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Abstract

The detection of the number of disjoint components is a well-known procedure for surface objects. However, this problem
has not been solved for solid models defined with scalar fields in the so-called implicit form. In this paper, we present
a technique which allows for detection of the number of disjoint components with a predefined tolerance for an object
defined with a single scalar function. The core of the technique is a reliable continuation of the spatial enumeration based
on the interval methods. We also present several methods for separation of components using set-theoretic operations
for further handling these components individually in a solid modelling system dealing with objects defined with scalar
fields.
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1. Introduction

Modern development of CAD/CAM shows the shift
from the representation of the objects by its boundary to
volumetric representations. This allows users to consider
internal structure of the object as well as to define volu-
metric attributes and properties of the objects in the way
closer to the real-life heterogeneous object representation.
One of the useful ways to represent the real-life volume ob-
jects is using scalar fields. This means that for any point
in space a predicate (function) is defined allowing to dis-
tinguish points inside the object, outside the object and
on the surface of the object. In additional, it gives a mea-
sure of some algebraic distance from the given point to the
object surface. Such a scalar field is usually considered as
a definition of the object geometry in the implicit form.

Scalar fields allow for performing operations on the ob-
jects that are very hard to achieve using traditional meth-
ods operating with surfaces (Boundary Representation or
BRep), such as blending within a certain area or shape
metamorphosis with arbitrary changes in topology. On
a contrary, some problems that have been already solved
for BRep models are yet to be solved for the geometry
defined with scalar fields. One of these questions is topo-
logical analysis, i.e., detection of the holes, disjoint com-
ponents and other features for the geometry defined with
a scalar field. In this paper, we focus on the analysis of
disjoint components, as it is an open issue in modelling
with scalar fields. This question is becoming more impor-
tant with the rapid development of digital fabrication and
3D printing hardware. It is clear that in case of wrongly
modelled object the model can break into pieces during the
fabrication process and in some extreme cases even break
the 3D printing hardware itself.

Traditionally models defined in the implicit form were
analysed only if the defining function (scalar field) was
simple enough and easy to analyse. In this work, how-
ever, we are not restricting the defining function and only
assume that the model is bounded and we know the box
which encloses the point set belonging to the interior and
the surface of the object. In practice, where we are taking
into account practical modelling systems that deal with
the implicit form, such as BlobTree [1] or HyperFun [2], it
can be seen that the defining function can be very complex
and far from polynomial.

To date, an analytical solution for topological analysis
for the general case has not been found. However, a nu-
merical solution can be found, but it should be reliable,
meaning the result should be exact within the given pre-
cision. In this paper, we present a technique allowing for
detecting the number of disjoint components in the model
represented in the implicit form and methods to separate
the detected disjoint components. The detection and sepa-
ration operations result in a continuous and smooth scalar
field for each component. These operations are designed
such that they can be directly used in a modelling system
dealing with the objects represented in the implicit form.

The main contributions of this paper are the following:

1. For a solid model defined with a scalar field, we
propose a technique for identifying the number of
disjoint components with the pre-defined tolerance
without setting any severe restrictions to the toler-
ance.

2. Various methods for the separation of components
are presented.

3. An adaptive spatial continuation is presented for the
fast and yet efficient reliable enumeration.
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2. Related work

The problem of detection of disjoint components was
usually considered in the scope of general topological anal-
ysis or as an applied problem. Thus, for the purposes of
collision detection, a two dimensional point set was anal-
ysed in [3]. For polygonal meshes the analysis of disjoint
components was mostly the analysis of the number of shells
(structure of connected triangles) within the polygon soup.
The question of the number of disjoint components in the
polygonal manifold mesh was discussed in [4], where the
corner table data structure was used to separate disjoint
shells.

