
Skinning and blending with rational envelope surfaces

Michal Bizzarri∗,a, Miroslav Lávičkab,a, Jǐŕı Kosinkac
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Abstract

We continue the study of rational envelope (RE) surfaces. Although these surfaces are parametrized with the help of
square roots, when considering an RE patch as the medial surface transform in 4D of a spatial domain it yields a rational
parametrization of the domain’s boundary, i.e., the envelope of the corresponding 2-parameter family of spheres. We
formulate efficient algorithms for G1 data interpolation using RE surfaces and apply the developed methods to rational
skinning and blending of sets of spheres and cones/cylinders, respectively. Our results are demonstrated on several
computed examples of skins and blends with rational parametrizations.
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1. Introduction

One of the main issues when dealing and computing
with geometric objects is the choice of a suitable type of
representation [1]. This is important not only from the
point of view of geometry representation itself, but also
for formulating subsequent and downstream algorithms.
A special role is played by parametric representations as
these provide easy generation of points on curves and sur-
faces, and are well suited for surface rendering, computing
transformations, determining offsets, admit simple curva-
ture computation, and play a key role in various intersec-
tion problems. For these reasons, parametric descriptions
are employed in computer graphics and also in computer-
aided (geometric) design. Among all parametrizations,
the most important ones are those that can be described
with the help of (piece-wise) polynomial or rational func-
tions, forming the basis of standard CAD systems as
the so-called NURBS objects. The NURBS representa-
tion (where NURBS stands for Non-Uniform Rational B-
Spline) is considered the universal standard in technical
practice, offering a unifying data exchange format and be-
ing able to exactly represent, for example, conics, quadrics,
and many other elementary geometric objects from techni-
cal applications [2], including free-form spline curves and
surfaces.

On the other hand, many natural geometric opera-
tions applied to NURBS curves or surfaces do not pre-
serve the rationality of the derived objects. Among the
most frequent of such operations are offsetting, the opera-
tion of convolution, and the construction of envelopes and
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Minkowski sums. Hence, studying derived or transformed
object rationality belongs to challenging problems in geo-
metric modelling [3, 4]. Nonetheless, we consider a more
general viewpoint: When the sought-after object should be
rational (i.e., representable by a rational parametrization),
it is often convenient to use intermediate non-rational rep-
resentations. The simplest non-rational parametrizations
are square-root parametrizations of curves and surfaces.
A curve or surface is called square-root parametrizable if
it can be rationally parametrized in terms of t or (u, v)
and

√
P (t) or

√
P (u, v) with polynomial P (t) or P (u, v),

respectively.
It is known that any curve given by a square-root

parametrization is rational, elliptic, or hyper-elliptic [5].
We exemplify here several constructions based on elliptic
or hyper-elliptic curves that lead to rational derived ob-
jects. For instance, it has been proved that canal surfaces
determined by a rational trajectory of moving spheres and
a square-root radius function are rational [6]. Hence, by al-
lowing square-roots in the parametrizations of medial axis
transforms, a larger class of rational canal surfaces can
be constructed. A similar result holds also for rational
ringed surfaces given by a square-root radius function [7].
And recently, the so-called RE curves, i.e., curves yielding
rational envelopes, have been introduced [8]. RE curves,
although containing square roots, yield rational envelopes
and can be constructed by simpler methods than those for
Minkowski Pythagorean hodograph curves [9, 10]. They
can also be used for canal surface adaptive blending using
rational blends.

In this paper we continue the study of [8] and in-
vestigate in more detail surface analogies to RE curves.
These RE surfaces, considered as medial surface trans-
forms in four-dimensional space [11, 12], are parametrized
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Figure 1: A skin of four spheres combined with blending between spheres and canal surfaces

by square roots. But despite being non-rational, they can
be used for constructing rational objects, namely rational
envelopes in 3D. We believe that this field still poses many
challenges which, when solved, will lead to promising ap-
plications. For instance as we show in this paper, rational
envelopes of suitable two-parametric systems of spheres
have to be considered when branched skins of systems of
spheres are computed. As far as we are aware of the lit-
erature, these parts of skins/blends have been modelled
using non-rational surfaces [13] until now. By utilizing
RE surfaces, we offer a simple and novel method for com-
puting rational branched skins of a system of spheres/balls
in 3D and rational blends between canal surfaces, includ-
ing branched blends. Envelopes of one- or two-parametric
families of spheres (or balls) play an important role in
various applications including computational chemistry,
molecular biology, computer animation, and modelling of
tubular surfaces. A simple example combining skinning
and branching is shown in Fig. 1.

