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Abstract

Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account the shape, size, and orientation
of the mesh elements, our aim is to improve the mesh quality as much as possible. In this paper, we combine the moving mesh
smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the lazy flip technique,
a reversible edge removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF) surface
reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical tests show that the combination of these
techniques into a mesh improvement framework achieves results which are comparable and even better than the previously reported
ones.
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1. Introduction

The key mesh improvement operations considered in this
work are smoothing, which moves the mesh vertices, flipping,
which changes the mesh topology without moving the mesh
vertices, and a smooth boundary reconstruction. Previous work
shows that the combination of smoothing and flipping achieves
better results than if applied individually [1, 2]. In this paper, we
combine the recently developed flipping and smoothing methods
into one mesh improvement scheme and apply them in combi-
nation with a smooth boundary reconstruction via radial basis
functions.

Mesh smoothing improves the mesh quality by improving
vertex locations, typically through Laplacian smoothing or
some optimization-based algorithm. Most commonly used
mesh smoothing methods are Laplacian smoothing and its vari-
ants [3, 4], where a vertex is moved to the geometric center of
its neighboring vertices. While economic, easy to implement,
and often effective, Laplacian smoothing guarantees neither a
mesh quality improvement nor mesh validity. Alternatives are
optimization-based methods that are effective with respect to
certain mesh quality measures such as the ratio of the area to the
sum of the squared edge lengths [5], the ratio of the volume to
a power of the sum of the squared face areas [6], the condition
number of the Jacobian matrix of the affine mapping between
the reference element and physical elements [7], or various other
measures [1, 8, 9, 10]. Most of the optimization-based methods

∗Corresponding author
Email addresses: franco.dassi@unimib.it (Franco Dassi),

kamenski@wias-berlin.de (Lennard Kamenski),
farrell@wias-berlin.de (Patricio Farrell), si@wias-berlin.de (Hang
Si)

are local and sequential, combining Gauss-Seidel-type iterations
with location optimization problems over each patch. There is
also a parallel algorithm that solves a sequence of independent
subproblems [11].

In our scheme, we employ the moving mesh PDE (MMPDE)
method, defined as the gradient flow equation of a meshing
functional (an objective functional in the context of optimization)
to move the mesh continuously in time. Such a functional is
typically based on error estimation or physical and geometric
considerations. Here, we consider a functional based on the
equidistribution and alignment conditions [12] and employ the
recently developed direct geometric discretization [13] of the
underlying meshing functional on simplicial meshes. Compared
to the aforementioned mesh smoothing methods, the considered
method has several advantages: it can be easily parallelized,
it is based on a continuous functional for which the existence
of minimizers is known, the functional controlling the mesh
shape and size has a clear geometric meaning, and the nodal
mesh velocities are given by a simple analytical matrix form.
Moreover, the smoothed mesh will stay valid if it was valid
initially [14].

Flipping is the most efficient way to locally improve the
mesh quality and it has been extensively addressed in the litera-
ture [15, 1, 16, 2]. In the simplest case, the basic flip operations,
such as 2-to-3, 3-to-2, and 4-to-4 flips, are applied as long as
the mesh quality can be improved. The more effective way is
to combine several basic flip operations into one edge removal
operation, which extends the 3-to-2 and 4-to-4 flips. This opera-
tion removes the common edge of n ≥ 3 adjacent tetrahedra by
replacing them with m = 2n − 4 new tetrahedra (the so-called
n-to-m flip). There are at most Cn−2 possible variants to remove
an edge by a n-to-m flip, where Cn =

(2n)!
(n+1)! n! is the Catalan num-
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ber. If n is small (e.g., n < 7), one can enumerate all possible
cases, compute the mesh quality for each case, and then pick the
optimal one. Another way is to use dynamic programming to
find the optimal configuration. However, the number of cases
increases exponentially and finding the optimal solution with
brute force is very time-consuming.

In this paper, we propose the so-called lazy searching flips.
The key idea is to automatically explore sequences of flips to
remove a given edge in the mesh. If a flip sequence leads to
a configuration which does not improve the mesh quality, the
algorithm reverses this sequence and explores another one (see
Section 3 and Figs 2a to 2c). Once an improvement is found, the
algorithms stops the search and returns without exploring the
remaining possibilities.

When considering more arbitrary meshes (which may not be
piecewise planar), we need to make sure that new nodes are
added in a consistent way. To achieve this we use RBF surface
reconstruction as introduced in [17]. Radial basis functions are
a very useful tool in the context of higher-dimensional inter-
polation as they dispense with the expensive generation of a
mesh [18, 19, 20]. Here, we will employ them to approximate
the underlying continuous surface so that we can project nodes
onto it as proposed in [21, 22]. This problem turns out to be
very challenging for meshes with arbitrary boundary. Hence,
we begin with a relatively simple mesh. For more complicated
examples we first refine the boundary by using the RBF recon-
struction and projection method and then keep the boundary
nodes fixed while interior nodes may move.

In this paper, we provide a detailed numerical study of a com-
bination of the MMPDE smoothing with the lazy searching flips
and RBF surface reconstruction. More specifically, we compare
the results of the whole algorithm with Stellar [2], CGAL [23]
and mmg3d [24]. We also compare the lazy searching flips and
the MMPDE smoothing with the flipping and smoothing proce-
dures provided by Stellar.

