
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Occlusion points identification algorithm / DE VIVO, Francesco; Battipede, Manuela; Gili, Piero. - In: COMPUTER AIDED
DESIGN. - ISSN 0010-4485. - ELETTRONICO. - 91:(2017), pp. 75-83. [10.1016/j.cad.2017.06.005]

Original

Occlusion points identification algorithm

Publisher:

Published
DOI:10.1016/j.cad.2017.06.005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2677046 since: 2017-09-22T15:51:33Z

Elsevier

Occlusion points identification algorithm

F. De Vivoa,∗, M. Battipedea, P. Gilia

aPolytechnic of Turin, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY

Abstract

In this paper a very simple and efficient algorithm is proposed, to calculate the invisible regions of a scene, or
shadowed side of a body, when it is observed from a pre-set point. This is done by applying a deterministic numerical
procedure to the portion of scene in the field of view, after having been projected in the observer reference frame. The
great advantage of this approach is its generality and suitability for a wide number of applications. They span from
real time renderings, to the simulation of different types of light sources, such as diffused or collimated, or simply to
calculate the effective visible surface for a camera mounted on board of an aircraft, in order to optimise its trajectory if
remote sensing or aerial mapping task should be carried out. Optimising the trajectory, by minimising at any time the
occluded surface, is also a powerful solution for a search and rescue mission, because a wider area in a shorter time
can be observed, particularly in situations where the time is a critical parameter, such as, during a forest fire or in case
of avalanches. For its simplicity of implementation, the algorithm is suitable for real time applications, providing an
extremely accurate solution in a fraction of a millisecond. In this paper, the algorithm has been tested by calculating
the occluded regions of a very complex mountainous scenario, seen from a gimbal-camera mounted on board of a
flying platform.

Keywords: Occlusion points, rendering, camera, remote sensing, light source, aircraft

Nomenclature

f (·) Homogeneous Transformation (HT)
PI Vector of point coordinates in the IRF
Tb

a HT matrix from reference frame a to b
Rb

a Rotational matrix from RF a to b
db

a Translational vector from RF a to b
IPi j Image projection of the point Pi j

Ci j Vector of projected values xc
1:nr j

Cxy Image vector of projected values xc
1:nr j

I1/0 Vector of boolean values
iQ Vector of column indexes
xI , yI , zI Inertial reference frame coordinates
xc, yc, zc Camera reference frame coordinates
xb, yb, zb Body reference frame coordinates
xg, yg, zg Gimbal reference frame coordinates
fc Focal length
ik, jk Matrix row and column indexes

∗Corresponding author
Email addresses: francesco.devivo@polito.it (F. De

Vivo), manuela.battipede@polito.it (M. Battipede),
piero.gili@polito.it (P. Gili)

δpx,y Pixel dimensions
φ, θ, ψ Angles of roll, pith, yaw
θel, ψaz Gimbal elevation and azimuth angles
θFOVx,y Vertical and horizontal FOV angles

1. Introduction

1.1. Overview

One of the fundamental research problems in computer
graphics is related to accurately represent a complex
model. In order to do this, it is imperative that those
surfaces normally invisible from a certain point, are also
invisible in the computer generated image. This prob-
lem is called the visible surface problem or the hidden-
surface problem [1]. Over time, different algorithms
have been developed to takle the visibility problem: ray
tracing [2, 3], beam tracing, cone tracing, frustum cast-
ing [4] and Binary Space Partitioning (BSP) trees [5–
7]. These methods share the common idea of sweep-
ing the scene in the direction defined by a certain set of
rays. While the previous algorithms are object space ap-
proaches, a widely used and simple algorithm for visible
surface determination in image space is the z-buffer.

Preprint submitted to Computer-Aided Design May 12, 2017

1.2. Object space approaches

Ray tracing, unlike the BSP tree, determines visi-
ble surfaces in an image operating pixel-by-pixel rather
than primitive-by-primitive, making this algorithm rela-
tively slow for scenes with large objects in screen space.
Unlike the earlier ray-object intersection pseudocode,
where the intersections where verified looping over all
the objects [8], in advanced algorithms, they can be
computed in sub-linear time using divide and conquer
techniques [9]. A different solution in most intersection
acceleration schemes is to compute the intersection of
a ray with a bounding box. This differs from conven-
tional intersection tests because the knowledge of the
exact position in which the ray hits the box is not re-
quired. A similar approach is the hierarchical bound-
ing box [10]. The beam tracing algorithm, designed by
Heckbert and Hanrahan [11], has the aim to overcome
some drawbacks related to the ray tracing technique,
casting a pyramid (beam) containing many rays rather
than using a single ray at a time. The problem of this al-
gorithm is that the beams might become rather complex
and its implementation is difficult. The cone tracing,
proposed by Amanatides [12], unlike the previous two
techniques, traces a cone of rays at a time instead of a
beam or a single ray. In contrast to the beam tracing,
the algorithm does not determine precise boundaries of
visibility changes. An efficient visible surface algorithm
was developed by Naylor [13] for rendering polygonal
scenes using a BSP tree. This tree is obtained by pro-
jecting the visible scene polygons and it is used to cut-
out the invisible ones. The drawback of this method is
that it requires that the whole scene is represented using
the BSP tree, posing a significant problem for large and
dynamic scenes. A solution for the estimation of the
occluded region based on the calculation of the gradient
value of the Digital Elevation Map (DEM) has been pro-
posed by Oliveira [14]. In this case, an abrupt variation
of the gradient defines the starting point of the occluded
region.