We start by recalling prior knowledge on canal surfaces,
skinning and blending, and by defining and investigating
RE surfaces (Section 2). This is followed by an interpola-
tion scheme for RE surfaces (Section 3). Our theoretical
results are then applied to ball skinning (Section 4) and
to canal surface blending (Section 5). Finally, we discuss
limitations of our approach (Section 6), and conclude the
paper and point out future research directions (Section 7).

2. Preliminaries

We recall some fundamental facts about canal surfaces,
skinning of balls/spheres, blending between canal surfaces,
and rational envelope (RE) surfaces.

2.1. Canal surfaces

Consider a one-parameter set of spheres

F (t) : |(m(t)− x)|2 − r2(t) = 0, t ∈ I ⊆ R, (1)

where x = (x, y, z). The envelope S of F (t) is called a
canal surface, the curve m(t) tracing the centres of the
spheres F (t) its spine curve, and the function r(t) describ-
ing the radii of F (t) its radius function. By appending the
corresponding sphere radii r(t) to the points of the spine
curve m(t) we obtain the medial axis transform (MAT for
short). The canal surface S is thus given by and identified
with its medial axis transform

(
m(t), r(t)

)
⊂ R

3,1, where
R

3,1 is the 4-dimensional Minkowski space.
It was proved in [14] that any canal surface with a

rational spine curve and a rational radius function has a
rational parametrization. A technique for computing ra-
tional parametrizations of canal surfaces was presented in
[15]. We emphasize that although the canal surfaces with
rational spine curves and rational radii always possess ex-
act rational parametrizations, approximate parametriza-
tion techniques are also investigated in connection with
them [16]. This is caused by the computational difficulty of
decomposing a rational function into a sum of two squares
(SOS) over the real numbers, which is a key ingredient in
the parametrization algorithm from [15]. Moreover, there
exist rational canal surfaces with square-root parametrized
medial axis transforms.

A rational parametrization of a canal surface S can be
easily computed when a rational curve c on S is known.
It is then enough to rotate c around the tangents of the
spine curve m, which gives

s(t, u) = m(t)+

+
(̺(u),m′(t))⋆(0, c(t)−m(t))⋆(̺(u),−m′(t))

(̺(u),m′(t))⋆(̺(u),−m′(t))
, (2)
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Figure 2: Branching of a skinning surface (2D illustration) on a
particular sphere. The red sphere is connected via the skin with 3
neighbouring spheres.

Figure 3: Branching of a skinning surface (2D illustration) when a
blend (green) between more than two spheres is needed. The red
sphere is connected via the skin with 4 neighbouring spheres.

where ̺(u) is an arbitrary rational function. The sums
̺(u)±m′(t) of scalars and vectors are considered as quater-
nions, and ⋆ is the operation of quaternion multiplication;
see [17, 18] for more details about quaternions.

2.2. Skinning balls in 3D space

Skinning is a construction of a Gk/Ck continuous in-
terpolation curve/surface of an ordered sequence of planar
or spatial shapes (most often circles or spheres). It can
be viewed as an analogy to the well-known interpolation
of point sets, see e.g. [19] and references therein. Due to
its technical importance, skinning has attracted the geo-
metric modelling community in recent years and one can
find several papers on this topic, see [20, 21, 22, 23]. One
of the application areas is computer animation: given a
skeletal pose, skinning algorithms are responsible for de-
forming the geometric skin to respond to the motion of the
underlying skeleton.

Following the approach of [21], we consider a given se-
quence of spheres Σ = {S1, S2, . . . , Sn}, which is admissi-
ble as defined in [24]. Our goal is to describe a G1 spline
surface S(Σ) skinning this system. As in [24], we allow not
only linear sequences of input spheres but also more com-
plicated situations. Especially, we focus on configurations
when branched skins should be constructed.

When constructing the skin of spheres in the lin-
ear (sub)configuration, S(Σ) consists of the following el-

ements: (i) parts of Si obtained as the differences of Si

and the spherical caps determined by the contact circles;
(ii) surfaces smoothly joining two consecutive spheres Si−1

and Si along prescribed contact circles. For construct-
ing the blending shapes (ii) we can use e.g. the algorithm
formulated in [25]. It is based on using rational con-
tour curves of canal surfaces for computing their rational
parametrizations. It is beyond the scope of this paper to
go into details and we refer e.g. to [24].

