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Abstract

We propose a novel approach—direct simulation—for interactive simulation with accuracy control, for CAD models un-
dergoing parametric modifications which leave Dirichlet boundary conditions unchanged. This is achieved by computing
offline a generic solution as a function of the design modification parameters. Using this parametric expression, each time
the model parameters are edited, the associated simulation solution for this model instance can be cheaply and quickly
computed online by evaluating the derived parametric solution for these parameter values. The proposed approach fur-
thermore works for models undergoing topological changes, and does not need any mesh regeneration or mesh mapping.
These results are achieved by use of the proper generalized decomposition model reduction technique, in combination
with R-functions. We believe this is the first approach that can interactively simulate the physical properties of a CAD
model, even undergoing topological change, without expensive re-computation. The approach is demonstrated for linear
elasticity analysis; numerical results demonstrate its simulation accuracy and efficiency in comparison with the classic
FE method.

Keywords: direct simulation, interactive simulation, proper generalized decomposition, model reduction, parametric
CAD models, feature intersections

1. Introduction

A CAD model typically goes through many design mod-
ifications, each time requiring simulation of its physical
properties and functionality, before finally being manu-
factured into an engineered product. The model modi-
fications are in many cases defined or controlled via vari-
ous shape or feature parameters, describing their locations,
sizes etc. Each time the model is modified, its physical be-
haviour are typically recomputed by performing classical
FE analysis (or some variant) on the new model. This cy-
cle of design and simulation is computationally expensive,
involving volume mesh generation anew from the CAD
model, physical solution computation, geometric mapping
between the CAD model and the FE volume mesh and
so on [1, 2]. To make analysis and meshing tractable,
the model may also need to be simplified and features
removed [3, 4]. This overall process of CAD-CAE in-
tegration occupies a significant proportion of conventional
engineering design process time.

It would greatly facilitate the product design process if
the model’s physical properties could be rapidly and inter-
actively (within 10 ms, for example) predicted as soon as
the design model is modified—we refer to this goal as di-
rect simulation here. Such direct simulation is however
very challenging to achieve via the traditional complex
CAD-CAE integration process, especially as the model’s
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Figure 1: Direct simulation for a CAD model undergoing parametric
modification. The simulation results are given rapidly and directly
as hole H1 moves from left to right.

topology may change when feature interactions occur as
a result of parameter modification. Consider for example
the model in Fig. 1. The original model has two square
holes H1, H2 with side lengths 0.4, 0.2 within its inte-
rior, respectively centered at (p, 0.5) and (1.5, 0.5), where
p is a parameter. As p changes from −0.2 to 3.2, moving
the center of hole H1 the x-direction, the resulting model
undergoes topological change. Direct simulation aims to
interactively predict the modified model’s physical prop-
erties, for example point-wise displacement in an elastic-
ity analysis, as the designer moves feature H1. No exist-
ing simulation approach can directly handle such complex
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cases involving topological change.
This challenging task of direct simulation for CAD mod-

els undergoing parametric modifications cannot readily
be solved by classical model reduction techniques, such
as POD (proper orthogonal decomposition) [5], subspace
methods [6], or PCA (principle component analysis) [7].
Such techniques essentially approximate the target physi-
cal property space by a linear space using a basis set, using
e.g. the eigenvectors of some sampled design space. How-
ever, such technologies have various intrinsic limitations.
The first lies in the well-known curse of dimensionality.
Consider for example, a design space with ten design vari-
ables, each sampled 10 times. The total number of samples
in the space is 1010, whose associated engineering analysis
solutions are far too many to compute. For example, Kim
et al [8], used several thousand CPU-hours to perform a
limited exploration of the space of detailed clothing effects
on a character. Moreover, the size of the simulated results
was very large: tens of gigabytes of raw data. Secondly, as
the physical space is discretely sampled, it is quite possible
that some key physical phenomenon may not be captured
by the sampling process. Thirdly, the original physical
space may be very complex and intrinsically nonlinear, so
approximating it using a linear space will either lose ac-
curacy or require a large basis set. Fourthly, even after
deriving the bases, computing approximations to the orig-
inal problem still requires the solution of a large system
of equations, which although smaller or simpler than the
original problem, still takes time. Finally, we note that tra-
ditional model reduction approaches generally only work
for shapes without topological changes, whereas our ap-
proach can handle such changes.

Instead, here we give a novel approach for direct simula-
tion for CADmodels undergoing parametric modifications.
This is achieved by computing offline a generic solution as
a function of the design modification parameters. For ex-
ample, the physical solution to the model in Fig. 1 is com-
puted as a function in terms of the translation parameter
p (as well as x, y, z spatial coordinates). As hole H1 moves
in the x-direction to some new parameter value p1, p2, . . . ,
the physical solution for the modified model can be easily
and cheaply derived online by evaluating the generic para-
metric function for the parameter value p1, p2, . . . . Note
particularly that this solution expression is very different
from the conventional FE analysis process which only gives
a simulation solution in terms of the spatial coordinates,
without the additional parametric dimension. Thus, con-
ventionally, each time the design’s geometry is modified,
the overall CAD-CAE integration process has to be re-
performed, which is very computationally expensive.

This approach is enabled by use of a newly introduced
model reduction technique, proper generalized decomposi-

tion or PGD [9], allowing offline parametric solution com-
putation. Unlike the conventional model reduction tech-
niques as mentioned above, PGD is based on the assump-
tion of a separated form for the unknown physical solutions
(in terms of both spatial coordinates and the design pa-

rameters). It has demonstrated its abilities to deal with
high-dimensional problems, and that it can overcome the
limitations of classical approaches [10]. Since its first intro-
duction by Ammar and Chinesta [11, 12], the PGDmethod
has been applied to various linear and nonlinear engineer-
ing problems involving computational rheology [13], the
chemical master equation [14], geometrically parameter-
ized heat problems [15], etc. Here, we extend it to direct
simulation for parametrically varying CAD models, which
may involve topological change. PGD has not previously
been applied to this problem.