1.3. Image space approaches

The z-buffer technique, for each pixel on the display,
keeps both a record of the depth of the closest object in
the scene and a record of the object intensity value that
should be displayed. When a new polygon is processed,
a z-value and intensity are calculated for each pixel in-
side the polygon boundaries. If the z-value at a pixel
indicates that the polygon is closer to the viewer than
the z-value in the z-buffer, the z-value and the intensity
values recorded in the buffers are replaced by the poly-
gons values. After all polygons have been processed,

the resulting intensity buffer is displayed [15]. Despite
its simplicity, there are two main disadvantages related
to this technique: the first one is related to the mem-
ory required for depth buffer and the second one is the
computation effort wasted on drawing distant points that
are drawn over with closer points, that occupy the same
pixel.

1.4. Computational complexity

In the rendering literature there is good empirical ev-
idence that at least some of the acceleration schemes
achieve sub linear time complexity (for instance better
than O(N)) but there is a lack of proofs to show what
complexity they actually achieve and under what condi-
tions [16]. Mark de Berg [17] has recently developed ef-
ficient ray shooting algorithms. He considered the prob-
lem for different types of objects (arbitrary and axis par-
allel polyhedra, triangles with angles greater than some
given value) and different types of rays (rays with fixed
origin or direction, arbitrary rays). His most general
algorithm can shoot arbitrary rays into a set of arbi-
trary polyhedra with N edges altogether, with a query
time of O(log N) and preprocessing time and storage of
O(N4+ε), where ε is a positive constant that can be made
as small as desired. The disadvantage of this algorithm
is its high memory requirements, making it not suitable
for practical situations. The beam tracing algorithm has
been verified to be of O(Nr) [18], with r the number of
reflections in the environment and N surface planes. Fi-
nally the BSP algorithm developed by Naylor is O(2N)
[19].
The proposed algorithm has a computational complex-
ity of O(N) and is based on a totally new approach with
respect to those mentioned before. It determines invis-
ible points exploiting the difference between their rel-
ative positions in the 3D reference frame and on the
projected image plane. The algorithm has been devel-
oped to efficiently estimate the invisible points of a 3D
model or a DEM in order to be integrated with the navi-
gation system of an autonomous flying platform (UAV).
In the following paragraphs, the algorithm is extensively
explained, showing all practical aspects and presenting
both a coarse and fine approach to numerically imple-
ment it. The case study presented in this paper refers to
a camera mounted on board of an aircraft flying above
a mountainous region. The moving camera can also be
interpreted as a moving light source or a sequence of
different points of view in a rendering process.

2

20 40 60 80

−5

0

5

10

15

20

Image Plane

Camera

P1

P2

P3
P7

P8

P4

P5

P6

IP1

IP2

IP3

IP7

IP8

IP4

IP5

IP6

xI

zI

body
visible

occluded

Figure 1: Different order assumed by points in real world and on the
image plane

2. Methodology

2.1. Graphical solution

The basic idea behind this new approach is sketched in
Figure 1. For simplicity a bi-dimensional problem or a
section of a 3D volume is considered here. A mountain
profile, or more in general, a 3D body, is represented
by the coloured region. In blue and red are points taken
on its surface, indicated using a P-letter and numbered
from 1 to 8. On the top-left corner of the image, there
is the point of view, the camera or the light source. The
rightmost oblique line represents a section of the im-
age plane, on which the points P1 . . . P8 are projected.
Each projection is IPi j = (xc

Pi j
, yc

Pi j
). As a single column

is processed in this example, for simplicity of notation,
the second index j is omitted. xc and yc are obtained
using Equation 2 introduced in Section 2.2.1. The blue
points in Figure 1 are those visible for an observer at
the camera position, instead, the red ones are the oc-
cluded points, lying in the shadow of the body. In order
to calculate an occluded point, there are different meth-
ods, as introduced in the previous paragraph. A first
solution could be to intersect the ray (gray dashed line)
with the body surface and to check if it is intersected
more than once (ray-object intersection). Another so-
lution could be to calculate the peak (point P3) and re-
gard as occluded each point that is below the ray pass-
ing from P3 and features at a greater horizontal distance
from the camera. The solution proposed in this paper
is to consider the differences between the relative po-
sitions assumed by the points in the Inertial Reference

Frame (IRF) and on the image plane. In order to un-
derstand how the algorithm works, the problem can be
approached firstly from a graphical point of view and
then numerically. In Figure 2 the graphical method is
schematically presented.