Nonetheless, the problem is more complicated when
branching of skins is allowed. Branching in this case means
that there exists a sphere which is connected via the skin
with more than two neighbouring spheres; see the red
sphere in Figs. 2 and 3. Then two types of situations
can arise. Either, branching occurs on a particular sphere,
Fig. 2. In this case, the skin consists again of the ele-
ments of type (i) and (ii) only. Or, a blend between more
than two spheres is needed, giving rise to a new type, type
(iii); see the green shapes in Fig. 3. For this reason, the
rational envelopes of suitable two-parameter systems of
spheres must be investigated in more detail. Note that
this problem was partially mentioned already in [24], but
non-rational envelopes were applied there.

2.3. Blending between canal surfaces

Blending belongs among important operations in
Computer-Aided (Geometric) Design and due to its techni-
cal importance it has continuously attracted the geometric
design community. The main purpose of this operation is
to generate one or more surfaces that create a smooth join
between the given shapes. Blending surfaces are neces-
sary for rounding edges and corners of mechanical parts,
or for smooth connections of separated objects. For an
overview of several blending techniques see [19, 3, 13] and
the references therein.

The existing approaches to the operation of blending
may be classified with respect to the type of surfaces which
are used. Parametric blend surfaces are among the most
used in applications as they can be easily added to an ex-
isting boundary representation of a solid using trimmed
surfaces. These blends are defined by specifying contact
curves on the given primary surfaces and then computing a
blend surface that smoothly connects (or blends) the given
surfaces. This works particularly well for blends between
two surfaces; the description of multi-sided blends is not
so simple. Compared to the parametric case, the use of
implicitly defined blend surfaces offers more flexibility for
designing blends, since their shape is not restricted to em-
beddings of their parameter domain. Due to this flexible
topology, it is easier to obtain complex, multi-sided blends
in the implicit setting.

In addition, when investigating blending surfaces in
more detail it is also appropriate to analyse the class of
primary surfaces that can be dealt with. Special atten-
tion is often paid to blending surfaces between canal sur-
faces. This topic has been thoroughly studied in recent
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Figure 4: Blending of more than two canal surfaces (2D illustration):
3-way blend.

Figure 5: Blending of more than two canal surfaces (2D illustration):
4-way blend (right)

years and one can find many papers devoted to this sub-
ject when smooth transitions between two canal surfaces
are constructed. In this paper, we focus on the challenging
problem of blends between more than two canal surfaces
(see Fig. 4 and Fig. 5), and also on the closely related
task of constructing branched blends. These types of blend
surfaces again consist of the parts which are defined as en-
velopes of special two-parameter families of spheres (see
the green shapes in Fig. 4 and Fig. 5) and a dominant
role is played by rational envelopes.

2.4. Rational envelope surface in R
3,1

Consider a spatial domain Ω ⊂ R
3 and the family of all

inscribed spheres partially ordered with respect to inclu-
sion of the associated balls. An inscribed sphere is called
maximal if it is not contained in any other inscribed sphere.
Then the medial surface (MS) of Ω is the locus of all cen-
ters y of maximal inscribed spheres and the medial surface

transform (MST) of Ω is obtained by appending the cor-
responding sphere radius r to the medial surface, i.e., it
consists of the points (y, r) ∈ R

3,1. The projection

R
3,1 → R

3 : y = (y, r) 7→ y (3)

naturally relates MS to MST.

For a C1 segment y(u, v) = (y(u, v), r(u, v)) ⊂ R
3,1 of

an MST, the corresponding boundary of the domain Ω is
given by the envelope formula [11]

x± = y − r n±, (4)

where

n± =
(ruG− rvF )yu + (rvE − ruF )yv

EG− F 2

± (yu × yv)

√
EG− F

2

EG− F 2
(5)

and xu denotes the partial derivatives of x with respect
to u, etc. The components E,F ,G of the first funda-
mental form of y(u, v) are computed using the indefinite
Minkowski inner product

〈u,v〉 = u1v1 + u2v2 + u3v3 − u4v4, (6)

whereas the components E,F,G of the first fundamen-
tal form of y(u, v) are determined using the standard Eu-
clidean inner product in R

3. Singularities and points with
reverse boundary orientation (i.e., invalid regions) can be
directly detected using the Jacobian of the mapping in (4);
see [26] for more details.