Changes in the domain during parametric modification
pose a big challenge, particularly topological changes. We
resolve this issue by using R-functions, implicit functions
that can easily represent a solid’s interior, boundary and
exterior. R-functions were first suggested in Russian by
Rvachev in 1963 [16], and popularised by Shapiro [17]. Un-
like other functions with this property, for example RBFs
(radial basis functions), R-functions have the useful prop-
erty that they can readily represent Boolean operations
between different geometries, and can also incorporate ge-
ometric design parameters. They can thus easily describe
models undergoing topological changes. Further discus-
sion of R-functions is deferred until Section 4. By using
R-functions and characteristic functions, a physical simu-
lation problem originally defined over a set of CAD models
generated by parametric variations is now redefined as a
high-dimensional problem on a fixed domain. This allows
the PGD computation to be readily performed generically.

Chen, Shapiro and Suresh have also considered us-
ing R-functions for design optimization with topological
changes [18, 19]. Our work differs in its use of the PGD ap-
proach to permit fast simulation. We also note that [15, 20]
have also proposed using PGD for fast simulation involv-
ing deformed shapes. However, their work assumes that
the FE meshes used have the same topology before and
after deformation, which is too restrictive to be of use in
general design problems.

In summary, this paper proposes a novel approach for
direct simulation for CAD models undergoing paramet-
ric deformation; we illustrate it in the context of linear
elasticity. It is assumed in this paper that the model’s
Dirichlet boundary conditions are maintained unchanged,
or, the fixed boundary is kept unchanged, during the model
modification process. It can interactively predict a sim-
ulation’s physical solution almost immediately after the
designer changes the model’s design parameters, even for
models undergoing topological changes, unlike previous
work. This is achieved by computing offline a generic so-
lution as a function of the design modification parameters

based on the PGD model reduction technique in combi-
nation with R-functions. It overcomes the limitations of
previous model reduction approaches, avoiding large and
insufficient sampling spaces, inaccurate approximations,
additional online equation solutions, and so on. The pro-
posed approach works for varying models whose Dirichelt
boundary conditions (or fixed boundaries) do not change.
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We demonstrate the computational accuracy and efficiency
of the proposed approach, and compare it to conventional
FE methods using various numerical examples.

The remainder of the paper is arranged as follows. The
problem and overall approach to solve it are described in
Section 2. The approach to computing the PGD solu-
tion for a CAD model undergoing parametric changes is
presented in Section 3. The strategy for unifying the com-
putational domain by using a parametric R-function is ex-
plained in Section 4. Numeric examples are presented to il-
lustrate the validity and efficiency of our proposed method
in Section 5. The paper is finally concluded in Section 6.

2. Problem statement and approach overview

The purpose of our work is to predict the simulation
solution of a CAD model in boundary representation (B-
rep) as users perform some parametric editing on it, e.g.
moving or reshaping some geometric entities or features;
see Fig. 1. We use the popular problem of linear elasticity
analysis as a concrete example of our approach.

2.1. Linear elasticity problem with parameters

Suppose we have a 3D CAD model Ωp ∈ R
3, in the 3D

Euclidean space, where p1, . . . , pm are parameters used to
modify the model geometry. The model is described by a
parameter vector,

p = (p1, . . . , pm) ∈ Ip = I1 × · · · × Im ⊂ R
m, (1)

where Ij is the range of variation of parameter pj .
Given an arbitrary design configuration p0, the model

Ωp
0 ∈ R

3 is deformed following the principle of (station-
ary) linear elasticity: we wish to find the displacement
solution u0(x) satisfying

PO :







−divσ0(u0(x)) = f, in Ωp
0

,
σ0(u0(x)) · n = τ, on ΓN (p0),
u0(x) = uD, on ΓD,

(2)

where the stress σ0 is defined via the fourth-order stiffness
tensor (in matrix form) C as follows

σ0(u0) = Cε(u0), ε(u0) = ∇u0(x), (3)

f is the body force per unit volume, uD is a prescribed dis-
placement on part of the boundary ΓD,and τ is an exerted
external force applied on part of the boundary ΓN (p0),
with outer normal direction n.
The above problem in (2) is a classical boundary value

problem in R
3. It can be solved using the conventional FE

method as follows. For a specific configuration with pa-
rameter vector p0, we construct the CAD model Ωp

0

and
generate a corresponding volume mesh model. We then
compute the displacement field u0(x) for parameter p0 by
the FE method. Later, suppose the parameter is changed
to p1, so a new CAD model Ωp

1

is generated, its associ-
ated mesh model determined, and the field solution u1(x)

found for parameter p1. As the user may change the pa-
rameter very many times, the above repeated procedure
can be very laborious and computationally expensive, pre-
venting interactive exploration of the design space.

Instead, direct simulation permits offline computation of
a generic solution for all possible parameter vectors p ∈ Ip.
Details are explained next.

2.2. Approach overview

In order to permit direct simulation for models undergo-
ing parametric modifications, we reformulate the problem
in (2), originally defined in R

3, as a new one in a higher-
dimensional space which includes the design parameters,
R

3 × Ip, a space of dimension 3 +m. The problem is now
defined as below: find the solution u(x,p) such that

Pp :







−divσ(u(x,p)) = f, in Ωp × Ip,
σ(u(x,p)) · n = τ, on ΓN (p),
u(x,p) = uD, on ΓD.