2. The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is to move the mesh
vertices via a moving mesh equation, which is formulated as the
gradient system of an energy functional (the MMPDE approach).
Originally, the method was developed in the continuous set-
ting [25, 26]. In this paper, we use its discrete form [13, 14, 27],
for which the mesh vertex velocities are expressed in a simple,
analytical matrix form, which makes the implementation more
straightforward to parallelize.

2.1. Moving mesh smoothing
Consider a polygonal (polyhedral) domain Ω ⊂ Rd with d ≥ 1.

Let Th denote the simplicial mesh as well as #Nh and #Th the
numbers of its vertices and elements, respectively. Let K be a
generic mesh element and K̂ the reference element taken as a
regular simplex with volume |K̂| = 1/#Th. Further, let F′K be
the Jacobian matrix of the affine mapping FK : K̂ → K from
the reference element K̂ to a mesh element K. For notational
simplicity, we denote the inverse of the Jacobian by JK , i.e.,
JK := (F′K)−1 (see Fig. 1).

K̂
K

FK

F−1
K

JK := (F′K)−1

Figure 1: Reference element K̂, mesh element K, and the corresponding map-
pings FK and F−1

K .

Then, the mesh Th is uniform if and only if

|K| =
|Ω|

#Th
and

1
d

tr
(
JT

KJK

)
= det

(
JT

KJK

) 1
d
∀K ∈ Th. (1)

The first condition requires all elements to have the same size
and the second requires all elements to be shaped similarly to K̂
(these conditions are the simplified versions of the equidistribu-
tion and alignment conditions [28, 26]).

The corresponding energy functional for which the minimiza-
tion will result in a mesh satisfying Eq. (1) as closely as possible
is

Ih =
∑

K

|K| G (JK , det JK) (2)

with

G(J, det J) = θ
(
tr

(
JJT

)) dp
2

+ (1 − 2θ) d
dp
2 (det J)p, (3)

where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters (in
Section 6, we use θ = 1/3 and p = 3/2). This is a specific
choice and other meshing functionals are possible. The inter-
ested reader is referred to [29] for a numerical comparison of
meshing functionals for variational mesh adaptation.

In Eq. (2), Ih is a Riemann sum of a continuous functional
for variational mesh adaptation based on equidistribution and
alignment [12] and depends on the vertex coordinates xi, i =

1, . . . , #Nh. The corresponding vertex velocities vi for the mesh
movement are defined as

vi :=
dxi

dt
= −

(
∂Ih

∂xi

)T

, i = 1, . . . , #Nh, (4)

where the derivatives dxi
dt are considered to be row vectors.

2.2. Vertex velocities and the mesh movement

The vertex velocities vi can be computed analytically [13,
Eqs (39) to (41)] using scalar-by-matrix differentiation [13,
Sect. 3.2]. Denote the vertices of K and K̂ by xK

j and x̂ j,
j = 0, . . . , d, and define the element edge matrices as

EK = [xK
1 − xK

0 , . . . , x
K
d − xK

0 ],

Ê = [x̂1 − x̂0, . . . , x̂d − x̂0].
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Note, that ÊE−1
K = JK . Then, the local mesh velocities are given

element-wise [13, Eqs (39) and (41)] by
(vK

1 )T

...

(vK
d )T

 = −GK E−1
K + E−1

K
∂GK

∂J
ÊE−1

K +
∂GK

∂ det J
det(Ê)

det(EK)
E−1

K ,

(5)

(vK
0 )T

= −

d∑
j=1

(vK
j )T

,

where GK = G(JK , det JK) and

∂GK

∂J
=
∂G
∂J

(JK) = dpθ
(
tr(JKJT

K)
) dp

2 −1
JT

K ,

∂GK

∂ det J
=

∂G
∂ det J

(det JK) = p(1 − 2θ)d
dp
2 (det JK)p−1

are the derivatives of G with respect to its first and second
argument [13, Example 3.2] evaluated at J = JK and det(J) =

det JK .
The moving mesh equation (4) becomes

dxi

dt
=

∑
K∈ωi

|K| vK
iK
, i = 1, . . . , #Nh, (6)

where ωi is the patch of the vertex xi and iK is the local index of
xi on K.

The moving mesh governed by Eq. (6) will stay nonsingu-
lar if it is nonsingular initially: the minimum height and the
minimum volume of the mesh elements will stay bounded from
below by a positive number depending only on the initial mesh
and the number of the elements [14]. This holds for the nu-
merical integration of Eq. (6) as well if the ODE solver has the
property of monotonically decreasing energy [14]. For example,
algebraically stable Runge-Kutta methods preserve this property
under a mild step-size restriction [30].

During smoothing, we use the current vertex locations as the
initial position and integrate Eq. (6) for a time period (with the
proper modification for the boundary vertices, see Section 2.3).
The connectivity is kept fixed during the smoothing step. The
time integration can be carried out for a given fixed time period
or adaptively until the change of the energy functional (2) is
smaller than the prescribed absolute or relative tolerances, that
is until

|Ih(tn+1) − Ih(tn)| ≤ εabs or |Ih(tn+1) − Ih(tn)| ≤ εrelIh(tn+1).