The so-called MOS surfaces (i.e., Medial surfaces

Obeying a certain Sum of squares condition, see [11]) are
characterized by the condition

EG− F
2
= σ2(u, v), (7)

where σ(u, v) ∈ R(u, v). This ensures that the envelope
x± is rational. Consequently, x± possesses a normal vec-
tor field n± = (x±−y)/r rationally parametrizing the unit
sphere, i.e., x± are rational surfaces with Pythagorean nor-

mals (PN surfaces for short); see [27]. Additionally, any
rational MOS surface y in R

3,1 can be constructed start-
ing from an (associated) rational PN surface x in R

3 and
a rational function r in the form

y(u, v) =

(
x+ r

xu × xv

|xu × xv|
, r

)
. (8)

We remark that x will play the role of x+ in what follows.
However, the main problem that prevents the use of PN
and MOS surface in applications is that the algorithms for
interpolation with PN/MOS surfaces are relatively com-
plicated (as they are based on the dual approach, or on
reparametrizations).

Nonetheless, as in the univariate case of RE curves and
MATs [8], MOS surfaces are not the only MSTs yielding
rational envelopes. Turning back to (4), we only have to
guarantee that rn± is rational. This brings us to a broader
class of (generally non-rational) RE surfaces, i.e., surfaces
yielding Rational Envelopes. Accordingly, we set r(u, v)
as the square root of some non-negative function R(u, v).
This leads to

rru =
1

2
Ru ∈ R(u, v), rrv =

1

2
Rv ∈ R(u, v). (9)
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Figure 6: Interpolating input G1 data (top left) by an RE surface (yellow, bottom right).

Then the rationality of rn± (and thus also of the envelope
x±), cf. (4), is guaranteed by the condition

R(EG− F
2
) = σ2(u, v). (10)

Additionally, any RE surface y in R
3,1 can be constructed

starting from an (associated) rational surface x in R
3 and

a rational function f in the form

y(u, v) = (x+ f (xu × xv), f |xu × xv|) . (11)

In contrast to MOS surfaces, it is easy to generate RE
surfaces in the form y = (y, r =

√
R).

3. Interpolation by RE surfaces in R
3,1

In this section we introduce a novel method for in-
terpolating points pi = (pi, ri) ∈ R

3,1, i = 1, ..., n and
their associated tangent planes αi (or tangent vectors t1i
and t2i) by an RE surface. Naturally, this technique cre-
ates a close analogy between interpolation of point data
sets in R

3,1 and the construction of a surface enveloping
balls/spheres in R

3. The obtained surfaces in R
3,1 hav-

ing rational envelopes in R
3 will be consequently used for

the construction of parts of branched skins and blends; see
Sections 4 and 5, respectively.

The main idea behind the presented method is to start
by constructing a polynomial surface x(u, v) ⊂ R

3 consid-
ered as one branch of the envelope (boundary) surface and
then to use a suitably chosen function f(u, v) to lift it to
R

3,1. Thus, we obtain a polynomial MST y(u, v) ⊂ R
3,1,

cf. (11), interpolating the given data. Of course the sec-
ond branch x−(u, v) of the envelope surface associated to
y(u, v) will possess a rational description, too. The main
reason for constructing the second branch x−(u, v) from
y(u, v) and not independently is obvious: both branches
correspond in parameter, i.e., for a chosen pair (u, v) the
corresponding normals intersect at the medial surface. Or
put differently, in our approach the MST of the resulting
blend is explicitly known and can thus be used for further
processing of the blend/skin.

We now show in more detail how the surface x(u, v) and
the function f(u, v) are constructed when some constraints
reflecting a particular problem are considered.

3.1. RE surface patches interpolating given points and as-

sociated tangent planes

Consider n points pi = (pi, ri) ∈ R
3,1 and n tan-

gent planes αi, given by the vectors ti1 = (ti1, τi1) and
ti2 = (ti2, τi2); see Fig. 6 (top, left). Using the envelope
formula (4), we obtain the associated end points qi on the
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Figure 7: Interpolating G1 data (top left) by an RE surface (yellow, bottom right).

corresponding envelope

qi = pi − ri
(τi1Gi − τi2Fi) ti1 + (τi2Ei − τi1Fi) ti2

EiGi − Fi
2

±
(ti1 × ti2)