(4)

Note it is assumed here that ΓN may change during the
model modification process while ΓD remains unchanged.
The situation is very general as long as the fixed boundary
(i.e. ΓD) of the model Ωp does not change during the
model modification process; other cases cannot be handled
by the proposed approach.
Suppose the solution u(x,p) to the above high-

dimensional simulation problem is obtained, via FE for ex-
ample, as a piecewise function in terms of the domain vari-
ables x,p. Direct simulation for the CAD model then be-
comes a simple matter of evaluating the result for a param-
eter vector p of interest. However, the high-dimensionality
of (4) makes it almost impossible to solve directly using a
classical FE approach, due to the well-known curse of di-
mensionality: increasing the number of parameters leads
to an explosion in computational complexity due to the
additional degrees of freedom, as will further be explained
at the end of Section 3.
Resolving this challenging issue first requires us to re-

formulate problem (4), originally defined over a paramet-
rically varying domain Ωp into a new simulation problem
on a fixed domain. This is achieved by use of R-functions
and a characteristic function. Specifically, let ΩU be a do-
main that contains all points of Ωp, for all p ∈ Ip. We
define a characteristic function representing the domain
for a particular choice of parameter p:

H(x,p) :=

{

1 x ∈ Ωp,
0 x /∈ Ωp,

for x ∈ ΩU , (5)

The concrete expression for H(x,p) is built via use of R-
functions, as detailed in Section 4.
Replacing u(x,p) with u(x,p)H(x,p) for x ∈ ΩU in (4),

we now have a simulation problem defined on the fixed
domain ΩU : find the solution u(x,p) such that

PH :







−divσ(u(x,p)H(x,p)) = f, in ΩU × Ip,
σ(u(x,p)H(x,p)) · n = τ, on ΓU

N ,
u(x,p)H(x,p) = uD, on ΓD,

(6)
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where ΓU
N is the union of the varying Neumann boundaries

of ΓN (p).
However, the simulation problem 6, although now de-

fined over a fixed domain ΩU , is still of a dimension m+3,
and intractable. This is overcome by further use of the
PGD model reduction technique [11, 12].

A PGD solution is usually defined in the following form
as sum of a series of separated variables:

u(x,p) ≈ uN (x,p) =
N
∑

i=1

Ti(x,p), (7)

with

Ti(x,p) := di(x)

m
∏

j=1

gij(pj), (8)

where each di(x) is a piecewise polynomial function of spa-
tial coordinates x = (x, y, z), and each gij(pj) is a function
of parameter pj , whose coefficients are to be computed.
In other words, we aim to approximate the solution to
Eqn. (6) using functions in the form in Eqn. (7), whose
design variables and domain coordinates are independent
of each other.
Note that u(x,p) is a now a function of the parameter

variable p, besides the space coordinate x; furthermore,
the variables are separated from each other. Such PGD
solution representations are very different from conven-
tional FE solution expressions, which are only function of
spatial coordinates, generally represented in a form whose
variables are not separated. The reduced representation
permits an efficient numerical approach to computing such
solutions, under accuracy control, as shown in [21, 22].
To numerically compute the PGD solution (7), we sub-

stitute its expression into an integral form of Eqn. (6), and
build a nonlinear equation. The problem is then solved by
an enrichment process, followed by a fixed-point iteration
step. Each enrichment step adds a further summation
term Ti(x,p), until convergence. In each step, a fixed-
point numerical strategy is applied to compute the con-
crete expressions of functions di(x) and gij(pj) to the cur-
rent Ti(x,p) until convergence; further details are given in
Section 3. The above PGD solution to problem (6) is com-
puted offline. Once determined, online solution computa-
tion just requires function evaluation for each new choice
of parameters.
The technical details are now expanded in the follow-

ing sections. Section 3 first describes the numerical ap-
proach to computing a PGD-based solution in the form
in (7). Approaches to constructing the characteristic func-
tion H(x,p) and its use in solving problem (6) are ex-
plained in Section (4).

3. Parametric solution to parametric linear elas-

ticity problem

We start by giving a general numerical procedure to
compute the parametric displacement field u(x,p) in the

form given in (7), for the high-dimensional problem defined
in (6). For this purpose, we first assume that H(x,p) = 1
for ease of explanations; its extensions to generalH(x,p) is
straightforward and will be further explained in Section 4.
The numerical procedure used follows [9, 23, 24].

The basic theory and main computational procedure in
PGD is similar to that of the classical FE method [25, 26]
except for the form of the solution expression (7). As in
FE, we first convert the boundary value problem (6) into
an equivalent integration form, leading to the following
weak formulations:

A(u, δu) = L(δu), (9)

where

A(u, δu) =

∫

I1

· · ·
∫

Im

∫

Ωp

(∇u)TC∇δu dΩdp1 · · · dpm,

L(δu) =

∫

I1

· · ·
∫

Im

(

∫

Ωp

fT δu dΩ

+

∫

ΓN (p)

τT δudS
)

dp1 · · · dpm,

di ∈ V = {d|d ∈ H1(Ωp), d = uD on ΓD}, gij ∈ L2(Ij)
in (7), and δu is the test function of u in an appropriate
functional space.