In our examples in Section 6, we use the explicit Runge-Kutta
Dormand-Prince ODE solver [31] and integrate until t = 10,
which worked well with the provided examples.

2.3. Velocity adjustment for the boundary vertices

The velocities of the boundary vertices need to be modified.
If xi is a fixed boundary vertex, then its velocity is set to zero
Otherwise, xi is allowed to move along a boundary curve or
a surface represented by the zero level set of a function φ and

its velocity is modified so that its normal component along the
curve (surface) is zero:

∇φ(xi) ·
∂xi

∂t
= 0.

For the special case of a piecewise linear complex (PLC) [32]
the velocity adjustment is straightforward:

facet vertices: project the velocity onto the facet plane,
segment vertices: project the velocity onto the segment line,

corner vertices: set the velocity to zero.

For a general non-polygonal or non-polyhedral domain, a
simple way to adjust the boundary vertices is to move the ver-
tex and then project it onto the boundary to which it belongs,
which proved to work well for simple surface geometries (see
Section 6.2). However, for complicated geometries, this simple
projection can fail and a more reliable approach is needed.

3. Lazy searching flips

In this section, we explain how to remove an edge and how to
reverse the removal using flips. In addition, we present the lazy
searching algorithm which can be used to improve the quality of
a mesh.

3.1. Edge removal and its inverse

A basic edge removal algorithm performs a sequence of ele-
mentary 2-to-3 and 3-to-2 flips [33]. We extend this algorithm
by allowing the flip sequence to be reversed. Our algorithm
saves the flips online and it uses no additional memory.

Let [a, b] ∈ Th be an edge with endpoints a and b and
A[0, . . . , n − 1] be the array of n ≥ 3 tetrahedra in Th sharing
[a, b]. For simplicity, we assume that [a, b] is an interior edge of
Th, so that all tetrahedra in A can be ordered cyclically such that
the two tetrahedra A[i] and A[(i + 1) mod n] share a common
face. The index i takes values in {0, 1, . . . , n − 1}. Throughout
this section, additions involving indices will be modulo n.

Given such an array A of n tetrahedra, we want to find a
sequence of flips that will remove the edge [a, b]. Moreover, we
also want to be able to reverse this sequence in order to return to
the original state.

Our edge removal algorithm includes two subroutines

[done,m] :=flipnm(A[0, . . . , n − 1], level),
flipnm_post(A[0, . . . , n − 1],m)

with an array A (of length n) of tetrahedra and an integer level
defining the maximum recursive level as input.

flipnm executes “forward” flips to remove the edge [a, b]. It
returns a Boolean value indicating whether the edge is
removed or not and an integer m (3 ≤ m ≤ n). If the edge is
not removed (done = FALSE), m indicates the current size
of A (initially, m := n).
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flipnm_post must be called immediately after flipnm. It
releases the memory allocated in flipnm and can perform
“backward” flips to undo the flip sequence performed by
flipnm.

The basic subroutine flipnm(A[0, . . . , n−1], level) consists
of the following three steps:

Step 1. Return done = TRUE if n = 3 and flip32 is possible
for [a, b] and done = FALSE otherwise.

Step 2. For each i ∈ {0, . . . , n−1} try to remove the face [a, b, pi]
by flip23. If it is successfully flipped, reduce the
size of A by 1. Update A[0, . . . , n − 2] so that it con-
tains the current set of tetrahedra sharing the edge [a, b].
Reuse the last entry, A[n−1], to store the information of
this flip23 (see Figure 2c). It then (recursively) calls
flipnm(A[0, . . . , n − 2], level). When no face can be
removed, go to Step 3.

Step 3. If level > 0, try to remove an edge adjacent to [a, b]
using flipnm. For each i ∈ {0, . . . , n − 1}, let [x, y] be
given by either edge [a, pi] or edge [b, pi]. Initialize
an array B[0, . . . , n1 − 1] of n1 ≥ 3 tetrahedra sharing
[x, y] and call flipnm(B[0, . . . , n1 − 1], level − 1). If
[x, y] is successfully removed, reduce |A| by 1. Up-
date A[0, . . . , n − 2] to contain the current set of tetra-
hedra sharing the edge [a, b]. Reuse the last entry,
A[n − 1], to store the information of this flipnm
and the address of the array B (to be able to release
the occupied memory later). Then (recursively) call
flipnm(A[0, . . . , n − 2]). Otherwise, if [x, y] is not re-
moved, call flipnm_post(B[0, . . . , n1 − 1],m1) to free
the memory. Return done = FALSE if no edge can be
removed.

Since flipnm is called recursively, not every face and edge
should be flipped in Steps 2 and 3. In particular, if B is allocated,
i.e., flipnm is called recursively, we skip flipping faces and
edges belonging to the tetrahedra in A ∩ B.

In the simplest case, that is, ignoring the option to reverse the
flips, flipnm_post(A[0, . . . , n − 1],m) simply walks through
the array A from A[m] to A[n − 1] and checks if a flipnm flip
has been saved. If so, the saved array address B is extracted and
its memory is released.