The problem of detection of the number of disjoint
components is related to the null-object detection, for ex-
ample, when intersecting two objects for collision detec-
tion. The collision detection algorithms for BRep typi-
cally inspect the boundary components of the intersection
to confirm that the boundary is empty [5]. The null object
detection was addressed in the Constructive Solid Geom-
etry (CSG) with the primitive redundancy principle al-
lowing for reduction of the CSG-tree to the null tree in
the case of the null-object by removing redundant primi-
tives and simplifying the tree [6]. In the case of voxelized
objects, the collision detection is addressed by adding a
reference to each object to the voxels touched by the ob-
ject bounding box [7] followed by checking the case when
several objects share the same non-empty voxel.

One of the ways to analyse the topology of the model
defined implicitly is applying the Morse theory [8]. Thus,
in [9] it was used to analyse the topology of the implicit
surfaces for the polygonization purposes. However, the
Morse theory is hardly applicable for general purposes be-
cause of the requirements of C2-continuity of the defining
function and the necessity to derive and to analyse the ex-
pressions for the first derivative. Another exact analysis
of the topology and geometry of the models defined in the
implicit form was done in [10], where the class of models
was limited to those defined by the primitive polynomials.
Also the analysis of the discrete scalar field by using Reeb
graphs along with the Morse theory was presented in [11]
Other works on topological analysis of isosurfaces of scalar
fields are discussed in [12].

The problem of separation of different components in
the object was explicitly set and analysed for two-dimensional
geometry defined with BRep in [13] as well as for separat-
ing set of connected points by finding the suitable bound-
ing volume for each component in the set [14].

3. Background

3.1. Affine Arithmetic and Revised Affine Arithmetic

Affine Arithmetic was introduced in the early 1990s
as an extension to the Interval Arithmetic and is a tech-
nique allowing to perform computations over uncertain
values[15]. Comparing with classic Interval Arithmetic,

Affine Arithmetic is generally considered as the technique
that provides tighter bounds for computer quantities.

Uncertain values in Affine Arithmetic are represented
by the affine forms, i.e., polynomials as follows:

x̂ = x0 + x1ε1 + x2ε2 + ...+ xnεn (1)

where xi are known real coefficients and εi are noise sym-
bols, i.e., symbolic variables with the values assumed to
lie in the interval εi ∈ [−1, 1].

In Affine Arithmetic, the formula evaluation is per-
formed by replacing operations on real quantities by their
affine forms. Similarly to Interval Arithmetic, the inclu-
sion property is applied to Affine Arithmetic, i.e., for any
operation ⊗:

A⊗B ⊃ {a⊗ b, a ∈ A, b ∈ B}

where a and b are real values and A and B are uncertain
values in the affine form.

All the operations on the affine forms can be divided
into affine (exact) and non-affine (approximate) opera-
tions. An affine operation is a function that can be repre-
sented by the linear combination of the noise symbols of
its arguments. Non-affine operations can not be performed
over the linear combination of the noise symbols. In this
case, an approximate affine function is used and a new
noise symbol is added to the affine form to represent the
difference between the non-affine function and its approx-
imation. Additional details regarding the construction of
both affine and non-affine operations can be found in the
literature related to Affine Arithmetic [15] [16].

One of the obvious drawbacks of the Affine Arithmetic
is that each non-affine operation introduces one extra noise
symbol and therefore for the functions that contain large
number of non-linear operators including multiplication
the amount of the data for the affine forms can be unbear-
able. In [17] it was shown that Revised Affine Arithmetic
is more suitable for the interval computations for large
models defined in the implicit form, as it keeps the num-
ber of noise symbols constant still providing tight bounds
for the interval of the function.

The revised affine form for the purposes of space par-
titioning is presented as the following

x̂ = x0 +

3∑

i=1

xiεi + ex[−1, 1], ex ≥ 0 (2)

Here we have three independent uncertain values, one for
each coordinate.

3.2. Affine Arithmetic-driven space partitioning

The inclusion property of the Interval Arithmetic as
well as its successors, including Affine Arithmetic, allows
for partitioning the space into cells that are inside, outside
and potentially intersect the surface of the object. The
main idea behind the subdivision is to test each cell for

2



inclusion of the zero set of the function, to reject those
cells that do not contain zero-value points and subdivide
the cell into eight otherwise.