In order to compute the solution u(x,p) to (4) in PGD
form (7), it is usually assumed that the functions di(x) or
gij(pj) are 3D or 1D FE descriptions defined over Ω and Ij
in the following form:

di(x) =

Nd
∑

k=1

3φ
i
kB

3
k(x), gij(pj) =

Npj
∑

k=1

1φ
i
j,kB

1
j,k(pj), (10)

where B3
k(x) and B1

j,k(pj) are 3D and 1D FE bases for di

and gij respectively, Nd, Npj
are the numbers of degrees

of freedom for the corresponding FE mesh, and 3φ
i
k, 1φ

i
j,k

are coefficients to be determined (j = 1, . . . ,m). For sim-
plicity, we now write

φi
d = (3φ

i
1, . . . , 3φ

i
Nd

), φi
gj

= (1φ
i
j,1, . . . , 1φ

i
j,Npj

). (11)

Determining the coefficients φi
d and φi

gj
is based on the

fact that the PGD solution (7) has to satisfy the weak
formulation (9). This is a highly nonlinear equation sys-
tem. The numerical algorithm used to solve it consists of a
greedy enrichment procedure with an iterative fixed-point
procedure as already noted, following [9, 23]. Specifically,
each enrichment step adds a further term Ti(x,p) (de-
fined in (8)) until a convergence criterion is satisfied; the
iterative fixed-point procedure is used to compute a con-
crete expression for each Ti by iteratively computing the
FE coefficients (11) for one specific function by fixing the
coefficients of all the other functions, until convergence.
This is done by following the steps below.
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Suppose that, after the (i − 1)-th enrichment step, we
have a solution ui−1(x,p), which is not accurate enough.
We thus enrich it by adding an extra term

T := d(x)

m
∏

j=1

gj(pj),

in the form given in Eqn. (10), to improve the approxi-
mation. We thus want to find a solution ui(x,p) in the
following form

ui(x,p) = ui−1(x,p) + d(x)

m
∏

j=1

gj(pj), (12)

where d(x) and gj(pj) (j = 1, . . . ,m), or their coefficients
φd, φgj defined in (11), are to be determined in the i-th
enrichment procedure.
Substituting (12) into (9), the weak problem becomes

A(d

m
∏

j=1

gj , δu) = L(δu)−A(ui−1, δu), (13)

where the test function δu may also be separated as

δu = δd
m
∏

j=1

gj +
m
∑

k=1

dδgk

m
∏

j=1,j 6=k

gj , (14)

δd ∈ V0 = {d|d ∈ H1(Ωp), d = 0 on ΓD} and δgk ∈
L2(Ik) are test functions for d and gk, k = 1, . . . ,m re-
spectively.
Following [9, 23], an iterative fixed-point procedure is

applied to iteratively compute d and gk, k = 1, . . . ,m, one
by one, by fixing values of the other functions. Specifically,
the procedure is:

1. Compute d with g1, . . . , gm known;

2. Compute g1 with d, g2, . . . , gm known;

3. Compute g2 with d, g1, g3, . . . , gm known;
· · · · · ·

m+1. Compute gm with d, g1, . . . , gm−1 known.

The above procedure is iterated until convergence, which
is guaranteed [27].

Following the above, the overall numerical algorithm is
summarized in Algorithm 1 for the case m = 2. There
are two nested loops. The outer loop (lines 03–15) are
the greedy enrichment strategy that adds terms T =
d(x)g1(p1)g2(p2) one by one until a convergence criterion
is satisfied. The inner loop (lines 06–12) is a fixed-point
algorithm that iteratively computes the FE coefficients for
one specific function d(x), g1(p1) or g2(p2) by fixing coef-
ficients of all the other functions, until convergence. The
exact rank N of the approximation needed to accurately
approximate the solution depends on solution separability
and regularity. The overall enrichment procedure stops as

Algorithm 1 Numerical approach to computing PGD solu-
tion when m = 2

01 Set maximum iterations max iter, error tolerance

tol, and initial solution U = 0

02 initialize iteration counter num iter = 0 and
approximation error error iter = 1

03 while error iter > tol and num iter < max do

04 num iter = num iter + 1
05 initialize φd = 0, φg1 = φg2 = 1, error = 1
06 while error > tol do
07 rd = φd, r1 = φg1 , r2 = φg2

//record the original values for fixed point check
08 Find d ∈ V or φd for all δd ∈ V0, such that

A(dg1g2, δdg1g2) = L(δdg1g2)−A(un−1, δdg1g2)
09 Find g1 ∈ L2(I1) or φg1 for all δg1 ∈ L2(I1),

such that
A(dg1g2,dδg1g2) = L(dδg1g2)−A(un−1,dδg1g2)

10 Find g2 ∈ L2(I2) or φg2 for all δg2 ∈ L2(I2),
such that
A(dg1g2,dg1δg2) = L(dg1δg2)−A(un−1,dg1δg2)

11 error = ||rd − φd||+||r1 − φg1 ||+||r2 − φg2 ||
//check if at fixed point

12 end while

13 U = U + d(x)g1(p1)g2(p2)
14 error iter = ||φd|| ||φg1 || ||φg2 || //or other error

//estimators to check if U accurate enough
15 end while

16 return U

soon as the equation residual or other error criterion is
satisfied [21, 28, 22, 23].

We further comment on the complexity of the PGD ap-
proach. Suppose the functions d(x) and gj(pj) are dis-
cretized with Nd and Npj

nodes (or degrees of freedom) re-
spectively. The numerical complexity of the original multi-
dimensional problem is Nd

∏m

j=1 Npj
. But with PGD, it

becomes Nd +
∑m

j=1 Npj
. To take a concrete example, if

we assume Nd = 1000 and Npj
= 10 (a very coarse de-

scription in practice), and m = 10 (a very simple model),
the numeric complexity is 1000 × 1010 = 1013 for an FE
approach vs. 1000 + 10× 10 = 1100 for a PGD approach.
The curse of dimensionality is resolved!

4. Using R-functions to describe domain changes

To successfully implement the above described PGD
procedure to compute a parametric solution to (6) still
requires constructing an R-function and a characteristic
function H(x,p), as described in Section 2. Details are
explained in this section.

4.1. R-function with parameters

It is well known that every solid can be represented by
a real-valued function f , such that f > 0 for all interior
points, f = 0 for all boundary points, and f < 0 for all
exterior points. The theory of R-functions [17, 29, 30] gives
an algorithmic method for constructing such functions for
general shapes in engineering.
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Figure 2: R-functions can uniformly express a model undergoing
parameter modification even where this results in intersecting.