In Step 2 there are at most
(

n
n−3

)
/(n − 3)! different flip se-

quences, depending on the specific choice of faces in A. Each
individual flip sequence is equivalent to a sequence of the n ver-
tices (apexes) in the link of the edge [a, b]. We reuse the entries
of A to store each flip sequence. After a 2-to-3 flip, the number
of the tetrahedra in array A is reduced by one (two tetrahedra out,
one terahedron in), since only one of the three new tetrahedra
contains the edge [a, b]. The remaining tetrahedra are shifted by
one in the list, so that the last entry, A[n−1], can be used to store
this flip (cf. Fig. 2c). In particular, the following information is
saved:

• a flag indicating a 2-to-3 flip;

• the original position i, meaning that the face [a, b, pi] is
flipped.

Both is compressed and stored in the entry A[n − 1] (note that a
flag requires just a few bits of space). This stored data allows us
to perform the reversal of a 2-to-3 flip as follows:

• use A and the position i with

A[i − 1] = [a, b, pi−1, pi+1]

to locate the three tetrahedra sharing the edge [pi−1, pi+1]:
[pi−1, pi+1, a, b], [pi−1, pi+1, b, pi], and [pi−1, pi+1, pi, a];

• perform a 3-to-2 flip on these three tetrahedra;

• insert two new tetrahedra into the array A:

A[i − 1] = [a, b, pi, pi−1],
A[i] = [a, b, pi, pi+1].

In Step 3, if the selected edge [a, pi] is removed, the sequence
of flips to remove [a, pi] is stored in B. We then use the last
entry A[n − 1] to store this sequence of flips. In particular, the
following information is saved:

• a flag indicating that this entry stores the flip sequence to
remove the edge [a, pi];

• the original position i, i.e., the edge [a, pi] is flipped;

• the address of the array B which stores the flip sequence.

This information allows us to reverse this sequence of flips
exactly.

3.2. Lazy searching flips
During the mesh improvement process we perform flips to

improve the mesh quality. Let us consider the case when it
becomes necessary to remove an edge. The maximum possible
number of flips for an edge removal is the Catalan number Cn−2
(n is the size of A). Hence, the direct search for the optimal
solution is only meaningful if n is very small. In most situations,
an edge may not be flipped if we restrict ourselves to adjacent
faces of the edge. Our strategy is to search and perform the
flips as long as they improve the current mesh quality. Our lazy
searching scheme is not restricted by the number n and can be
extended to adjacent edges.

The lazy searching flip scheme is like a walk in a k-ary search
tree (a rooted tree with at most k children at each node, see
Fig. 2b). The root represents the edge [a, b] to be flipped and
each of the tree nodes represents either an adjacent face [a, b, pi]
or an adjacent edge [a, pi] or [b, pi] of [a, b]. The edges of the
tree represent our search paths. In particular, the directed edge
from level l to l + 1 represents either a flip23 or a flipnm,
and the reversed edge represents the inverse operation. The tree
depth is given by the parameter level.

At level > 0, in order to to decide if an adjacent face
[a, b, pi] should be flipped, we check if [a, b, pi] is flippable
and make sure that this flip improves the local mesh quality.
Note that we need to check only two of the three new tetra-
hedra: [a, pi−1, pi, pi+1] and [b, pi−1, pi, pi+1]. The tetrahedron
[a, b, pi−1, pi+1] will be involved in the later flips, and will be
flipped if the edge [a, b] is flipped.

Once an improvement is found, the algorithm moves on to the
next edge without exploring other possibilities.
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(a) The initial state. (b) The lazy flip search tree for removing the edge [a, b]. pi identifies the face [a, b, pi] which is flipped via a 2-to-3 flip. The search
path is highlighted with arrows.

(1) (2) (3) (4)

(5) (6) (7) (8)

(c) The sequence of flips. The edge [a, b] is represented by one vertex in the center (except (8)). A face [a, b, pi] is represented by an edge. Arrays attached to each
figure show the current content of A. (1) n = 5 tetrahedra share the edge [a, b]. In (2) and (3), [a, b, p1] is removed by a 2-to-3 flip. In (4) and (5), a 2-to-3 flip is
performed on [a, b, p3]. In (6) and (7), [a, b, p5] is removed by a 2-to-3 flip. In (8), the edge [a, b] is removed by a 3-to-2 flip.

Figure 2: An example of an edge removal by a sequence of flips.

4. Radial basis functions to handle curved boundaries

We describe in this section how to project the mesh on a
smooth surface in order to deal with curved boundaries. We
achieve this with the help of radial basis functions (RBFs),
see [18, 19, 20].

4.1. Basic concepts and examples

Let Pm(Rd) denote the space of d variate polynomials with
absolute degree at most m and dimension q := dimPm(Rd) =(

m−1+d
d

)
. For a basis p1, . . . , pq of this space, define the M × q

polynomial matrix PX through its i jth entry,

pi j = pi(x j) ,

where x j ∈ X and X = {x1, . . . , xM} ⊆ Rd denotes a data set. The
function Φ is called conditionally positive definite of order m if
the quadratic form

cT AΦ,Xc

for the distance matrix AΦ,X with its i jth entry defined by

(AΦ,X)i j = Φ(xi − x j) ,

is positive for all data sets X and for all c ∈ RM \ {0} which
additionally satisfy the constraint PT

Xc = 0.
Conditionally positive functions of order m are also condition-

ally positive definite for any order higher than m. Hence, the
order shall denote the smallest positive integer m. A condition-
ally positive definite function of order m = 0 is called positive
definite.
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One speaks of radial basis functions if one additionally as-
sumes that Φ is a radial function, i.e., there exists a function
φ : R≥0 → R such that Φ(x) = φ(‖x‖). Common examples of
RBFs include:

Gaussian: e−‖x‖
2
,

Multiquadric:
√

1 + ‖x‖2,

Inverse Multiquadric: 1/
√

1 + ‖x‖2,

Polyharmarmonic Spline: ‖x‖3.