The inclusion property for Affine Arithmetic means
that, if the affine form for the expression does not con-
tain the zero value, then the actual function range for the
given input interval does not contain the zero value as
well. In terms of Affine Arithmetic formally it can be rep-
resented as follows. For the input box �i with the corners
(xmin, ymin, zmin) and (xmax, ymax, zmax), the affine form
for the coordinate values can be represented as:

x̂ =
xmin + xmax

2
+

xmax − xmin

2
ε1

ŷ =
ymin + ymax

2
+

ymax − ymin

2
ε2

ẑ =
zmin + zmax

2
+

zmax − zmin

2
ε3

Applying Revised Affine Arithmetic by replacing the
functions over the real variables with their affine forms,
we get

f̂ = f̂(x̂, ŷ, ẑ) = f0 + fxε1 + fyε2 + fzε3 + e[−1, 1]

Here the real coefficients f0 ... f3 denote the values ob-
tained after calculation of the affine form of the given func-
tion over the affine forms of its arguments (see equation
1).

The function does not contain zero if either the lower
bound of the resulting affine form is positive and hence the
whole range is positive:

f0 − fx − fy − fz − e > 0

or the upper bound is negative and the whole range is
negative:

f0 + fx + fy + fz + e < 0

The adaptive space partitioning based on the affine
arithmetic is discussed in detail in [18] and the algorithm
of the space partitioning based on the revised affine arith-
metic is shown in [17].

3.3. Enumeration methods

By enumeration we understand the subdivision of the
space Ω into a number of small cells and identifying the
cells which contain the surface of the model inside. The
size of the cell depends on the accuracy of the enumeration
and usually is set by the user.

Traditional methods for enumeration are based on the
scalar field sampling on a regular grid defined for the whole
space Ω where the domain is given by an axis-aligned
bounding box [19]. It is obvious that smaller size of the
cells leads to higher computational costs, as the value of
the defining function should be calculated in a large num-
ber of points. Adaptive techniques can be applied for enu-
meration, however they either are not robust and can miss

small features of the model, for example, the one presented
in [19] or rely upon pre-defined information obtained for
the scalar field, such as [20]. One way to guarantee robust-
ness of the spatial subdivision is the adaptive enumeration
based on the Interval Arithmetic [21] and its successors
[18, 17]. The robustness of such subdivisions is guaran-
teed by the inclusion property.

Continuation methods allow to find zero-level set of
the scalar field near other already found solutions. For
computer graphics applications dealing with scalar fields
mostly simplicial continuation methods are used. The
main idea of such methods is to construct the simplicial
complex that approximates the zero level set of the given
scalar field. The process consists of moving from one sim-
plex to the adjacent one through a common facet. Differ-
ent methods for generating the surface approximation by
using continuation are discussed in [22]. Generally it can
be seen that we need to find the initial zeros of the sur-
face in order to generate an approximation of a connected
piece of the approximated surface. For each next compo-
nent new initial zero should be found. We extend this idea
to the octree construction in our method presented below.

4. Method overview

4.1. Adaptive spatial continuation

In our method of enumeration, we combine the Revised
Affine Arithmetic-driven space partitioning with continu-
ation. Note that methods that combine exhaustive spatial
enumeration with continuation are known, some were dis-
cussed in [22]. However only non-interval methods were
used to date.

We consider the object defined in the implicit form as

S = (x, y, z) ∈ Ω ⊆ ℜ3 : f(x, y, z) = 0

with its affine form f̂(x̂, ŷ, ẑ). In our work we use the
following classes of objects:

• The objects where the symbolic representation of the
defining function is known. This class is rather large
and includes a lot of geometric primitives including
sphere, box, skeletal convolution surfaces, as well as
the large set of transformations of the primitives in-
cluding affine transformations, deformations such as
twisting and bending, and other operations including
set-theoretic operations, metamorphosis and blend-
ing. The interval extension can be constructed using
Interval Arithmetic and its successors. We found
that for complex symbolic objects the most efficient
technique is to use Revised Affine Arithmetic, which
was recently shown as a fast and reliable interval ex-
tension [17].