An R-function is a real-valued function whose sign is
completely defined by the sign of its arguments. Such
functions can encode Boolean operations that help to con-
struct complex combinations of simpler basis functions.
For instance, given two models Ω1, Ω2 represented by two
R-functions f1, f2, the following functions behave like the
logical operators and and or:

f1 ∧ f2 ≡ f1 + f2 −
√

f2
1 + f2

2

f1 ∨ f2 ≡ f1 + f2 +
√

f2
1 + f2

2

Using R-functions, any set theoretic expression can be
translated into a real-valued function by syntactically re-
placing Boolean operations by corresponding R-functions.

An R-function can be easily built for parametrical mod-
els, and the above Boolean operations always work even
when topological changes are involved. For examplein
Fig. 2, let x1, x2 be the respective centers of circles C1, C2.
The left and right domains in Fig. 2 can be represented by
the same R-function (with parameters x1, x2):

ω(x1, x2) = f1 ∧ f2 ∧ f3 ∧ f4 ∧ f5 ∧ f6,

where
f1 = x+ 5; f2 = 5− x;

f3 = y + 3; f4 = 3− y;

f5(x1) = x2 − 2x1x+ x2
1 + y2 − 4;

f6(x2) = x2 − 2x2x+ x2
2 + y2 − 4.

4.2. Representing the domain with R-functions

We can now replace the parametric domain Ωp with
a fixed domain ΩU by use of the characteristic function
defined in (15) in combination with R-functions.

For the changing domain Ωp, p ∈ I, we find a regu-
lar, fixed domain ΩU such that Ωp ⊂ ΩU , ∀p ∈ Ip. For
example, we can choose an axis-aligned bounding box of
⋃

p∈p

Ωp as ΩU . Using R-functions, we can then construct

a function Φ : ΩU × Ip → R such that











Φ(x,p) > 0, x inside Ωp,

Φ(x,p) = 0, x on the boundary of Ωp,

Φ(x,p) < 0, x outside Ωp.

Such Φ is constructed as the product of the implicit func-
tions determined by the outer boundary of model Ωp.

We also define the following characteristic function [18]:

H(Φ(x,p)) =

{

1 , if Φ(x,p) ≥ 0,

0 , if Φ(x,p) < 0,
(15)

which indicates whether a given point belongs to Ωp or
not.

Then the weak form of (6) can be formulated as follows:

∫

I1

· · ·
∫

Im

∫

ΩU

(∇u)TC∇δuH(Φ) dΩdp1 · · · dpm =

∫

I1

· · ·
∫

Im

∫

ΩU

[fT δu+ div(τT δun)]H(Φ)

dΩdp1 · · · dpm.

(16)

Note that we have an integral of div(τT δun) over the en-
tire domain ΩU , which is converted from the boundary
integral on ΓN (p) in (9) by the divergence theorem; the
same strategy was also applied in [18]. Thus the bound-
ary traction τ , originally defined on ΓN , must be extended
from the boundary to the entire domain ΩU . This can be
accomplished, for example, using transfinite interpolation
with approximate distance as described in [31]. Note also
that the weak formulation in (16) is different from the one
in (9) in that the former has a characteristic functionH(Φ)
in its integral terms.

4.3. Integration using the characteristic function

Numerically computing (16) involves evaluating a high-
dimensional integral with a characteristic function. This
is achieved using the Gaussian integration method in high
dimensions, as explained below.

Figure 3: Gaussian integration methods with the characteristic func-
tion

The integral in (16) needs to be calculated for each FE
element in turn. Let Ωe be a 3D FE element under con-
sideration: see Fig. 3. We wish to evaluate the integral for
a general function g,

∫

I1

· · ·
∫

Im

∫

Ωe

g(x, y, z, p1, . . . , pm)

H(Φ(x, y, z, p1, . . . , pm)) dΩdp1 · · · dpm.

The integral is computed via a Gaussian integration
approach via picking up a set of sampling points within
the integration domain, and computing the integral as
weighted sum of the function values at these points.
Specifically, let k be the number of sampling points in
m+3 dimensions. We pick k points (xi, yi, zi, pi1, . . . , p

i
m),
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1 ≤ i ≤ k, for spatial coordinates (x, y, z). We then calcu-
late values of

gi = g(xi, yi, zi, pi1, . . . , p
i
m), Φi = Φ(xi, yi, zi, pi1, . . . , p

i
m),

and evaluate

Hi =

{

1 , if Φi ≥ 0,

0 , if Φi < 0,

for i = 1, . . . , k. We then have the approximation

∫

I1

· · ·
∫

Im

∫

Ωe

gH dΩdp1 · · · dpm ≈ v

k
∑

i=1

giHiwi, (17)

where wi is the weight of the i-th Gaussian point such that
∑

1≤i≤k wi = 1, and v = VΩe

∏m

j=1 lIj is the ‘volume’ of
the integration domain (VΩe is the volume of Ωe and lIj is
the length of the interval Ij). The integral

∫

I1

· · ·
∫

Ie
j

· · ·
∫

Im

∫

ΩU

g(x, y, z, p1, . . . , pm)

·H(Φ(x, y, z, p1, . . . , pm)) dΩdp1 · · · dpm.

is computed in a similar way, where Iej is a 1D FE element
under consideration. Due to the variable separation, the
numerical integral can be evaluated without difficulty.