For the numerical examples in this paper, we exclusively use the
polyharmonic spline ‖x‖3 (Fig. 3) which is conditionally positive
of order 2.

Figure 3: The polyharmonic spline ‖x‖3.

We assume now that the interpolant s : Rd → R is given by a
linear combination of translated radial basis function, augmented
by a polynomial part, i. e.

s(x) =

M∑
j=1

α jΦ(x − x j) +

q∑
k=1

βk pk(x). (7)

Thus, we have M + q unknown coefficients, M of which are
determined from the interpolation conditions and q conditions
from requiring that PT

Xc = 0. For positive definite functions,
the linear system is positive definite by construction. Hence the
coefficients can be determined uniquely. It is also not difficult to
verify that the interpolation and polynomial constraint conditions
for conditionally positive definite functions lead to a uniquely
solvable system, see [20, Theorem 8.21] for details. In the case
of conditionally positive definite functions, it is known that at
least M − q eigenvalues of the matrix AΦ,X are positive [20,
Section 8.1].

4.2. Surface reconstruction with RBFs

We will assume that the surface Γ is given implicitly by the
zero level set of some function F : Ω ⊆ R3 → R, i. e.

Γ =
{
(x, y, z)T ∈ Ω | F(x, y, z) = 0

}
, (8)

for some bounded domain Ω.
We cannot simply assume that the target function (which we

wish to interpolate) is the zero level set of the function F since
the right-hand side of the linear system one needs to solve would
vanish which in turn implies that the coefficients vanish as well.
Carr et al. [17] therefore made the additional assumption that

the normal vectors are known. Then one can also prescribe
on-surface and off-surface points. Assume that the points on the
surface are denoted with X = {x1, . . . , xN} and the corresponding
normal vectors with M = {n1, . . . ,nN}. We define the surface
interpolation problem

s(xi) = F(xi) = 0, 1 ≤ i ≤ N

s(xi + εni) = F(xi + εni) = ε, N + 1 ≤ i ≤ 2N
(9)

for some parameter ε > 0. Since the right-hand side of the linear
system does not vanish anymore, we find a nontrivial solution.
Recently, this surface interpolation technique was combined
with the higher dimensional embedding technique [21, 22] to
construct curvature-aligned anisotropic surface meshes. In this
context the data set X corresponds to the vertices of the mesh.

4.3. Projection onto the reconstructed surface
There are two important parts of the projection algorithm:

edge splitting and edge contraction. If we split an edge or move
a point during smoothing, we project the resulting point onto the
RBF surface reconstruction (Fig. 4).

(a) (b) (c)

Figure 4: Edge splitting. In (a), a coarse input mesh (solid line) approximates
the reconstructed curve (dashed line). In (b), the edges are halved, the midpoints
v1 and v2 are not on the curve. In (c), new points v∗1 and v∗2 are projected onto
the curve using a steepest descent method.

The projection itself is realized with ideas from [34]. This
procedure is a combination of orthogonal projections on tangent
planes as well as tangent parabolas. It requires only first order
derivatives and uses a steepest descent method. The combination
of this projection method with RBF surface reconstruction has
also been discussed in [21, 22].

When it becomes necessary to contract an edge, we contract
it into one of its endpoints (Fig. 5).

(a) (b) (c)

Figure 5: Edge contraction. In (a), a fine input mesh (solid line) approximates
the reconstructed curve (dashed line). In (b), the edge v1v2 is contracted into its
midpoint v, which is not on the curve. In (c), the edge v1v2 in contracted into its
end point v1, which, by construction, is on the curve.

5. Mesh improvement strategy

The goal of the proposed algorithm is to obtain a new isotropic
mesh whose elements come “as close as possible” to the equilat-
eral one. To achieve this goal, we combine the local and global
mesh operations described in Sections 2 and 3.
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5.1. Mesh quality
To say “as close as possible to an equilateral tetrahedron” is

somewhat vague from a mathematical point of view. To have a
more precise criterion, the majority of the mesh improvement
algorithms define a computable quantity q(K) which quantifies
how far a tetrahedron K is from being equilateral [2, 24, 35, 36,
37, 38]. Here, we take into account the following two:

Aspect Ratio: This is one of the most classical ways to evaluate
the quality of a tetrahedron. It is defined as

qar(K) :=

√
2
3

L
h
, (10)

where L is the longest edge and h is the shortest altitude
of the tetrahedron K. By construction, qar(K) ≥ 1 and an
equilateral tetrahedron is characterized by qar(K) = 1.