• The objects where the field values can be bounded
within the given domain. One of the examples of the
objects within this class are the objects represented
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as a signed distance field where the field value is
the Euclidean distance to the surface. The interval
extension can be found by sampling the value in the
centre of the domain and extending the interval with
the extent of the domain as presented in [23]

In practice, we are working with large procedural trees
that contain the objects of different types. For simplicity,
we use the term ”affine form” to refer to the extension of
the object using Revised Affine Arithmetic with objects
converted from Interval Arithmetic where it is needed.

For each cell we can calculate two types of the range
of the defining function:

1. The ”affine” range resulting from using the affine
form of the defining function for the given bounding
box;

2. The ”control” range resulting from calculating the
value of the defining function in the corners of the
bounding box. We suppose that the calculation of
the defining function at a random point in space is
computationally less expensive that the calculation
of the affine form for a random bounding box.

For the affine range, the lower and upper bounds are
found by using the affine form as follows. For the cell
i with the bounding box �i, the affine form f̂(x̂, ŷ, ẑ) is

calculated. The interval [f̂ ] is corresponding to the interval
extension of the given affine form. Note that the inclusion
property means that if [f̂ ] > 0 or [f̂ ] < 0, the function
values inside the box are either all positive or all negative
and therefore the cell does not intersect the surface. On
the other hand, if 0 ∈ [f̂ ] the range of the function inside
the box might not include the zero value because of the
overestimation.

For the control range, we calculate the interval [fc, fc],
where

fc =
6

min
corner=1

fcorner(x, y, z)

fc =
6

max
corner=1

fcorner(x, y, z)

(3)

Here fcorner denotes the value of the defining function
in a corner of the current cell.

While the affine range cannot guarantee that the zero-
set intersects the cell in the case of 0 ∈ [x̂], the control
range can provide information on whether the zero-set in-
tersects the cell or not. Indeed, if the actual range of the
function is [f ] then [fc, fc] ∈ [f ] and 0 ∈ [fc, fc] =⇒ 0 ∈
[f ].

If the control range of the cell contains zero, then we
switch from adaptive enumeration to continuation and find
the cells that are adjacent to the edge of the current cell
with the sign change as shown in Algorithm 1 outlining the
entire enumeration process. Note that continuation allows
us to find adjacent cells, but it is not guaranteed that all
the cells that intersect the zero-set are found. Therefore
after continuation takes place, further analysis of the cells

larger than the predefined tolerance whose affine range
contains zero is done.

Algorithm 1 Adaptive spatial continuation

Procedure: enumerate(x̂, ŷ, ẑ)
Calculate the value of the defining function in the cor-
ners of the cell: f(x̂, ŷ, ẑ), f(x̂, ŷ, ẑ) ... f(x̂, ŷ, ẑ)

Calculate fc and fc as a minimum and maximum value
of all values in the corners
if the range of the function includes a 0 value then

Find the edge(s) e = (v1,v2) for which sign(f(v1) 6=
sign(f(v2)
Find the non-enumerated neighbour cells
if The non-enumerated neighbour cell j exists then
Find bounds for the cell j: x̂j , ŷj, ẑj
Propagate the information about function inclusion
up the octree for the cell j
enumerate(x̂j , ŷj, ẑj)

end if

end if

if the size of the cell is smaller than some predefined
threshold then

return (no intersection with zero-level set at given
resolution)

end if

if the range of the function does not include a 0 value
then

Calculate the affine form with the arguments [x̂, ŷ, ẑ]
Get the range of the function from the affine form
if the range of the function does not include a 0 value
then

return (no intersection with zero-level set);
end if

end if

Subdivide the cell into 8 sub-cells
For sub-cell i with the range(x̂i, ŷi, ẑi), enumerate(x̂i,
ŷi, ẑi)
return

Despite being reliable, all interval-based methods suffer
from overestimation. To deal with this, only the control
range is used to define if the cell intersects the zero-level
set or not at the lowest level, where the size of the cell is
less or equal to the predefined tolerance.