5. Numerical results

The proposed approach has been implemented in Mat-
lab on a computer with an Intel Core i5-3470 3.20GHz
CPU and 8GB RAM. Various numerical examples are
shown in this section to validate the idea, and to test ac-
curacy and efficiency of the proposed method. We include
cases involving changes in position and size of positive and
negative features, and feature intersections. All our exper-
iments concerned 3D linear elasticity with a Young’s mod-
ulus E = 2 × 1011 Pa and Poisson’s ratio ν = 0.33. The
body force per unit volume for all models was f = −1×106

N/m3 in the z-direction.

The results computed by our method were compared
with those obtained by direct FE using relative error :

re =
||u− uFEA||
||uFEA||

, (18)

where u and uFEA are the computed simulation solutions
using the proposed approach and the FE method respec-
tively, and || · || represents the Euclidean length of a vector.

For each test example, we also list the number of mesh
elements, the PGD offline computation time, the online
solution evaluation time, the direct FE computation time,
and the speedup. The results are summarized in Table 1.
Details for each example are explained below.

Table 1: Execution time for examples
Example Mesh Offline Online FEA Speedup

#1
750 (3D)
×10 (1D)

32 min
(10 terms)

1.8 ms 0.20s 110×

#2
1000 (3D)
×4 (1D)
×4 (1D)

135 min
(7 terms)

1.6 ms 0.43s 270×

#3
3000 (3D)
×34 (1D)

955 min
(16 terms)

10.7 ms 7.94s 740×

#4
6000 (3D)
×10 (1D)

355 min
(13 terms)

11.6 ms 16.84s 1456×

#5
1840 (3D)
×27 (1D)

210 min
(18 terms)

6.7 ms 1.92s 287×

Figure 4: Example #1: Model with a moving positive feature

Figure 5: Average relative error for Example #1 when the design
parameter changes from 0.5 to 2.5

5.1. Example #1: a moving positive feature

We first tested the approach’s ability to handling a mov-
ing positive feature. The example in Fig. 4 was built from
a combination of four 1× 1× 1 unit cubes. The top one is
centered at point (0.5, p, 1.5), with a translation parame-
ter p ∈ [0.5, 2.5]. The left and right side faces of the model
are fixed along its sides as boundary conditions. In order
to perform a PGD simulation of the model, we created
a uniform mesh of 5 × 15 × 10 hexahedral elements for
the domain ΩU = [0, 1]× [0, 3]× [0, 2], and a 10-cell mesh
for the 1-D parameter interval [0.5, 2.5]. It took about 32
minutes to compute offline a PGD representation of ten
summation terms, 0.0018 s to evaluate the PGD solution
for a specific parameter value p, In contrast it took 0.20
s to perform FE analysis for a specific parameter value
p. A speedup of 110 times is achieved, demonstrating the
approach’s efficiency in direct simulation.

The computed results are compared with the benchmark
FE results in Fig. 5 for 10 uniformly sampled values of p.
The relative errors are all below 6% and are considered
both acceptable and reliable, considering the fact that var-
ious numerical errors may be introduced both by the PGD
computations and the FE computations. Numerical errors
in our offline computation and the FE analysis lead to the
asymmetry seen the results from the FE analysis are not
completely symmetric even though the model is symmet-
ric. We also plot and compare point-wise the PGD and
FEA solutions in Fig. 6 when p = 1.5, showing the x-, y-,
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Figure 6: Computed displacement fields for proposed approach and
the FE method for Example #1, for p = 1.5.

Figure 7: Relative error of Example #1 when p = 1.5.

and z- components of the displacement field. Their rel-
ative point-wise error is also shown in Fig. 7). The two
results have very close point-wise approximation. These
results demonstrate the approach’s simulation accuracy.

5.2. Example #2: a variable-sized negative feature

We next tested the performance of the proposed ap-
proach for a variable-sized negative feature using the ex-
ample in Fig. 8. The example model is a [0, 1]3 cube with
a 1×p1×p2 through-hole feature centered at (0.5, 0.5, 0.5).
There are two size parameters p1, p2 ∈ [0.2, 0.4]. The left
and right side faces of the model are fixed as boundary con-
ditions. To compute the PGD-based solution, we created
a uniform 10 × 10 × 10 mesh of the domain ΩU = [0, 1]3,
and a uniform 4-cell mesh for each size parameter p1, p2.
It took about 135 minutes to compute offline a PGD solu-
tion of 7 summation terms, and 0.0016 seconds to evaluate
the PGD solution at a specific parameter. It took 0.43 sec-
onds to perform FE analysis for a specific configuration.
A speedup of 270 times is achieved, again demonstrating
the approach’s efficiency.
The computed results are compared with the benchmark

FE results in Fig. 9 for 25 parameter combinations. The
relative errors are all below 5% and are acceptable. We
also plot and compare the point-wise PGD and FEA solu-
tions in Fig. 10 when (p1, p2) = (0.2, 0.4), again showing
the x-, y-, and z- components of the displacement field.
Their relative point-wise error is also shown in Fig. 11).
The two results demonstrate very close point-wise approx-
imation. All these results demonstrate the approach’s sim-
ulation accuracy.

5.3. Example #3: Intersecting features

We also tested performance of the proposed approach for
a case involving intersecting features using the example in

Figure 8: Example #2: Model with a variable-sized negative feature

Figure 9: Average relative error for Example #2 for parameters val-
ues in [0.2, 0.4]2

Figure 10: Comparison of the computed displacement fields for the
proposed approach and the FE method for Example #2, for p1 = 0.2,
p2 = 0.4

Figure 11: Relative error for Example #2 when p1 = 0.2, p2 = 0.4

Fig. 12. The model is built as the union of three 1× 1× 1
cubes with a fixed 1×0.2×0.2 through holeH1, centered at
(0.5, 1.5, 0.5), and a moving 1× 0.4× 0.4 through hole H2,
centered at (0.5, p, 1.5), with parameter p ∈ [−0.2, 3.2].
The hole H2 moved along the y-axis. There were various
intersection configurations with the hole H1 and the solid
model ΩU , for example partial intersection with hole H1 or
model ΩU , H1 completely within hole H2 etc, resulting in
models of varying topologies, as can be seen in Fig. 12. The
model was subject to an extra boundary load τ = −106

N/m2 on the upper face, as well as the body force. The
edges parallel to the x-axis on the bottom face were fixed
to give the Dirichlet boundary conditions.