Min-max Dihedral Angle: For each tetrahedron K we con-
sider both the minimal and the maximal dihedral angles
θmin,K and θmax,K . An equilateral tetrahedron has θmin,K =

θmax,K = arccos (1/3) ≈ 70.56◦. Applying an operation that
increases θmin,K or decreases θmax,K of a given tetrahedron
K makes K “closer” to the equilateral shape. Note that this
is not a classical quality measure since we associate two
quantities with each tetrahedron, which is one of the novel
aspects of the proposed mesh improvement procedure.

These two quality measures refer to a single tetrahedron K
of the mesh. However, the design of our mesh improvement
scheme requires a quality measure for the whole mesh as a
stopping criterion. To estimate the quality of the whole mesh,
we define the global parameter

Q(Th) := min
K∈Th

(
θmin,K

)
. (11)

If we consider a target dihedral angle θlim and obtain a mesh Th

with Q(Th) > θlim, then all dihedral angles are guaranteed to be
greater than θlim.

5.2. The scheme
The inputs for the mesh improvement algorithm are a tetra-

hedral mesh T ini
h of a PLC and a target minimum angle θlim.

The output is a mesh T f in
h where each element has a minimum

dihedral angle greater than θlim.
The scheme is presented in Algorithm 1 and consists of five

nested “repeat . . . until” loops, whose stopping criterion de-
pends on the operations done inside the loop and Q(Th). We
apply the MMPDE smoothing and the lazy flip in the most inter-
nal loop (lines 5 to 9). The lazy flip is also exploited in the outer
loops both on the whole mesh (lines 11, 15 and 18) and on the
tetrahedra involved in the local operations (lines 10, 13 and 17).

It is possible to consider several flipping criteria for the lazy
flip, which makes the design of the scheme flexible. We exploit
this feature by using two objective functionals and changing the
flipping criterion in each iteration of the outer loop (line 20) by

1. maximizing θmin,K and minimizing θmax,K (simultaneously),

2. minimizing the aspect ratio.

The stopping criterion is always based on the minimal dihedral
angle, Q(Th), and the number of operations done.

After a number of iterations both the flipping and the smooth-
ing procedure can stagnate, i.e., the mesh Th converges to a
fixed configuration where neither flips nor smoothing can im-
prove the quality of the mesh. Unfortunately, it is not a priori
guaranteed that such a mesh satisfies the constraint on the target
minimum dihedral angle θlim. To overcome this difficulty, we
apply edge splitting, edge contraction, and point insertion when
this stagnation occurs (lines 10, 13 and 17 in Algorithm 1).

For the edge contraction and splitting, we use the standard
edge length criterion: we compute the average edge length lave of
the actual mesh, contract the edges shorter than 0.5 lave (line 10),
and split (halve) the ones longer than 1.5 lave (line 13). In line 17,
we split a tetrahedron K with θmin,K < θlim via a standard 1-to-4
flip by placing the newly added point at the barycenter of K [39].
In this way, the algorithm constructs via flipping and smoothing
a mesh satisfying Q(Th) > θlim. At the moment, we are not
interested in optimizing these operations, we exploit them only
to overcome the stagnation of the algorithm.

The MMPDE smoothing can be easily parallelized because
the nodal velocities in each smoothing step can be assem-
bled through independent element-wise computation (Eqs. (5)
and (6)), similar to the assembly of a finite element stiffness
matrix. We parallelize the computation of the nodal velocities
with OpenMP [40]. Once the velocities are computed, all mesh
nodes are moved simultaneously and independently of each
other. On the other hand, the lazy flip may propagate to neigh-
bors and neighbors of neighbors, thus, it is complex and difficult
to parallelize; in our tests we use a sequential implementation.

6. Numerical examples

We test the proposed mesh improvement algorithm and com-
pare it with the mesh improvement algorithm of Stellar [2],
the remeshing procedure of CGAL [23], and mmg3d [24]. We
compare the histograms of the dihedral angles of final meshes,
the minimal and the maximal dihedral angles θmin,Th and θmax,Th ,
the mean dihedral angle µTh , and its standard deviation σTh .

6.1. Piecewise linear complexes (PLCs)

To analyze the effectiveness of the proposed mesh improve-
ment scheme in case of a piecewise linear complex domain, we
consider the following three examples (for more PLC examples,
see [41]):

• Rand1 tetrahedral meshes of a cube generated by inserting
randomly located vertices inside and on the boundary [2]
(Fig. 7),

• LShape is a tetrahedral mesh of an L-shaped PLC generated
by TetGen [33] without optimizing the minimal dihedral
angle (switches -pa0.019, Fig. 8),

• TetgenExample is a tetrahedral example mesh of a non-
convex PLC with a hole provided by TetGen (Fig. 9).
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Smoothing and flipping by themselves. Before testing the full
mesh improvement scheme, we test the effectiveness of the MM-
PDE smoothing and the lazy flip by themselves and employ
smoothing and flipping separately, i.e., we improve a tetrahe-
dral mesh exploiting only the flipping operation or the vertex
smoothing. We compare our results with the ones provided by
Stellar for the examples LShape and TetGenExample.

The results of the lazy flip are comparable to the Stellar flips
(Fig. 6, first row). However, the MMPDE smoothing is better
than its counterpart in Stellar (Fig. 6, second row): in both
examples it achieves larger θmin,Th , noticeably smaller θmax,Th ,
and a smaller standard deviation of the mean dihedral angle.