START

STEP 1

STEP 2

...

STEP i

...

STEP 8

END

P1

P2

P3

P4

P5

P6

P7

P8

IP1

IP2

IP5

IP4

IP6

IP3

IP7

IP8

P5

P4

P6

Figure 2: Graphical approach to calculate visible and occluded points

This method compares the vector with the points Pi=1...8,
as they appear in the Inertial Reference Frame (IRF),
and the vector containing the image projections IPi=1...8 .
At step 1, point P1 is compared with the relative element
in the second vector; if it corresponds to the projection
IP1 , it means that point P1 is visible and it is possible to
move to step 2. This procedure is repeated up to step 3,
where, in the corresponding position of point P3, there
is the projection IP5 . In this case, P5 is an occluded
point and is moved from the first to a third vector. P3 is
sequentially compared with the remaining elements of
the second vector until the projection IP3 is found. In
these intermediate steps, also P4 and P6 are occluded
points like P5 and are moved from the first to the third
vector, containing all the invisible points. When the last
vector element is reached, the algorithm ends.
From a practical point of view, it is not straightforward
to know the order of the projections IPi in the second
vector without using a feature matching algorithm. For
this reason, the graphical procedure can not be directly
translated to code. Solution to this problem is presented
in the next subsection.

2.2. Numerical implementation

In order to overcome the difficulties related to the graph-
ical approach, two different algorithm implementations

3

yc

xc

j

i

j

i

xI

yI

zI

i

j

XI
DEM XC

DEM

f (XI
DEM)

P6

P5

P1

1

2

3
4

5
6

1

2

3

4

5

6

1 2 3 4 5 6

C
I j
=

C
C j
=

Pc

IMAGE PLANE

CAMERA FOOTPRINT

1 2 3 4 5 6

Figure 3: Mesh geometry based on camera footprint and image formation by means of homogeneous transformation f . The figure also shows the
image plane xc − yc, the DEM matrix with the coordinate in the IRF (XI

DEM) and CRF (XC
DEM)

are possible. In this paper, for completeness, both of
them are presented.

2.2.1. Points projection
The first step of the algorithm is to project the 3D scene
in the Camera Reference Frame (CRF). The 3D model
is provided in raster form, which means that a matrix
containing the geographical coordinates and elevation
values is used. One of the basic hypotheses, in order
for the algorithm to work, is that the IRF body coordi-
nates have to be in increasing or decreasing order along
the xI and yI axes. For instance, a body that does not
fulfil this hypothesis is the sphere because its surface
points can not be uniquely represented by an increasing
coordinate. If the sphere is cut horizontally along the
equatorial plane, all points of the northern hemisphere

respect this hypothesis and the algorithm applies. Of
the entire 3D map, only the points in the camera Field
of View (FOV) have to be processed. Using simple ge-
ometrical relations and camera parameters, the camera
footprint can be easily calculated. A point P lies inside
the FOV if the following relation is verified:

arccos
(
zc ·

P − Pc

‖P − Pc‖

)
= θP < θFOV , (1)

where Pc is the camera viewpoint, zc is the cam-
era optical axis and θFOV is the FOV. The occluded
point determination can be strongly simplified if the
bi-dimensional problem can be reduce to a mono-
dimensional one. In order to achieve this result, it is
sufficient to take the DEM points, lying in the FOV, on
the trapezoidal grid, representing the projection of the

4

image pixel matrix on the 3D surface, as shown in Fig-
ure 3. This particular spatial distribution ensures that
any matrix column Cj, where the subscript j indicates
the column index, is independent from the others. Using
this geometry, a point can be occluded only by another
point belonging to the same column and not from those
of the adjacent ones. The matrix containing these DEM
points in the IRF is XI

DEM whereas a column of this
matrix is CI

j . In order to project these points in the CRF,
the homogeneous transformation f : I 7→ c is applied

xc

yc

zc

1

 = f (PI) = Tc
I

[
PI

1

]
=

[
Rc

I −dc
I

01x3 1

]
xI

yI

zI

1

 , (2)

where Rc
I and dc

I are respectively the rotational matrix
and translational vector (resolved in the image reference
frame) which take into account the different orientation
and origins of the two reference frames. xc, yc and zc are
the transformed coordinates in the CRF while xI , yI and
zI are the coordinates of the point P in the IRF. The ma-
trix that contains the projected coordinates is XC

DEM .
From Equation 2 it follows

CC
j = f (CI

j)

where CC
j is the j-column containing the projected

points of the j-column CI
j . For example, the three points

P1, P5 and P6 in Figure 3, are taken from the column
j = 5 of the matrix XI

DEM , and their projection in the
CRF is qualitatively shown on the image plane xc − yc.
As the point P6 is occluded by the point P5, xc

P6
< xc

P5

whereas xI
P6
> xI

P5
.