4.2. Analysis of components by using enumeration

As it can be seen, after the enumeration we can isolate
three types of cells: cells that are inside the object, cells
that contain the zero-level set and cells outside the object.
For component analysis we assume that with the given
resolution, the number of disjoint components for an ob-
ject defined in the implicit form coincides with a number
of disjoint components in the enumeration where the cells
that lie outside the surface are not taken into an account.
The enumeration properties supporting this statement are
the following.
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Figure 1: Example of neighbour cells for propagation in the case of
a quadtree: initial cell is denoted as blue, same level neighbour cells
are denoted as green, level-up neighbour cell is denoted as yellow and
level-down neighbour cells are denoted as orange.

First, the number of disjoint components is not less
than the number of components in the enumeration. As
the enumeration is based on the interval methods and en-
closes the zero-level set, it includes each disjoint compo-
nent. Secondly, the number of disjoint components in the
model is not greater than the number of components in
the enumeration. As the last level in the enumeration
contains only the cells which intersect the zero-level set of
the defining function, not its interval extension, two com-
ponents can be in the same cells or in neighbouring cells
only if the distance between these components is less than
twice the size of the cell. The size of the cell is half of
the resolution, therefore for the given resolution, no space
between components is missed. As the number is not less
and not greater, it is equal.

To detect the number of components in the enumera-
tion we use the marking with propagation technique. For
propagation we build the adjacency relation between cells
by using the following simple rules:

• For the cells with the same depth within the octree,
we mark as adjacent the cells that have common
sides with the given one (denoted by green in Figure
1)

• If neighbour cells at the same depth have child cells,
we mark as adjacent these cells which share the com-
mon side with the given one (denoted by orange in
Figure 1)

• If neighbour cells have lower depth level, we mark
the level-up cell (denoted by yellow in Figure 1)

The number of components for the object is the num-
ber of non-connected clusters in the octree. The number
of clusters can be easily determined by propagation as fol-
lows:

1. While there are non-marked cells, increase the num-
ber of the components by 1 and mark the first non-
marked cell with the current components number

2. Recursively mark all the adjacent cells for the cur-
rent one

At the end of this procedure, we have the number of com-
ponents and the octree where each subcluster is marked by
the number which represents the index of the component
this cluster belongs to. The resulting octree is used for
component separation which we discuss below.

4.3. Component separation

At the analysis step, we obtain the cells that lie inside
the implicitly defined object or intersect the zero level set.
A cluster of cells corresponding to a specific component
can be directly used for this component separation, for ex-
ample, by using set-theoretic intersection of the cell cluster
with the original object. Thus, we introduce separation ap-
proaches where the clusters of internal and border cells in
the octree are used in the function definition for separated
components.

Note that for the binary point membership classifica-
tion purposes (CSG-type separation) we can use the cells
of the octree directly, as in this case we can identify if the
point is inside of any cell in the set or outside and therefore
define a membership for the particular component. How-
ever in the case the components are going to be used for
further operations in the modelling system dealing with
scalar fields, not only the point membership classification,
but actual evaluation of the component defining function
at any point in space is needed. Therefore, we first need
to introduce a scalar field representing the octree for the
purposes of the component separation.

Various methods can be used to represent a subcluster
of the octree cells as a single volume by a scalar field. We
can roughly distinguish these methods into two categories:
in the first category we consider an octree subcluster as a
volume enclosed by a surface and we construct a scalar
field based on this surface, in the second category we treat
the subcluster as a whole volume with the corresponding
volume function. Below we discuss these methods in more
detail.