Full scheme. We compare the whole scheme with the mesh im-
provement algorithm of Stellar [2], the remeshing procedure
of CGAL [23], and mmg3d [24] (Figs 7 to 9).

Although all methods provide good results, the new scheme is
better: θmin,Th is larger than the value obtained by CGAL or mmg3d
and comparable to the value obtained by Stellar. Moreover,
θmax,Th is smaller than the values obtained by Stellar, CGAL,
or mmg3d in all examples but one see Fig. 9a.

Our method provides mean dihedral angles µTh around 69.6◦,
which is close to the optimal value of arccos (1/3) ≈ 70.56◦.
Moreover, standard deviations σTh are always smaller than the
ones of other methods. Indeed, we get a distribution of dihedral
angles close to the mean value. This quantitative consideration
becomes clearer from the shape of the histograms in Figs 7 to 9.

For the TetgenExample (Fig. 9) we also provide aspect ratio
histograms (the results for the other examples are very similar
and we omit them). The aspect ratio of an equilateral tetrahe-
dron is equal to 1 and the more a tetrahedron is distorted and
stretched the greater its aspect ratio becomes. Our method and
Stellar clearly provide the best aspect ratio distribution. For
our method, the vast majority of tetrahedra have an aspect ratio
smaller than 1.8. The Stellar mesh is slightly worse with most
of its tetrahedra having aspect ratios below 2.6.

6.2. Curved boundary domains

In the last part of this section, we experimentally demonstrate
some examples with curved domains. We study two types of
examples: one academic example for using the RBF surface
reconstruction to project the boundary vertices on the smooth
approximation of the discrete surface and two more complex
examples with fixed boundary vertices.

First, we consider the discrete ellipsoid mesh (Fig. 10).
Though it has a simple geometry, it requires some effort since the
boundary is curved and no longer a PLC. The main challenge is
to project the boundary vertices back onto the smooth surface if
they leave it after a mesh improvement step. For this reason, we
reconstruct the surface via RBFs (see Section 4.2) to assist the
mesh optimization and project the moved (smoothed) boundary
vertices to the reconstructed surface. Figure 10 shows that RBF
reconstruction smoothes the initially rough surface approxima-
tion. The obtained tetrahedral mesh has high quality: the mean
dihedral angle is close to the optimal value (≈ 70.69◦) and the
standard deviation of the dihedral angles is small (≈ 18.16◦).

However, it has to be pointed out that complicated boundaries
cannot be handled as easily as an ellipsoid and require more
sophisticated methods.

In our next examples, we restrict ourselves to the case of
fixed boundary vertices since Stellar does not handle curved
surfaces described via an implicit function, start with a good
isotropic triangular mesh as input, and keep the boundary ver-
tices fixed for each of the algorithms.

Fixed boundary. The next two examples are meshes of a spinal
bone and of an elephant (figs. 11 and 12). The initial surface
meshes in both examples are constructed by means of the higher
dimensional embedding approach for surface mesh reconstruc-
tion [22] and their minimal face angles are approximately 33◦.
The initial volume meshes are constructed by TetGen using the
-Y flag to preserve the fixed boundary.

Figures 11 and 12 present the histograms of the dihedral
angles of the resulting optimized meshes. In comparison to the
PLC examples, where the geometry is simpler and the boundary
vertices are allowed to move, the smallest dihedral angles for
the spinal bone and the elephant examples are worse (smaller)
than for the PLC examples. In comparison to Stellar, our
algorithm achieves better values for θmin,Th and θmax,Th , as well
as a smaller mean deviation from the mean value.

These examples, too, show the “aggressive” nature of the
Stellar mesh improvement algorithm, which aggressively re-
moves vertices during the mesh improvement. In contrast, our
mesh improvement scheme is able to produce a high-quality
mesh while keeping the number of vertices close to the original
input.

7. Conclusions

Mesh improvement is a challenging problem and we tackled
it by combining several recently developed techniques, namely,
moving mesh smoothing, lazy flipping, and RBF surface recon-
struction. In comparison to the mesh improvement algorithm
Stellar and the re-meshing procedures provided by CGAL and
mmg3d, we obtain better results in terms of the distributions of
dihedral angles for all considered examples. However, there are
several directions in which this work could be extended.

First, for smooth and relatively simple boundaries, our ap-
proach works excellently but complicated curved boundaries
pose a challenging problem. One possible solution could be
the direct incorporation of the boundary description into the
MMPDE smoothing scheme (parametrization) so that the bound-
ary vertices will always stay on the surface. This will avoid
the sometimes troublesome projection of vertices and velocities
back onto the surface after a smoothing step.

Second, we need to find a more sophisticated method for edge
contraction and splitting in order to improve the performance of
both the MMPDE smoothing and the lazy flip.