2.2.2. Suboptimal implementation
The suboptimal implementation of the algorithm makes
use of the matrix row and column indexes i − j to dis-
criminate the occluded points. This implementation
comes straightforward if the main idea of exploiting the
different order of the points between the IRF and CRF is
considered. The matrix to be processed is XC

DEM . The
information about the points order in the IRF is intrinsi-
cally available from the way in which the matrix XC

DEM

has been populated. Each column of this matrix is rep-
resentative of a strip in the IRF as shown in Figure 3.
For this reason, the points order in the IRF is the same
they have in the vector Cj. This property enables to op-
erate directly on the matrix index i instead of the matrix
values. The next step is to verify if there are points on
the image plane that are differently ordered from those

in the IRF. To do this, the xc coordinates of the vector
CC

j have to be arranged in decreasing order and the vec-
tor associated to the sorted indexes has to be taken. This
vector is called Is (the capital I stands for the row index
i), while the one associated to the unsorted elements is
Iu. If the three points example of Figure 3 are consid-
ered, Iu =

[
1 2 6

]T
, while Is =

[
2 1 6

]T
because

on the image plane P6 and P5 are switched. The points
moved by the sorting algorithm are only the occluded
ones and those from which they are occluded. A vector
I1/0 of boolean variables contains the value 1 for these
points and 0 otherwise

20 40 60 80

−5

0

5

10

15

20

Image Plane

Camera xc

P1

P2

P3
P7

P8

IP1

IP2

IP3

IP7

IP8

xI

zI

body
visible

Figure 4: Every point in the scene is visible from the camera view-
point. The vector I1/0 = 0nr×1

I1/0 =

0 if iku = iks
1 if iku , iks

∀k ∈ {1 . . . nr} . (3)

iku and iks in Equation 3 are respectively the elements
at the position k of the vectors Iu and Is and nr is the
number of rows of the matrix XC

DEM . For the example
of Figure 3, this vector is I1/0 =

[
1 1 0

]T
because

only the last element 6 is retained in its original posi-
tion. In case in the scene there are not occluded points,
or for points far from the occlusion region, the values
in the boolean vector I1/0 are zero, and they do not re-
quire to be processed in the remaining part of the algo-
rithm. The case with not occluded points in the scene
and I1/0 = 0nr×1 is shown in Figure 4. The surface is
the same shown in Figure 1, but the invisible region has

5

j

i

i

j

XC
DEM

P0
c

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3
4

5
6

1 2 3 4 5 6

Pc

CAMERA FOOTPRINT

xI

yI

zI

F

B

F

B

Figure 5: Subdivision of the matrix Xc
DEM and directions in which the subcolumns have to be processed

been filled with the orange volume, eliminating all the
occluded points.
The last step of the algorithm discriminates the occluded
points among those indexed by the value 1 of the vec-
tor I1/0. For the case of Figure 3 only the sub-vector

Is =
[
2 1

]T
is processed. The maximum value of the

reduced vector Is is searched and the boolean value, rep-
resentative of its position is switched from 1 → 0. The
procedure is iterated until the maximum is found in the
first element vector. The row indexes of the vector Is
relative to the value 1 in the updated vector I1/0 indicate
the occluded points. For the considered example, the
maximum value is 2 and the occluded point is the one
relative to i = 1 = P6.

2.2.3. Optimized implementation
The second approach is much easier to implement than
the first one, as it requires a lower number of operations
and avoids sorting steps and searching for maximum
values. For this reason, it has been preferred to the first
one. This algorithm processes directly the values in the
columns CC

j of the matrix XC
DEM and does not consider

the positional index as the previous one. Before giving

the description of the algorithm, it is important to anal-
yse the effect of the camera attitude on the footprint. If
the camera is pointing forward, all the points in the FOV
fore-run the camera projection P0

c (green point in Fig-
ure 5) on the plane xI−yI . If the camera has a high nega-
tive elevation angle, or it is pointing downward, also the
points that are behind P0

c are part of the footprint. This
situation is depicted in Figure 5. The yellow region, la-
belled with the letter F, is the part of the footprint that
fore-runs the camera projection P0

c , whereas the orange
region B is the part behind this point. This regions sep-
aration is necessary in order to correctly apply the al-
gorithm. The black arrows departing from the point P0

c
indicate in which direction the two sub-matrices have to
be processed. For the example of Figure 5, the region
F is processed from i = 3 → 1, whereas the region B
from i = 4 → 6. The basic idea of the algorithm is to
scan the sub-vector of CC

j and to sequentially store in
a variable kmax the maximum value of the projection xc

up to that point. If the value of the next element in the
vector is lower than kmax, this is an occluded point. The
value of kmax is retained until the condition xc > kmax

is verified again. For simplicity, the case of Figure 6 is
considered. As in Figure 5, the yellow region is the F