√
EiGi − F

2

i

EiGi − Fi
2

, (12)

where Ei = |ti1|2, Fi = |ti2|2, Gi = ti1 · ti2 and
Ei = |ti1|2 − τ2i1, F i = |ti2|2 − τ2i2, Gi = ti1 · ti2 − τi1τi2.
Naturally, the normal vectors ni of the envelope surface at
qi are

ni = λi(qi − pi), λi ∈ R; (13)

see Fig. 6 (top, right). We can construct a polynomial
patch x(u, v) interpolating the points qi and the associated
normal vectors ni; see Fig. 6 (bottom, left). Next, using
formula (11) we lift x(u, v) to R3,1 and as a result we arrive
at the MST y(u, v). Conditions on y(u, v) to interpolate
the points pi, i.e.,

y(ui, vi) = pi, (14)

yield the following conditions on the function f(u, v):

fi(ui, vi) =
ri
|ni|

. (15)

Moreover, we require that y(u, v) touches the tangent
planes αi at the given points pi, i.e.,

yu(ui, vi) = βi1 ti1 + βi2 ti2,
yv(ui, vi) = γi1 ti1 + γi2 ti2,

(16)

which (for each of these identities) forms a system of
four linear equations for three variables fu, βi1, βi2 and
fv, γi1, γi2, respectively. However, the equations in each
system are dependent, which follows from the next depen-
dency conditions:

〈ñ,yu〉 = 0, 〈ñ,yv〉 = 0, (17)

where ñ = (n, |n|) = (xu × xv, |xu × xv|) is an isotropic
vector; see [28] for more details. Thus we can choose three
arbitrary equations in each system, e.g., the first three of
them. Thus we solve

yu(ui, vi) ·mi = 0,
yv(ui, vi) ·mi = 0,

(18)

where mi = ti1 × ti2. This yields

f i
u(ui, vi) = − (xu(ui, vi) + fi(ui, vi)nu(ui, vi)) ·mi

ni ·mi

,

f i
v(ui, vi) = − (xv(ui, vi) + fi(ui, vi)nv(ui, vi)) ·mi

ni ·mi

.

(19)
For valid input data, ni · mi does not vanish and thus
one always obtains a solution, cf. [26]. Hence when con-
structing a rational function f(u, v) satisfying conditions
(15) and (19), the envelope surface associated to y(u, v)
smoothly joins the given n spheres at the prescribed points
and respects the given tangent planes; see Fig. 6 (bot-
tom, right).
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3.2. RE surface patches interpolating given points with

boundaries interpolating prescribed tangent directions

In this section we show how n points pi and 2n tan-
gent vectors ti1 and ti2 at pi, see Fig. 7 (top, left), can be
interpolated by a surface yielding rational envelopes. The
whole construction is based only on solving a system of
linear equations. Again, we start by computing the cor-
responding points qi and normal vectors ni, cf. formulae
(12) and (13). Then we choose tangent vectors ui1 and
ui2 at qi, e.g. by projecting tij , j = 1, 2 to the plane given
by the point qi and the normal vector ni, i.e.,

uij = tij −
tij · ni

|ni|2
ni, (20)

see Fig. 7 (top, right). The partial derivatives of the medial
surface y(u, v), cf. (11),

yu = xu + fu(xu × xv) + f(xuu × xv) + f(xu × xvu),
yv = xv + fv(xu × xv) + f(xuv × xv) + f(xu × xvv)

(21)
imply that the second partial derivatives xuu and xvv of
x have to be in this case suitably chosen to ensure the
continuity conditions

y(ui, vi) = pi,
yu(ui, vi) = βi ti1,
yv(ui, vi) = γi ti2,

(22)

where βi, γi ∈ R. Of course, the values fi = f(ui, vi) can
be computed analogously as in the previous section, cf.
(15),

f(ui, vi) =
ri

|ui1 × ui2|
. (23)

To summarize, the values of qi, ui1, ui2 and fi =
f(ui, vi) are known and the values of f i

u = fu(ui, vi),
f i
v = fv(ui, vi), vi1 = xuu(ui, vi),vi2 = xvv(ui, vi) and
βi, γi shall be computed to satisfy conditions (22). Since
it is enough to choose arbitrary three equations for each
identity (22), cf. (17), we solve for each i ∈ {1, ..., n} the
following two systems of three linear equations:

ui1 + f i
u(ui1 × ui2) + fi(vi1 × ui2)

+ fi(ui1 × xuv(ui, vi)) = βi ti1; (24)

ui2 + f i
v(ui1 × ui2) + fi(xuv(ui, vi)× ui2)