4.3.1. Surface approaches

The distance field to the octree can be found directly
similar to the method presented in [24]. To query the value
of the scalar field, we recursively find the closest feature
in the octree which lies on the boundary. Thus, we find
distance to the closest border cell of the octree, i.e. the
leaf cell that does not have neighbours on some of the
sides. Then for the closest node we find the distance to
the closest feature: the vertex, edge or face of the node
providing that the feature itself does not belong to the
inner cells of the octree. In case of several closest nodes,
the one which results in smaller distance to the closest
features is taken into account. Note that inner features
of the cells are not involved in the result and effectively
this method can be seen as calculating the distance to the
surface of the octree. In some cases it is more efficient to
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(a) (b)

(c) (d)

Figure 2: Cell operations example

extract the surface from the octree as a quad mesh and use
this mesh for signed distance queries. Multiple methods
for the distance evaluation to the mesh exist, for example,
as presented in [25]. The sign of the distance field can
be calculated with the point membership classification for
the octree. Signed distance fields are efficient and fast, but
they result in C1 discontinuities that can be unacceptable
for further operations on the results of the components
separation.

Another method that allows to avoidC1-discontinuities,
but significantly slower is to extract the surface from the
border nodes of the octree and create a BSP-field [26].
This field is constructed based on the equations for the
half-spaces of the faces and set-theoretic operations over
these half-spaces. In the case of octrees we can benefit
from the fact that all the faces in the surface of the octree
are axis-aligned and therefore the halfspace equations will
look either like fBSPx

(x, y, z) = axx+ bx, fBSPy
(x, y, z) =

ayy + by or fBSPz
(x, y, z) = azz + bz and in the of sub-

dividing the face by a half-space the result is also a quad
with axis-aligned edges.

4.3.2. Set-theoretic approach

The obvious way to represent the octree as a single
volume with a scalar field is to represent each cell in the
octree by a function and then union all these cells together.
As we use axis-aligned bounding box as the shape for the
cell in the octree, the function for the cell whose corner
coordinates are (xmin, ymin, zmin) and (xmax, ymax, zmax)

looks pretty easy:

fcell(x, y, z) = ((x− xmin) · (xmax − x))∧

((y − ymin) · (ymax − y))∧

((z − zmin) · (zmax − z))

(4)

The function for the octree cluster consisting of n cells
can be represented as

foctree = ∨n
i=1

fcelli (5)

Here by ∧ and ∨ we denote functions implementing
set-theoretic intersection and union respectively.

Traditionally set-theoretic operations on the objects
represented with scalar fields are done with R-functions
which are non-regularised. Therefore the union of all cells
in the octree cluster will result in internal zeroes that will
appear in the result of the intersection of the original ob-
ject with the cluster. To avoid this we propose to make
modifications to the cells:

• Replace two adjacent cells lying on the same level of
the octree by union of these cells (see Figure 2 a, b)

• In the case the adjacent cell lies on the level above,
replace the cell by the extended cell to the opposite
side of the adjacent cell (see Figure 2 c, d)

• In the case the adjacent cell lies on the level below,
leave the cell untouched

• If we modify the cell more than one time because of
various adjacent cells, use set-theoretic union for all
the modified cells

4.4. Adaptive component analysis and separation

As we discussed above, the enumeration we use for
analysis of the components is later used for separation.
However this re-use affects the performance of the mod-
elling system where the operation of the components sepa-
ration is introduced. Obviously, with discrete enumeration
the smaller tolerance, the more precisely we can get the re-
sult. On the other hand, for a very small tolerance, the
enumeration can be very expensive from the octree storage
point of view and also can lead to the computationally ex-
pensive function evaluation of the octree for set-theoretic
intersection we use for the separation. Instead of keep-
ing the octree with the highest precision, the number of
components we found with it can be used to decrease the
size of the enumeration octree and to make its function
evaluation less computationally expensive.