Third, the MMPDE smoothing is based on the moving mesh
method [13] which allows the definition of a metric field. Hence,
the moving mesh smoothing can be extended to the adaptive and
anisotropic setting.
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Algorithm 1 The proposed mesh improvement scheme.
Improve(T ini

h , θlim)
1: repeat
2: repeat
3: repeat
4: repeat
5: repeat
6: MMPDE-based smoothing
7: RBF surface reconstruction
8: lazy flips
9: until no point is moved or no flip is done or Q(Th) ≥ θlim

→ smooth and flip

10: remove the edges le < 0.5 lave
11: lazy flips
12: until no edge is contracted or Q(Th) ≥ θlim
13: split the edges le > 1.5 lave
14: RBF surface reconstruction
15: lazy flips
16: until no edge is split or Q(Th) > θlim
17: split the tetrahedra K such that θmin,K < θlim
18: lazy flips
19: until no tetrahedron is removed or Q(Th) > θlim

→ main loop

20: change the flip criterion for the lazy flips
21: until no operation is done in the main loop or Q(Th) > θlim

Lazy Flip

θmin,Th = 16◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar flipping

θmin,Th = 20◦

θmax,Th = 142◦

µTh = 69.83◦

σTh = 21.86

#Th = 3751

MMPDE smoothing

θmin,Th = 17◦

θmax,Th = 149◦

µTh = 69.01◦

σTh = 26.37

#Th = 4072

Stellar smoothing

θmin,Th = 14◦

θmax,Th = 159◦

µTh = 69.01◦

σTh = 28.01

#Th = 4072

(a) LShape.

Lazy Flip

θmin,Th = 14◦

θmax,Th = 146◦

µTh = 69.77◦

σTh = 22.74

#Th = 3043

Stellar flipping

θmin,Th = 16◦

θmax,Th = 151◦

µTh = 69.89◦

σTh = 25.98

#Th = 3332

MMPDE smoothing

θmin,Th = 20◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar smoothing

θmin,Th = 16◦

θmax,Th = 152◦

µTh = 69.27◦

σTh = 28.97

#Th = 3545

(b) TetgenExample.

Figure 6: Comparison of flipping only (first row) and smoothing only (second row) for the initial meshes LShape and TetgenExample.
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Initial Mesh New Method

New Method

θmin,Th = 40◦

θmax,Th = 130◦

µTh = 69.70◦

σTh = 15.74

#Th = 3528

Stellar

θmin,Th = 32◦

θmax,Th = 137◦

µTh = 71.70◦

σTh = 24.42

#Th = 3218

CGAL

θmin,Th = 12◦

θmax,Th = 156◦

µTh = 69.25◦

σTh = 23.40

#Th = 3897

mmg3d

θmin,Th = 8◦

θmax,Th = 165◦

µTh = 69.98◦

σTh = 25.60

#Th = 5733

Figure 7: Rand1. The initial mesh with #Th = 5104, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.

Initial Mesh New Method

New Method

θmin,Th = 40◦

θmax,Th = 119◦

µTh = 69.67◦

σTh = 15.89

#Th = 3102

Stellar

θmin,Th = 39◦

θmax,Th = 138◦

µTh = 70.17◦

σTh = 20.04

#Th = 2910

CGAL

θmin,Th = 13◦

θmax,Th = 159◦

µTh = 69.23◦

σTh = 23.69

#Th = 4264

mmg3d

θmin,Th = 18◦

θmax,Th = 142◦

µTh = 69.54◦

σTh = 22.21

#Th = 3859

Figure 8: LShape. The initial mesh with #Th = 4072, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.
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Initial Mesh New Method

(a) The initial mesh with #Th = 3545 and the final optimized mesh.

New Method

θmin,Th = 38◦

θmax,Th = 125◦

µTh = 69.67◦

σTh = 16.33

#Th = 4563

Stellar

θmin,Th = 38◦

θmax,Th = 123◦

µTh = 70.23◦

σTh = 20.10

#Th = 2509

CGAL

θmin,Th = 7◦

θmax,Th = 164◦

µTh = 69.22◦

σTh = 28.52

#Th = 2187

MMG3

θmin,Th = 4◦

θmax,Th = 170◦

µTh = 69.52◦

σTh = 22.42

#Th = 15 713

(b) Dihedral angle comparison for the final meshes.

New Method Stellar

CGAL mmg3d

(c) Aspect ratio comparison for the final meshes.

Figure 9: TetgenExample. The initial mesh with #Th = 3545, the final (optimized) mesh, and statistics of the dihedral angles and the aspect ratio.
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Initial Final Cross section
θmin,Th = 31◦

θmax,Th = 138◦

µTh = 70.69◦

σTh = 18.16

#Th = 17 999

Figure 10: Example of tetrahedral mesh improvement with a curved (reconstructed) surface.

Surface mesh Cross section New Method

θmin,Th = 31◦

θmax,Th = 138◦

µTh = 70.51◦

σTh = 17.84

#Th = 640 993

Stellar

θmin,Th = 26◦

θmax,Th = 148◦

µTh = 70.78◦

σTh = 27.50

#Th = 442 838

Figure 11: Spine example: the initial mesh with #Th = 688 420 and the final optimized mesh.

Surface mesh Cross section
New Method

θmin,Th = 16◦

θmax,Th = 162◦

µTh = 71.02◦

σTh = 20.10

#Th = 246 203

Stellar

θmin,Th = 13◦

θmax,Th = 163◦

µTh = 71.46◦

σTh = 24.99

#Th = 196 450

Figure 12: Elephant example: the initial mesh with #Th = 260 401 and the final optimized mesh.
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