+ fi(ui1 × vi2) = γi ti2. (25)

These systems possess a solution if and only if it is guaran-
teed that ui1×ui2 6= 0 and ui2 · ti1 6= 0, ui1 · ti2 6= 0. And
this is always satisfied for valid input data; see [26]. Con-
sequently, the solution of the linear systems (24) and (25)
gives the envelope surface x; see Fig. 7 (bottom, left). Fi-
nally, constructing a function f that interpolates (23) and
the solution of (24) and (25) and lifting the patch x to
R

3,1, cf. (11), we obtain a parametrization of the RE sur-
face patch y interpolating the points pi and the tangent
directions ti1 and ti2 at pi as required; see Fig. 7 (bot-
tom, right).

Remark 3.1. Solving the linear systems (24) and (25)
yields a 2 × 2n-parametric solution, in general. In ad-
dition, we can also leave the lengths of the tangent vec-
tors uij and the values of the second mixed derivatives
xuv(ui, vi) of x(u, v) as free parameters and solve n sys-
tems of six equations yielding a 9n-parametric solution.
The free parameters can be used for modelling purposes,
i.e., the most suitable solution can be chosen such that the
resulting surface satisfies further criteria. For instance, we
can require that the radii of the inscribed spheres of the
envelope change as minimally as possible. Thus, we mini-
mize the objective function

Φ =

∫ 1

0

∫ 1

0

(
r2u + r2v

)
du dv. (26)

For minimizing (26) one can use e.g. the classical Newton’s
method which is characterized by fast convergence; see e.g.
[29, 30, 31].

4. Skinning balls using rational envelope surfaces

Given n spheres in R
3, our goal is to construct a ratio-

nal skinning surface which smoothly envelopes these given
spheres; see Fig. 8. The main idea of our approach is to
transform the problem to R3,1 and construct an RE surface
passing through the prescribed points and touching planes
in R

3,1. We use the method described in Section 3.1. The
corresponding envelope surface in R

3 then yields the two
main elements of the desired skinning surface (besides the
parts of canal surfaces on the edges).

Let the spheres Si be given by the points pi = (pi, ri) ∈
R

3,1, i = 1, ..., n, such that for each pi the two points
pi−1,pi+1 are considered as the corresponding neighbour-
ing points (spheres) in the sequence determining the skin;
see Fig. 8 (top, left), with p−1 = pn. First, we choose
the tangent planes αi at pi. These can be naturally deter-
mined by the points pi,pi−1,pi+1, i.e., by the points pi

and the tangent vectors

ti1 = λi1

(
pi−1 − pi

)
= (ti1, τi1), λi1 ∈ R;

ti2 = λi2

(
pi+1 − pi

)
= (ti2, τi2), λi2 ∈ R;

(27)

see Fig. 8 (top, right). We note that a different method
for choosing these tangent vectors can be employed when
necessary. In particular, when some other part of the
skin should be joined to the branched skin at a particular
sphere, the tangents (at the corresponding point) are usu-
ally chosen to form a sufficiently small angle, cf. the inner
spheres in Figs. 1, 10, and 14. In complex cases, design-
ers’ intervention may be necessary to obtain satisfactory
results; see also Section 6.

Next, using the approach described in Section 3.1 we
interpolate the points pi and the tangent planes αi by an
RE surface y(u, v). In particular we construct x(u, v) =
x+(u, v) and compute the function f(u, v) and the me-
dial surface y(u, v). Then the rational parametrization of
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Figure 8: An illustration of the construction of the rational skinning surface (bottom right) between four given spheres (top left).

the second branch x−(u, v) of the envelope surface can be
easily obtained as

x−(u, v) = x+ + 2f
(yu × yv) · (xu × xv)

|xu × xv|2
(yu × yv); (28)

see Fig. 8 (bottom, left).
The whole skinning surface is composed of two

branches of the envelope surface x±(u, v) and n canal sur-
faces, cf. Fig. 8 (bottom, right), whose rational description
can be computed by rotating the boundary curves xi(u) of
x(u, v) around the tangents of the boundary curves yi(u)
of y(u, v), cf. (2).

