a freeform surface. (a) (b) Angle-preserving property with a rectangular domain and a circular domain, 

respectively; (c) Direction parallel tool path; (d) Contour parallel tool path. 

 

(a)                                 (b)                                 (c) 
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(d)                                           (e)  

Fig. 10 Comparison of different assignments. (a) Original point cloud with irregular boundary; (b) Parameterization with a 

rectangular domain using chord length boundary assignment; (c) Parameterization with a rectangular domain using uniform 

boundary assignment; (d) Parameterization with a circular domain using chord length boundary assignment; (e) Parameterization 

with a circular domain using uniform boundary assignment. 

             

(c)                            (d)                             (c) 

Fig.11 The effect of distortion near boundary on tool path. (a) Original point cloud with different angle; (b) Paths planned 

using the accurate expression (4); (c) Paths planned using the simplified expression (3). 

 

(a)                                            (b) 

Fig. 12 The error caused by discrete conformal parameterization. (a) Side interval error between two adjacent interior paths of 
the face model; (b) Side interval error between two adjacent paths near boundary of the face model;. 

 

6. Conclusions 

The shortcomings of converting point clouds to meshes and spline surfaces are computational 

consuming and non-robustness. To overcome this, a direct tool path planning method (iso-parametric) 

for point clouds is presented. It follows a conformal point cloud parameterization laying a foundation 

for the planning. A simple mathematical formulation for determining steps analytically is then 

presented. Finally, tool path can be generated by iteratively computing the forward and side step and 

the linear interpolation. The angle preserving property of the conformal parameterization simplifies the 

calculation of tool path parameters as well as the transferring of surface interval to parametric step. 

What’s more, the free-boundary property helps generate boundary conformed tool path. 

However, this work preserves inherently the weakness of iso-parametric methods: the spatial path 

interval is uneven and thus less efficient than the iso-scallop method. Fortunately, many results of this 

paper hold for iso-scallop tool paths. The tool path planning for point clouds with arbitrary topology 

(e.g., a point cloud with holes) is not studied. Yet, by controlling the boundary map, tool path for them 

can be generated in a similar way to the presented. 
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