The PGD simulation was performed on a mesh of
10×30×10 hexahedral elements for domain ΩU = [0, 1]×
[0, 3] × [0, 1], and a 34-cell mesh for each 1D parameter
interval in the range [−0.2, 3.2]. It took about 16 hours
to compute offline a PGD representation of 16 summa-
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Figure 12: Example #3: Model with feature intersections.

Figure 13: Average relative error for Example #3 as the parameter
changes in [−0.1, 3.1].

Figure 14: Displacement field for Example #3 when p = 1.8.

Figure 15: Relative error for Example #3 when p = 1.8.

tion terms, and 0.01 s to evaluate the PGD solution at a
specific parameter. It took 7.94 s to perform FE analysis
for a specific configuration. A speedup of 740 times was
achieved, demonstrating the approach’s efficiency in direct
simulation.

The relative errors between the PGD and FEA results
are plotted in Fig. 13 for 17 uniformly sampled parameter
values. As can be seen from the results, the relative er-
rors are all below 7% and are acceptable. The point-wise
PGD and FEA solutions are also plotted and compared in
Fig. 14 when p = 1.8, where the x-, y-, and z- components
of the displacement field are shown. The relative point-
wise error is also shown in Fig. 15; it is small. All these
results demonstrate the approach’s simulation accuracy in
cases of intersecting features.

5.4. Example #4: Model with variable-sized negative fea-

ture intersecting another feature

We test a case of a variable-sized negative feature in-
tersecting another negative feature, as shown in Fig. 16.
In this example, the model is built from a union of four

Figure 16: Example #4: Model with deforming negative feature
intersecting another feature

Figure 17: Average relative error for Example #4 as the parameter
changes in [0.2, 1.2]

1× 1× 1 cubes with a fixed 1× 0.4× 0.4 through-hole fea-
ture, and a variable-sized 1× 0.2× p through-hole feature,
where p ∈ [0.2, 1.2] controls size. The left and right sides
of the model are fixed. As can be seen from Figure 16, as
the through hole’s length increases, the topology changes.

In order to compute the PGD-based solution, we created
a mesh of 10×30×20 hexahedral elements for the domain
ΩU = [0, 1]× [0, 3]× [0, 2], and a 10-cell mesh for the 1-D
parameter interval [0.2, 1.2]. It took about 355 minutes to
compute offline a PGD representation with 13 summation
terms, and 0.01 s to evaluate the PGD solution at a spe-
cific parameter. It took 16.84 s to perform FE analysis
for a specific configuration. A speedup of 1456 times was
achieved, demonstrating the approach’s efficiency in direct
simulation.

Relative errors between the PGD and FEA results are
plotted in Fig. 17 for 11 uniformly sampled parameter val-
ues. As can be seen from the results, the relative errors
are all below 10% and are acceptable. The point-wise
PGD and FEA solutions are also plotted and compared
in Fig. 18 for p = 0.5, where the x-, y-, and z- compo-
nents of the displacement field are shown. The relative
point-wise error is also shown in Fig. 15, and is small. All
these results demonstrate the approach’s simulation accu-
racy even in cases involving intersecting features.

5.5. Example #5: Curved restrictions

We finally tested performance of the proposed approach
for a case involving curved restrictions using the exam-
ple in Fig. 20. The model is built as the intersection of
a 1 × 2.3 × 0.8 cuboid and the union of 2 radius 1 and
height 0.8 cylinders, Z-axis as the axial direction, centered
at (0.5,

√
3/2+0.15, 0.4) and (0.5,−

√
3/2+2.15, 0.4), with

a moving radius 0.2 and height 1 cylinder through hole H1,
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Figure 18: Displacement field for Example #4 when p = 0.5

Figure 19: Relative error for Example #4 when p = 0.5

Figure 20: Example #5: Model with curved restrictions.

Figure 21: Average relative error for Example #5 as the parameter
changes in [−0.2, 2.5].

X-axis as the axial direction, centered at (0.5, p, 0.4), with
parameter p ∈ [−0.2, 2.5]. The hole H1 moved along the
y-axis. The upper face F0 is fixed giving the Dirichlet
boundary condition.

The PGD solution was performed on a mesh of 10×23×8
hexahedral elements for domain ΩU = [0, 1] × [0, 2.3] ×
[0, 0.8], and a 27-cell mesh for each 1D parameter interval
in the range [−0.2, 2.5]. It took about 210 minutes to
compute offline a PGD representation of 18 summation
terms, and 0.0067 s to evaluate the PGD solution at a
specific parameter. It took 1.92 s to perform FE analysis
for a specific configuration. A speedup of 287 times was
achieved, demonstrating the approach’s efficiency in direct
simulation.

The relative errors between the PGD and FEA results
are plotted in Fig. 21 for 28 uniformly sampled parameter
values. As can be seen from the results, the relative errors
are all below 3.5% and are acceptable.

5.6. Discussion

As can be observed from the above examples, the pro-
posed approach of direct simulation can very rapidly give
simulation results after computing a single offline para-
metric solution. It can also handle cases involving topo-
logical changes caused by parameter modifications. The
computed results for a given parameter are within 10% of
the FE analysis results, and are acceptable considering the
numerical errors induced by the PGD and FE computa-
tions. The simulation speed is increased by at least 2 or-
ders compared to those obtained by FE analysis. The real
speedup is expected to be much higher for complex mod-
els as FE analysis takes time O(n2) with respect to the
number of mesh elements, while solution evaluation from
the offline parametric PGD solution only takes time O(n),
and furthermore the time-consuming meshing or remesh-
ing process is not included in the FE computation time.