Remark 4.1. When constructing x(u, v) it may be con-
venient to prescribe not only the normal vectors ni at the
points qi but also the tangent vectors which should be
respected by the boundary curves. This is more suitable
for modelling and influencing the output shape of the con-
structed patch. The tangent vectors uij , j = 1, 2 can be
chosen e.g. by projecting tij to the plane given by the
point qi and the normal vector ni, cf. (20). Then we con-
struct a polynomial patch x(u, v) interpolating points qi

and tangent vectors uij .

The construction of the skinning surface which

smoothly envelopes 3 spheres is trivial and we mention
it only for the sake of completeness. We can construct a
triangular linear MST in the form

y(u, v) = p2u+p3v+p1(1−u−v), u ∈ [0, 1], v ∈ [0, 1−u].
(29)

Since the points pi, i = 1, 2, 3 lie in a common plane then
both branches of the envelope are also linear (parts of
planes); see Fig. 9 (left). Moreover, the boundary canal
surfaces are cones; see Fig. 9 (right).

Since four (or more) points do not generically lie in
one plane, we cannot use the simple approach for n = 3
described above. Hence for n > 3 we proceed according to
the above described RE-method for constructing rational
skinning surfaces smoothly joining n prescribed spheres.
Here we consider n = 4.

The method proceeds as described in Section 3, and
for constructing x(u, v) and f(u, v) we employ Ferguson
patches. The rational parametrization of the boundary
canal surface can be obtained by (2), where

x1(u) = x(0, u), x2(u) = x(u, 1),
x3(u) = x(1, u), x4(u) = x(u, 0)

(30)

8



p1

p2

p3 x+

x−

y

Figure 9: An illustration of the construction of the skinning surface between three spheres.

Figure 10: Construction of the rational branched skin of nine spheres

and
y1(u) = y(0, u), y2(u) = y(u, 1),
y3(u) = y(1, u), y4(u) = y(u, 0)

(31)

and y(u, v) is computed using (11). The example in Fig. 8
was constructed this way.

Our method also allows us to construct branched skins
of families of spheres. One such example is illustrated in
Fig. 10. It is assumed that the connectivity (topology) of
the skin is given, cf. [24].

5. Blending between canal surfaces using rational

envelope surfaces

We now describe a method for computing blending
surfaces smoothly joining n ≥ 3 given canal surfaces.
The method can be modified also for the construction of
branched blends. For the sake of simplicity we replace the
input canal surfaces by their tangent cones at the corre-
sponding end circles. Indeed, these n cones are represented

in R
3,1 by their linear MATs, i.e., as the lines

Ci : hi(s) = pi − s ti, i = 1, ..., n, (32)

where the point pi corresponds to the sphere yielding the
prescribed end circle; see Fig. 11 (top, left). Again we
make use of RE surfaces, in particular we proceed accord-
ing to the method presented in Section 3.2 for interpolat-
ing points and preserving tangent directions at boundaries.
The end points pi ∈ R

3,1 and tangent vectors ti ∈ R
3,1

form the input of the algorithm.
We construct an RE surface interpolating pi and ti;

see Fig. 11 (top, right). The tangent planes αi were deter-
mined as

αi : pi, ti,pi+1 − pi−1. (33)

Then we compute the points qi and the tangent vectors
ui1,ui2 and construct a patch interpolating qi and ui1,ui2

and having the second derivatives at the end points as free
parameters. Solving (24) and (25) yields the paramet-
ric description of the medial surface y(u, v). The second
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p3
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t2

t3
t4

2

x+(u, v)

x−(u, v)

y(u, v)

Figure 11: An illustration of the construction of a rational blending surface between four given cylinders and/or cones.

branch of the envelope is computed by (28), see Fig. 11
(bottom, left), and the boundary canal surfaces are ob-
tained by (2), see Fig. 11 (bottom, right).

We emphasize that the choice of suitable points qi is
not fully automatic and can be guided by the designer; see
Section 6 for a further discussion.

We now present examples for various situations and
values of n. Consider (parts of) three cones given in R

3,1

by the end points and tangent vectors

pi, ti, i = 1, 2, 3 (34)

determining their MATs. We start by choosing tangent
planes αi at pi, i.e.,

αi : pi, ti,pj − pk, i, j, k = 1, 2, 3, i 6= j 6= k. (35)

After computing the envelope points qi, cf. (12), and
choosing the tangent vectors ui1,ui2 at the tangent planes
given by qi and the normal vectors (13), we construct a
quintic Bézier triangle interpolating the first-order data.
The second derivatives at the corners qi of the patch are
kept as free parameters. Next, solving the linear systems

(24) and (25) with ti1 = ti2 = ti yields the conditions for
the first derivatives of the lifting function f(u, v), which
can be constructed as a cubic Bézier triangle. Then we
construct the medial surface y(u, v), the second branch
of the envelope surface (Fig. 12, left), and the boundary
canal surfaces; see Fig. 12 (right).