6

space and the orange is the B space. If the F region is
processed, the algorithm starts by the point P8 and the
variable kmax is initialized with kmax = xc

P8
. At the next

step, kmax is compared to xc
P9

: if

xc
P9
> kmax ⇒

kmax = xc
P9

Ii
1/0 = 0

(4)

otherwise if

xc
P9
< kmax ⇒

P9 occluded
Ii

1/0 = 1
. (5)

This procedure is repeated until the point P14 is reached.
The superscript i in Ii

1/0 indicates the row index of the
vector CC

j relative to the position of xc being processed
(in this case xc

P9
). At the end of the procedure, the oc-

cluded points are those relative to the value 1 of the vec-
tor I1/0. The same algorithm is applied to the B region,
starting from P7. The variable kmax is initialized with
xc

P7
and compared to xc

P6
. Also in this case the two con-

ditions of Equation 4 and 5 hold. The algorithm ends
when P1 is reached. According to the camera eleva-
tion, FOV and platform attitude, one of the two regions
(F or B) could be reduced and eventually disappear. In
this case, the point P0

c lies outside the footprint and the
entire column CC

j is processed upwards or downwards,
according to the position of P0

c . In the case of a forward
looking camera, the point P0

c is behind the footprint and
the vector is processed upwards.

−60 −40 −20 0 20 40 60
0

5

10

15

20 xc

zc

FB
P8

P9

P10
P14

P11

P12

P13

P7

P6

P5
P1

P4

P3

P2

xI

zI

Figure 6: Specular behaviour of the projected points located behind
the camera position P0

c in the IRF

2.3. Numerical example
In this section a simple numerical example of a forward
looking camera is presented. As the camera points for-
ward, the vector is processed upwards. The column vec-
tor CC

j is

CC
j =

[
11 2 6 9 10 7 4 3

]T

and the occluded values are those relative to the row
index i = 2, 3, 4. The variable kmax is initialized with
the last vector value kmax = 3 and then compared se-
quentially to the remaining elements. In Figure 7 all
algorithm steps are shown schematically.

START

STEP 1

STEP 2

...

STEP i

...

STEP 8

END

3

4

7

10

9

6

2

11

4 > kmax −→ kmax = 4

7 > kmax −→ kmax = 7

10 > kmax −→ kmax = 10

9 < kmax

6 < kmax

2 < kmax

11 > kmax −→ kmax = 11

kmax = 3 0

0

0

0

1

1

1

0

C
C j
=

I 1
/

0
=

Figure 7: Optimized approach to find the occluded points

3. Model validation

The model proposed in this paper has been validated
with the ray tracing algorithm [8]. An efficient vector-
ized implementation of the ray tracing algorithm pro-
posed by Möller and Trumbore has been used.

3.1. Ray-Triangle intersection algorithm
This algorithm verifies if there is an intersection be-
tween a ray r(t) and a triangle defined by its three ver-
tices V0, V1 and V2. The ray r(t) is defined as

r(t) = O + tD (6)

where the vectors O and D in Equation 6 are respec-
tively the origin of the ray and its direction. A point
PT (u, v) on a triangle, defined as a function of the
barycentric coordinates (u, v) is given by the following
equation

7

0

10

20

30

40

15

20

25

0

2

4

6

CAM

xI

yI

zI

Surface
Ray tracing
Proposed

Figure 8: Comparison between the solution provided by the ray tracing and the proposed algorithm

PT (u, v) = (1 − u − v)V0 + uV1 + vV2. (7)

where u ≥ 0, v ≥ 0 and u + v ≤ 1. The intersection be-
tween the ray and the triangle is given by r(t) = PT (u, v)

O + tD = (1 − u − v)V0 + uV1 + vV2. (8)

Rearranging this equation, the following linear system
in the variables t, u, and v is obtained

[
−D V1 − V0 V2 − V0

] t
u
v

 = O − V0. (9)

The solution of this system provides the intersection
point coordinates. Defining the origin O as the cam-
era viewpoint, and D the direction relative to each cam-
era pixel, the intersection with each triangle of the body
surface mesh, obtained by means of the Delaunay tri-
angulation, can be found. If there is an occluded point
along a given direction, the ray will intersect the surface

at least twice. The occluded point is given by the inter-
section that lies at a greater distance from the camera,
and so with a higher value of the variable t.