The algorithm of the analysis and separation becomes
as shown on the Algorithm 2.

It is clear that building the enumeration octree be-
comes more time-consuming in this case. However, it can
be done at preprocessing stage only once.
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Octree depth Enumeration, our method Component detection Enumeration, [17]

Simple object (Fig. 3) 6 1.043 0.28 1.751
Metamorphosis (Fig. 5) 7 7.427 0.683 26.861

Collision detection (Fig. 6de) 8 1.542 0.179 15.845

Table 1: Timings for adaptive spatial enumeration and component detection. The depth of the octree estimated as the minimal resulting in
the correct number of the components.

(a) (b)

(c) (d) (e)

(f)

Figure 3: Analysis and separation of components in a simple object
defined in the implicit form: a) Initial object (a thin box subtracted
from a superellipsoid), b) The octree of the object with two com-
ponents detected, c) The field for an initial object, d) The signed
distance field for the first cluster of the octree, e) The first compo-
nent of the object separated by set-theoretic intersection of the initial
object with the signed distance field for the first cluster of the octree,
f) Further operations on the components: the second component is
transformed and the set-theoretic union is applied.

Algorithm 2 Adaptive component analysis and separa-
tion
Procedure: AdaptiveEnumeration(levelmax)
Build the octree with the precision depending on the
levelmax

Calculate the number of components N for the given
octree
n = N , levelcurrent = levelmax

while N = n do

Save the current octree, if levelcurrent 6= levelmax re-
place the last saved
Remove the cells of the level levelcurrent
Calculate the number of components n for the given
octree
levelcurrent = levelcurrent − 1

end while

Use the saved octree for the separation algorithm
return

(a) (b)

(c) (d)

Figure 4: Solid noise example: a) Initial object, b) Components
detected, c) The component with the largest volume is removed by
using set-theoretic subtraction, d) The component with the largest
volume is isolated by using set-theoretic intersection.
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(a) (b) (c)

(d) (e)

Figure 5: Metamorphosis example: a) Source model b) Target model,
c) Intermediate shape after metamorphosis operation with compo-
nents detected, d) Zoom in of the segmented octree, e) Separated
largest component as the resulting model.

5. Applications and results

Our method of component analysis and separation can
be used in a modelling system dealing with models de-
fined with scalar fields. It can be applied to models with
different complexity as well as with different procedures
for the scalar field evaluation. Consider a model created
with a set-theoretic operation on a superellipsoid and a
thin block represented with a constructive tree as and ex-
ample of analysis procedurally defined CSG models (see
Figure 3), and also a more complex shape defined with
procedural solid noise (see Figure 4).

The table 5 shows timings for some models we use in
this work. The tests were performed on a laptop with i3
2.27Ghz processor and 4GB RAM. Neither hardware ac-
celeration nor multithreading were used, however the re-
sults show that the analysis can be done in few seconds.
Comparing with the existing methods for building a reli-
able enumeration of the scalar fields, such as [17], it can
be seen that adaptive spatial continuation is much faster.
Note that the detection time depends on the octree and
therefore it is equivalent for different enumeration methods
as soon as they produce equivalent octrees.

One of the applications of the method is separation of
the biggest component for operations where disjoint com-
ponents typically appear. For example, consider a meta-
morphosis operation. This operation is very easy to im-
plement for the models defined with scalar fields, as in
the simplest case, the function for the intermediate shape
can be defined by a linear interpolation between defining
functions for the source and the target model. However
the result can contain disjoint components as the method

(a)

(b) (c)

(d) (e)

Figure 6: Collision detection between a needle and a microstructure:
a) The needle outside the bounding sphere, no collision, b) The nee-
dle inside the bounding sphere, but no collision, c) Zoom-in of case
b, d) Collision detected, e) Zoom-in of case d

does not preserve neither the topology nor the number
of components. From the user’s point of view, it can be
suggested that the number of components should be kept
constant, so our technique can be used. At the interme-
diate stages, the geometry is analysed, the enumeration
is built and the number of components is counted. If the
number of components us greater than the number of com-
ponents in the source and the target models, then the size
of the components is analysed by calculating the volume
of the corresponding enumeration cluster, and the com-
ponents with smaller size are subtracted from the model.
The results are presented in Figure 5.