In the case of four (parts of) cones/cylinders that
should be blended we proceed according to the method de-
scribed above. However now we employ a biquintic Bézier
patch for constructing the surface x(u, v). For interpolat-
ing the values fi, f

i
u and f i

v, obtained as a solution of (24)
and (25), we use a Ferguson surface. Examples of this kind
of blending are illustrated in Fig. 13.

Further, we can also use our method to combine skin-
ning and branching in various ways. Such an example is
shown in Fig. 1.

Yet another example uses a skinning surface consist-
ing of two (one triangular and one quadrangular) patches
and several canal surfaces constructed using the above de-
scribed method (for blends). For the inner sphere, the
exact tangent vectors (not only tangent plane) have to be
prescribed, see Fig. 14.
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p3
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Figure 12: An illustration of the construction of the blending surface between three cylinders (cones).

Figure 13: Construction of the rational blending surface between four given cylinders (cones)

6. Limitations

As already mentioned above, some of the choices of
contact points and tangent vectors (or their magnitudes)
depend on the designer’s intent, and poor choices may
lead to undesirable intersections in the resulting surface.
This is directly analogous to the planar situation with cir-
cles/discs, as discussed for instance in [24].

One such unwanted intersection of a piece of the enve-
lope surface with the input sphere is shown in Fig. 15, left.
However, the RE surfaces employed for constructing skins
and blends admit several modelling parameters (e.g. tan-
gent vectors), and these can be suitably chosen such that
intersections are avoided. In the current version of our al-
gorithm, some constellations of the input shapes require
the designer’s intervention to obtain a satisfactory solu-
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Figure 14: Construction of the rational branched skin of eleven spheres

Figure 15: A problematic configuration of input spheres. Left: One branch of the envelope surface intersects one of the prescribed spheres.
Right: The original intersection has been avoided by moving one of the contact points (top).

tion. This is shown in Fig. 15, right, where a modification
of the prescribed tangent point (and thus also of the nor-
mal vector) was performed to obtain an intersection-free
envelope.

Experience shows that it is necessary to avoid unnec-
essary twists of the constructed medial surface and the
envelope. This then also maximizes the chance of obtain-
ing not only a skin with no intersections with the input
shapes, but also a skin with no singularities.

An appropriate and automatic determination of these
points and vectors is a challenging avenue for future re-
search.

7. Conclusion

We have investigated RE surfaces in detail and de-
signed an algorithm for data interpolation using RE
patches. These data include position and first derivatives
at RE patch corners. The simplicity of our construction
lends itself to higher-order Hermite data interpolation with
RE surfaces.

To demonstrate the utility of our theoretical results,
we have applied our method to two problems of practical

importance: sphere skinning and canal surface blending.
The resulting skins and blends are rational and allow us
to smoothly skin or blend several input shapes.

It has not escaped our notice that our approach is not
limited to n equal to 3 or 4. In the case when n > 4,
the principles of the skinning and blending constructions
remain the same, but the goal is to construct an n-sided
RE patch which interpolates, at its corners, n points and
their associated normals.

To this end, one could employ constructions that rely
on generalized barycentric coordinates such as those of
[32, 33] and construct a single patch satisfying the in-
terpolation conditions. However, we believe it might be
preferable to employ constructions that are fully compati-
ble with standard CAD systems, such as the variants [34]
of Clough-Tocher splines [35] or other spline constructions
[36, 37, 38], where the parametric n-gon needs to be de-
composed into n− 2 macro-triangles.
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[11] J. Kosinka and B. Jüttler. MOS surfaces: Medial surface trans-
forms with rational domain boundaries. In The Mathematics

of Surfaces XII, volume 4647 of Lecture Notes in Computer

Science, pages 245–262. Springer, 2007.
[12] Pan Li, Bin Wang, Feng Sun, Xiaohu Guo, Caiming Zhang, and

Wenping Wang. Q-MAT: Computing medial axis transform by
quadratic error minimization. ACM Trans. Graph., 35(1):8:1–
8:16, December 2015.
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bézier patch with a simple control structure. Computer Graph-

ics Forum, 35(2):307–317, 2016.
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