3.2. Validation solution
A comparison of the results provided by the proposed
method and the ray tracing (or ray triangle) algorithm
are shown in Figure 8. The surface used for validation
is given by a bivariate Gaussian distribution. The cam-
era has a pixel array of 100 × 100, and is located in one
side of the body with an elevation angle of θel = −60 deg
with respect to the horizon. With this configuration, one
part of the body will be in the shadow. The green so-
lution is the one provided by the ray tracing algorithm,
while the red points are those calculated with the pro-
posed algorithm. The shadow region calculated with the
two algorithms is practically the same, except for a very
small region along the boundaries and at the base of the
body. The loss of green points at the base of the body
is related to a weakness of the ray tracing algorithm; if
the triangular surface patch is parallel to the ray direc-
tion, there will be not intersection with the ray, which

8

results in a loss of information about the occluded point,
while the proposed algorithm is able to correctly cover
any part of the body. A second very important result is
that while in the ray tracing case the solution accuracy
is both a function of the body mesh and pixel resolution,
in the proposed algorithm the solution is only related to
the camera parameters and is not affected by the adopted
body discretisation. A third relevant result is related to
the time required to find a solution. In the case of the ray
tracing, the algorithm calculates for each camera pixel
the intersection with the surface mesh triangles, which
means that the time is function of both the number of
pixels and mesh resolution. For the proposed algorithm,
the computational time is only related to the image for-
mation e verification for occlusions. For this reason the
algorithm depends only on the number of camera pixels.

4. Case study

This paragraph shows how the algorithm behaves when
a more complicate scenario is presented. In this case
a 3D Digital Elevation Map taken from a Geographic
Information System (GIS) resource database [20] has
been considered. It represents part of the Mount
Mitchell in Yancey County (North Carolina), with a
map accuracy of ≈30 m. This particular scenario has
been chosen in order to highlight the power of the al-
gorithm when a very complex scene is processed. The
aim is to simulate what is seen from a gimbal-camera
mounted on a moving platform. In this particular situ-
ation, if any point in the camera footprint is projected
from the DEM matrix onto the image plane, both vis-
ible and invisible points will appear on it, as shown in
the example of Figure 1. The first step, before calculat-
ing the invisible points, is to define the camera footprint,
represented by the yellow points in Figure 9.
In order to calculate them, it is necessary to project the
points defined in the IRF onto the image plane by ap-
plying Equation 2. Observing the Figure 10, the homo-
geneous transformation Tc

I is given by

Tc
I = Tc

gTg
bTb

I =

[
Rc

g −dc
g

01x3 1

] [
Rg

b −dg
b

01x3 1

] [
Rb

I −db
I

01x3 1

]
(10)

where Tb
I projects the points from the IRF to the body

reference frame, Tg
b from body to gimbal and Tc

g from
gimbal to camera.
The direction cosine matrix Rb

I is

Camera

Figure 9: Camera footprint. Yellow points are those inside the camera
field of view

Rb
I =

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ

where c• and s• stand for cos(·) and sin(·), while φ, θ
and ψ are respectively the Euler angles of roll, pitch and
yaw. Matrix Rg

b is

Rg
b =

 cθel cψaz cθel sψaz sθel

−sθel cψaz 0
−sθel cψaz −sθel sψaz cθel

where θel is the gimbal elevation angle, defined in the
xb−zb plane, and ψaz is the gimbal azimuth angle defined
in the xb − yb plane. They are used to rotate the camera
with respect to the body reference frame. Matrix Rc

g
is constant if the relative motion between camera and
gimbals is neglected

Rc
g =

0 0 −1
0 1 0
1 0 0

 .
Once the map points have been projected on the image
plane, to discriminate the points in the field of view from
the ones outside, it is sufficient to verify which of them
respects the following two conditions0 ≤ xc ≤ nrδpx

0 ≤ yc ≤ ncδpy

(11)

9

yI

zI

xI

Rb
I

db
I

xb

yb
zb

Rg
b

dg
b

xg

yg

zg

dc
g

Rc
g

zc

yc

xc

Figure 10: Rotations and translations required to pass from the IRF to
the camera reference frame

0

1

2

...
i
...

nr

1 2 . . . j . . . nc

δpy

δpx

xc

yc

{
xc < nrδpx

yc > ncδpy

{
xc < nrδpx

yc < ncδpy

P1

P2

Figure 11: Image plane with points inside the field of view (P1) and
outside of it (P2)

where xc, yc, nr and nc have been defined in Section
2.2.1, whereas δpx and δpy are the pixel dimensions
along xc and yc respectively, as shown in Figure 11.
In this figure there are also two points, P1 and P2; the
first one is part of the footprint because it fulfils both
conditions of Equation 11, whereas the second one is
discarded because yc exceeds the upper boundary along
that direction. The camera parameters are the focal
length fc = 0.035 m, the number or rows nr = 300 and
columns nc = 300 and the pixel dimensions (assumed to
be equals) δpx = δpy = 0.36 mm. The focal length fc is
used to calculate the camera field of view θFOVx , in the
xc − zc plane, and θFOVy , in the yc − zc plane

θFOVx = arctan
(

nrδpx

fc

)
(12)

θFOVy = arctan
(

ncδpy

fc

)
. (13)

At this point, it is possible to apply the algorithm de-
scribed in the previous section to discriminate between
the visible points and the invisible ones.