Another interesting application of our technique is the
long-standing problem of collision detection for models de-
fined in the implicit form and the related problem of the
null-set detection. It can be seen that if set-theoretic in-
tersection of two models results in the empty set, then two
models do not collide. This also means that the number
of components for the intersection is zero in the case two
objects do not collide. In the Figure 6 we show an example
of collision detection using our technique.

It should be noted that in most of our examples the
quality of the field was not really the issue, as the com-
ponent analysis and separation were the latest stage in
the workflow. Because of that we mostly use surface ap-
proaches (i.e., use the signed distance field to the octree)
rather than the set-theoretic approach because of the com-
plexity and the longer evaluation of the latter.
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6. Conclusion and discussion

Modelling with scalar fields is the area where many
problems that are solved for other representation are yet
to be solved. The topological analysis is one of these prob-
lems, which was tackled for some object subclasses, but
not for the general case. In this paper, we presented a nu-
merical solution which allows to detect the number of the
disjoint components in the model defined in the implicit
form. The data structure that is used for the detection is
used for separation by using scalar field created from the
enumeration and further set-theoretic operations.

The presented technique allows to analyse the large
number of the classes of the models defined in the implicit
form, however it still suffers from being numerical. This
means that there is a connection between efficiency and
accuracy, because the more exact we want the result to
be, the deeper the enumeration should be built. This in
its turn means that the function value and the interval
extension should be calculated at a very large number of
points which can take a while even for a relatively simple
defining function.

One interesting application of the presented technique
can be a separation of the components when we explicitly
know the number of components and want only to separate
them. While we discussed one of the probable ways to
handle this situation, more research can be done to find
the enumeration which is small enough to be efficiently
evaluated and bound the components well.

The component analysis is one of the problems in the
scope of the general topological analysis including the eval-
uation of the genus and the number of disjoint compo-
nents, critical points detection [12] and the Reeb graph
construction [11]. While our method supports detection
of the number of disjoint components, it is not directly
applicable to other topological analysis problems. The ex-
tension of our technique to the more complete analysis of
object topology is one the directions for future research,
for example, extending the method to the computation of
homology (Betti number from 0 to 2 for 3D objects defined
with scalar fields).

Appendix A. An example of calculating the ranges

of the cell for the given model

The model presented in Figure 4 has the following
defining function:

f(x, y, z) =81− 100x2 − 100y2 − 100z2+

(3.8 sin(15x) + 1.6 sin(11.1x+ 1.1 sin(15x))) ·

(3.8 sin(15y) + 1.3 sin(11.1x+ 1.1 sin(15x))) ·

(3.8 sin(15z) + 2.6 sin(11.1x+ 1.1 sin(15x)))

(A.1)

Consider the cell �i with coordinates xmin = (-0.26,
-7.04, 5.28), xmax = (1.62, -5.8, 6.38). The function value

in the corners takes a value of 0.3388, 0.3346, 0.6187,
0.6036, 0.3482, 0.3146, 0.6112 and 0.5058. The control
range is fc = 0.3146, fc = 0.6187. As it can be seen,
the control range does not include zero. On the next step
of the algorithm we calculate the affine range. The affine
forms are calculated as following: x̂ = 0.68 + 0.94ε1, ŷ =
−6.42 + 0.62ε2, ẑ = 5.83 + 0.55ε3. The value of the affine
function is f̂ = 0.2484 − 0.0034ε1 − 0.0042ε3 + 0.3841ex,
the affine range is [f̂ ] = [−0.1434, 0.6402]. The affine range
shows that the zero level set potentially crosses the cell, so
further subdivision is done.
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