We further discuss below the limitations of the proposed
approach.

5.6.1. Complex examples and R-function

The geometric complexity that the proposed approach
can handle depends on the successful construction of the
associated R-function for the features undergoing para-
metric deformations. For a complex CAD model in a gen-
eral NURBS representation, the proposed approach can
be applied directly without any difficulty as long as the
shapes undergoing deformation can be represented using
a parametric R-function. The property can be observed
from (16), where the modification parameters are used in
the integration function H(Φ(x,p)) while the integration
domain ΩU remains unchanged.

On the other hand, classical level-set approaches have
been widely applied to approximate freeform complex sur-
faces without parametric deformation [32]. However, con-
structing a parametric level-set function to approximate a
set of shapes undergoing parametric modifications is rarely
studied in previous researches. The issue may be resolved
via constructing a level-set function in a higher dimension
including the shape modification parameters, and is to be
addressed in our future work.

5.6.2. Accuracy control

The physical simulation accuracy of the proposed ap-
proach comes from several aspects: the PGD approxima-
tion error and the usage of R-function. The PGD ap-
proach has demonstrated its approximation under any ac-
curacy control for simulation problems in a wide range
of industrial applications [27, 33], and are not further dis-
cussed here. The error induced by the R-function is mainly
due to the inaccurate numerical computation of the Gaus-
sion integration in (17) due to insufficient point samplings.
For example, it is noted from the numerical results that,
for parameters where the topology of the edited model
changes during the parameter variation process, the rela-
tive approximation error is usually higher than for other
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Figure 22: Local mesh and the Gaussian points for one instance of
the topology changing points of Example #4. The area in the red
box is not properly represented by the Gaussian integration points.

parameter values, although still acceptable: see for exam-
ple the curves of relative errors in Fig. 13 and 17. This
can perhaps be explained from the fact the uniform coarse
samplings of the Gaussian points in the integration process
in (17) is not dense enough to account for such complex ge-
ometric or topological changes in the case. See also Fig. 22
for an explanation. A more accurate numerical approach
needs to be developed to further improve the simulation
accuracy. Low discrepancy methods could provide one po-
tential solution to this problem [34, 35].

We have to mention here that the usage of the R-
function here also introduces great advantages for fast pre-
dicting physical properties of models undergoing paramet-
ric modifications in that no additional efforts of remeshing
is required for the modified model and the mesh quality
in ensured, which in turn improves the numerical approx-
imation accuracy. Actually, although various efficient ap-
proaches for shapes undergoing deformations have been
proposed, they usually suffer the issues of bad mesh quality
(see for example the produced meshes in [36]), and corre-
spondingly low FE computational accuracy. The proposed
approach combining PGD and R-function performs the in-
tegration on a fixed mesh, and does not have this issue and
can be applied to shape undergoing large deformations.

5.6.3. Offline computation cost

It is also noticed here that the offline computation in
Table 1 takes much more time than performing one single
FE analysis. This is predictable as in the whole PGD so-
lution computation process in Algorithm 1, solutions d(x)
needs to be iteratively computed until convergence, one
single step of which is similar to computing an FE so-
lution. The process can be further accelerated via addi-
tional separations of the spatial coordinates [21, 37, 38],
i.e., approximating d(x) as d1(x) ∗ d2(y) ∗ d3(z), where
d1(x),d2(y),d3(z) are piecewise function built from one
dimension FE basis, and ’∗’ represents the element-wise

multiplication (if A = [a1, a2, a3] and B = [b1, b2, b3], then
A ∗ B = [a1b1, a2b2, a3b3]). For example, suppose that d

has 10× 10× 10(Nodes)× 3(DOFs/Node) = 3000 DOFs,
then each of d1(x),d2(y),d3(z) has only 10(Nodes) ×
3(DOFs/Node) = 30 DOFs, and can be much more ef-
ficiently computed in the 1D FE computations.
On the other hand, it is also noticed that the main com-

putational costs during the PGD computations are due

to the involved high-dimensional integrals. The low dis-
crepancy sequences which has been used successfully to
evaluate integrals in 365 dimensions in finance, is a nice
candidate to further improve the computational efficiency,
besides via additional separations of the spatial coordi-
nates.

6. Conclusions

This paper has proposed a novel approach for direct
simulation of parametric CAD models in real time. This
is achieved via computing offline a generic solution that
includes all solutions for every possible choice of design
parameters, in a high-dimension space that includes the
space coordinates and design variables. It is based on the
PGD model reduction technique in combination with R-
functions. The approach works even for cases involving
topological changes, and does not need remeshing or mesh
mapping. The computational accuracy and efficiency of
the proposed approach were demonstrated via various nu-
merical examples.
The proposed approach works well. In future, we will

further examine its performance for realistic CAD models
with fine meshes, which will further improve the numeri-
cal accuracy, but at much greater computational expense;
a strategy of parallel computation may be required. The
proposed approach also should work in principle for de-
forming freeform models [39, 40]. However, such deforma-
tions usually involve a large number of design variables,
and a strategy to reduce this number has to be developed
for practical usage.
PGD is a novel model reduction approach that has in-

trinsic advantages in resolving the curse of dimensionality
and can be of potential use in various industrial applica-
tions. The PGD approach has already demonstrated its
theoretical soundness in tackling linear or nonlinear physi-
cal phenomena, for example nonlinear elasticity [33]. More
research efforts are needed to fully explore its potential
uses in solid modeling.
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