1

2
3

4

56

1

2

3

4

5

6

Camera

Camera

Figure 12: The visible region (blue points of Figure 1) are represented
by the yellow points, occluded points are in red. The arrows associate
the same regions on the 3D sight and its plain view

The red region of Figure 12 is characterized by not visi-
ble points from the camera position, or it represents the
mountain shadow if it is assumed that the camera is re-
placed by a light source. In order to better visualize
the results, both a 3D and the plain view of the scene

10

are provided. To simplify the association between the
same regions on the two sights, numbered arrows have
been added. The interesting result that emerges, is the
complexity of the shape of the shadowed regions. This
confirms the capability of the algorithm of managing ex-
tremely complex scenes, like mountains or spaces popu-
lated by a multitude of objects. Obviously, the solution
accuracy is function of the number of pixels (or cam-
era resolution) and distance from the camera. A further
very important property of this algorithm is its intrin-
sic dependency by the camera parameters. This enables
to simulate the effect of different light sources on the
scene: if the focal length is increased, the FOV is re-
duced and the light is collimated; conversely, a diffusive
light is realized by reducing fc.

30
×

30

12
5
×

12
5

25
0
×

25
0

50
0
×

50
0

10
00

×
10

00

10−5

10−4

10−3

10−2

10−1

nr ×nc

C
om

pu
ta

tio
na

lt
im

e
[s

ec
]

Proj + Occ
Occ

Figure 13: Algorithm computational time as a function of the number
of pixels, averaged over 50 simulations

The algorithm has a computational complexity of O(N),
whith N the number of pixels. The results proposed in
this paper have been obtained using the software Mat-
lab on an Intel Core i7-4710HQ 64 bit, 2.50 GHz with
16 GB RAM. In order to show the algorithm perfor-
mance in the worst conditions, the matrix columns have
been processed sequentially and not by parallelizing the
code, and the FOV has been kept wider than usual in
order to increase the number of points to process. From
Figure 13, it is possible to appreciate the computational
time as a function of the number of pixels, or equiva-
lently nr and nc. Considering that the FOV is function

nr ×nc = 2500 nr ×nc = 10000

nr ×nc = 22500 nr ×nc = 40000

Figure 14: Level of detail of the visible and occluded regions by in-
creasing the number of pixels

of the number of pixels, in order to maintain unchanged
the observed region, the value of the focal length fc has
been increased case by case. The blue bars in Figure 13
represent the total computational time required to apply
the homogeneous transformation f to every point in the
field of view, plus the time required by the algorithm
to evaluate the occluded points. Conversely, the orange
bars are representative exclusively of the time required
to calculate the occluded points. Figure 14 shows how
the solution is affected by the number of pixels. What
is really interesting, is that for nr × nc > 10000, the oc-
cluded region boundaries are not affected by any varia-
tion. This means that an array of pixels approximatively
of 100 × 100 and a computational time in the order of
O(10−4) seconds are sufficient to provide an excellent
solution. What should be noticed, is that the found so-
lution is punctual, but if any processed point is represen-
tative of a surface patch, as in the case of a surface-ray
intersection algorithm, the entire patch (except for those
along the boundaries of the occluded region) can be con-
sidered in the shadow. In this case, being the boundaries
of the occluded region not strongly affected by the num-
ber of points, a relatively low number of points need
to be processed, even in the case of complex geome-
tries, without compromising the accuracy of the solu-
tion. Figure 15 shows the solution provided by the algo-

11

t = 1sec t = 10sec

t = 30sec t = 20sec

Figure 15: Algorithm solution at different time steps along the simu-
lated trajectory (black curve)

rithm when the camera is driven by the platform along
a given trajectory (black line). In this case, the FOV
has been reduced in order to simulate a more realistic
situation.

5. Conclusions

This paper presents a very simple and efficient algo-
rithm O(N) to determine the invisible regions of a
generic 3D model, when it is observed from a given
point of view. The solution is initially presented graph-
ically, and then numerically, in order to reach readers
with heterogeneous background, being the algorithm
open to a very wide range of applications. The nu-
merical simulations highlight the algorithm capability
of providing extremely accurate solutions by using a
limited number of points, also when the observed scene
is very complex. This algorithm, as any other graphical
tool, is suitable for parallel computing, because the pro-
cessing of the columns in the pixel matrix is indepen-
dent from the results on the other columns. This feature
would be effective in decreasing the computational time,
which is crucial in computer graphics. In addition, the
implementation simplicity enables the algorithm to be
integrated with other tools with minimum efforts.

Declaration of conflict of interest

The authors declare that there are no conflicts of inter-
est.

References

[1] J. Bittner, Hierarchical techniques for visibility computations,
Ph.D. thesis, Faculty of Electrical Engineering, Czech Technical
University in Prague (2002).

[2] S. Teller, K. Bala, J. Dorsey, Conservative radiance interpolants
for ray tracing, in: Rendering Techniques 96, Springer, 1996,
pp. 257–268. doi:10.1007/978-3-7091-7484-5_26.

[3] A. S. Glassner, An introduction to ray tracing, Elsevier, 1989.
[4] S. Teller, J. Alex, Frustum casting for progressive, interactive

rendering, Tech. rep., MIT, Cambridge, MA, USA (1998).
[5] B. F. Naylor, Interactive solid geometry via partitioning trees,

in: Proc. Graphics Interface, Vol. 92, 1992, pp. 11–18.
[6] B. Naylor, Constructing good partitioning trees, in: Graphics

Interface, CANADIAN INFORMATION PROCESSING SOCI-
ETY, 1993, pp. 181–181.

[7] B. Naylor, Binary space partitioning trees as an alternative rep-
resentation of polytopes, Computer-Aided Design 22 (4) (1990)
250–252. doi:10.1016/0010-4485(90)90055-H.

[8] T. Möller, B. Trumbore, Fast, minimum storage ray/triangle in-
tersection, in: ACM SIGGRAPH 2005 Courses, ACM, 2005,
p. 7. doi:10.1145/1198555.1198746.

[9] P. Shirley, R. K. Morley, Realistic ray tracing, AK Peters, Ltd.,
2008.

[10] P. Bauszat, M. Eisemann, M. A. Magnor, The minimal bound-
ing volume hierarchy., in: VMV, 2010, pp. 227–234. doi:

10.2312/PE/VMV/VMV10/227-234.
[11] P. S. Heckbert, P. Hanrahan, Beam tracing polygonal objects,

ACM SIGGRAPH Computer Graphics 18 (3) (1984) 119–127.
doi:10.1145/964965.808588.

[12] J. Amanatides, Ray tracing with cones, SIGGRAPH Com-
put. Graph. 18 (3) (1984) 129–135. doi:10.1145/964965.

808589.
URL http://doi.acm.org/10.1145/964965.808589

[13] B. F. Naylor, Partitioning tree image representation and gener-
ation from 3d geometric models, in: Proceedings of Graphics
Interface, Vol. 92, 1992, pp. 201–212.

[14] H. Oliveira, A. Habib, A. Dal Poz, M. Galo, Height gradient
approach for occlusion detection in uav imagery, The Interna-
tional Archives of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences 40 (1) (2015) 263. doi:10.5194/

isprsarchives-XL-1-W4-263-2015.
[15] K. I. Joy, The depth-buffer visible surface algorithm, On-

Line Computer Graphics Notes, Visualization and Graphics Re-
search Group, Department of Computer Science, University of
California-Davis.

[16] B. Walter, P. Shirley, Cost analysis of a ray tracing algorithm.
[17] O. v. K. M. de Berg M., Cheong, O. M., Computational Geom-

etry, Algorithms and Applications, 3rd Edition, Springer Berlin
Heidelberg, 2008. doi:10.1007/978-3-540-77974-2.

[18] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi,
J. West, A beam tracing approach to acoustic modeling for inter-
active virtual environments, in: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques,
ACM, 1998, pp. 21–32.

[19] S. F. Buchele, A. C. Roles, Binary space partitioning tree
and constructive solid geometry representations for objects
bounded by curved surfaces., in: CCCG, Citeseer, 2001, pp.

12

http://dx.doi.org/10.1007/978-3-7091-7484-5_26
http://dx.doi.org/10.1016/0010-4485(90)90055-H
http://dx.doi.org/10.1145/1198555.1198746
http://dx.doi.org/10.2312/PE/VMV/VMV10/227-234
http://dx.doi.org/10.2312/PE/VMV/VMV10/227-234
http://dx.doi.org/10.1145/964965.808588
http://doi.acm.org/10.1145/964965.808589
http://dx.doi.org/10.1145/964965.808589
http://dx.doi.org/10.1145/964965.808589
http://doi.acm.org/10.1145/964965.808589
http://dx.doi.org/10.5194/isprsarchives-XL-1-W4-263-2015
http://dx.doi.org/10.5194/isprsarchives-XL-1-W4-263-2015
http://dx.doi.org/10.1007/978-3-540-77974-2

49–52. doi:http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.29.2159&rep=rep1&type=pdf.
[20] webGIS (2009). [link].

URL http://www.webgis.com/terr_us75m.html

13

http://dx.doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.2159&rep=rep1&type=pdf
http://dx.doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.2159&rep=rep1&type=pdf
http://www.webgis.com/terr_us75m.html
http://www.webgis.com/terr_us75m.html

	Introduction
	Overview
	Object space approaches
	Image space approaches
	Computational complexity

	Methodology
	Graphical solution
	Numerical implementation
	Points projection
	Suboptimal implementation
	Optimized implementation

	Numerical example

	Model validation
	Ray-Triangle intersection algorithm
	Validation solution

	Case study
	Conclusions

