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Abstract

We propose a robust pipeline that can generate hex-dominant meshes from any global parameterization of a tetrahedral
mesh. We focus on robustness in order to be able to benchmark different parameterizations on a large database. Our
main contribution is a new method that integrates the hexahedra (extracted from the parameterization) into the original
object. The main difficulty is to produce the boundary of the result, composed of both faces of hexahedra and tetrahedra.
Obviously, this surface must be a good approximation of the original object but, more importantly, it must be possible
to remesh the volume bounded by this surface minus the extracted hexahedra (called void). We enforce these properties
by carefully tracking and eliminating all possibilities of failure at each step of our pipeline.

We tested our method on a large collection of objects (200+) with different settings. In most cases, we obtained results
of very good quality as compared to the state-of-the-art solutions. To ease reproducing our results and benchmarks, we
provide a C++ implementation of the pipeline in the supplemental materials.

Keywords: hex meshing, parameterization, mesh extraction

Introduction and previous work

We introduce a pipeline that takes as input a tetrahe-
dral mesh and that produces a hexahedral dominant mesh.
Hexahedral-dominant meshing is a relaxation of full hexa-
hedral meshing, that allows to greatly improve robustness
at the expense of introducing a small number of tetrahe-
dra. We focus here on the robustness of hex-dominant
meshing, and on its robustness, where most difficulties
come from mixing and matches meshes with incompati-
ble discretizations.

Classic hexahedral meshing. Hexahedral meshing
generates meshes composed of deformed cubes (hexahe-
dra). Such meshes are often used for simulating some
physics (deformation mechanics, fluid dynamics ...) be-
cause they can significantly improve both speed and ac-
curacy. This is because (1) they contain a smaller num-
ber of elements (5-6 tetrahedra for a single hexahedron),
(2) the associated tri-linear function basis has cubic terms
that can better capture higher order variations, (3) they
avoid the locking phenomena encountered with tetrahedra
[1], and (4) hexahedral layers can be aligned along geo-
metric boundary features and/or some physical character-
istics (flow direction, shock wave, heat gradient...). Ful-
filling those criteria required to generate hexahedral block-
structured meshes. Despite 30 years of research efforts and
important advances, mainly led by Sandia National Labs
in the U.S. [22] 23], generating block-structured hexahe-
dral meshes still requires considerable manual intervention
in most cases (days, often weeks for the most complicated
domains). Some methods [14] 24] constrain the boundary
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into a regular grid, but they are not fully satisfactory ei-
ther, since the grid is not aligned with the boundary. In the
past two decades, numerous approaches for full hexahedral
meshing were proposed, geometric as well as topological.
Geometric approaches comprise methods such as plaster-
ing [2] and H-Morph [18], whereas topological approaches
include whisker weaving [22], recursive bisection [3] and
dual cycle elimination [I6]. Unfortunately, it is very easy
to find failure cases for each of these methods: all of them
can fail in the termination process. For geometric ap-
proaches, it typically happens when advancing fronts meet
at the medial axis.

Hexahedral meshing by global parameterization.
To overcome this problem, several approaches based on
global parameterizations were recently proposed [7, [17].
Since they use global optimizations instead of advancing
fronts with local decisions, these methods do not introduce
any discontinuity on the medial axis. Global optimization
produces impressive results, but it has failure cases of its
own. For the sake of completeness, we also mention the al-
ternative approach proposed in [], that generates a hexa-
hedral mesh by merging tetrahedra of an input mesh along
the guidance direction field. All these methods (parame-
terizations and agglomeration) rely on frame fields [10} 19],
however, no existing frame-field method is guaranteed to
produce an integrable 3D frame field. There were some
attempts to preprocess frame fields [12 1], but unfor-
tunately they do not address all possible issues. Locally
modifying the input frame field reduces the number of fail-
ure cases, but many of them remain unsolved. Another
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Figure 1: Left: in the presence of triangular wedges, relations be-
tween constraints may create a highly distorted parameterization.
Right: “HexEz” successfully constructs a valid hexahedral mesh even
with such a degenerate parameterization, but clearly, the distorted
elements still need to be fixed. Note also how the input geometry
was deformed (lower right).

possible option is to relax some unnecessary expectations
that concern the parameterization while recovering hexa-
hedra, as done in [13]. In most cases this recovers a correct
mesh around singularities.

However, as mentioned in the discussion section of [13],
some configurations cannot be handled by HexEx. In Fig-
ure [T} we show a “triangular wedge”, often present in me-
chanical parts. Due to the network of constraints (in blue),
the two red edges are supposed to have the same length in
parameter space, leading to highly stretched elements. On
the bottom row, the edge in red is constrained to have the
same length as the red point (i.e. zero), thus generating
a single row of extremely stretched elements. Thus, it is
in general not possible to extract a hex-dominant mesh of
good quality from the sole parameterization. The param-
eterization needs to be complemented with an algorithm
that isolates the distorted zones and remeshes them. Note
also that HexEx deformed the geometry around the de-
generacy (lower-right). To avoid this behavior, a way of
controlling the Hausdorff distance is also needed.
Hexahedral dominant remeshing. We think that
given the current state of the art, aiming at full-hexahedral
meshing in the general case is not realistic yeiﬂ For this
reason, we focus on hexahedral-dominant meshing instead
of full-hex, with the aim of bringing the proportion of hex-
ahedra as near to 100% as possible.

Starting from a tetrahedral mesh, we first compute a
global parameterization. Integer iso-values of the global
parameterization define a deformed grid inside the volume
(Figure |2 a). It is in general not possible to extract from
the parameterization a grid that fills the entire volume.
Therefore, we extract hexahedra from the regular part of
the parameterization, as well as the boundary of the re-
maining volume which have a singular/degenerate param-

Lwith the exception of the octree-based approach in [14] that is a
robust /valid/efficient solution if boundary alignment is not required.

Figure 2: Our hexahedral-dominant meshing procedure: Start from
an input tetrahedral mesh. Compute a global parameterization (a).
Extract hexahedra by contouring the isovalues of the parameteriza-
tion. Isolate the boundary of the void (in red), i.e., the volume with
a degenerate / singular parameterization (b), shown in red. Remesh
the void and stitch it into the hexahedral mesh (c).

eterization (Figure[2]b). Finally, we remesh the remaining
void and stitch the meshes together (Figure 2| c).

Our main technical contribution is to integrate hexahe-
dral faces (quads) in the original object boundary (trian-
guar mesh) without making it impossible to remesh the
void. The idea to fill the remaining void of hexahedral
mesh by tetrahedra was used in front propagation meth-
ods about 20 years ago [I5]. However, it was in much
simpler settings, where the mesh of the input’s boundary
was directly the final quad mesh. Note that even in this
case the algorithm was not robust, it failed in more than
10% runs.

We aim at bringing both the hex proportion and the
robustness as close to 100% as possible. For this pur-
pose, we combine the global structure obtained by global
parameterization approaches (e.g. CubeCover [I7] and
PGP3D [21]) with the robustness of tetrahedral remeshing
algorithms (TetGen [20]). Our results are identical to the
state of the art in the zones where the global parameteri-
zation successfully captures the model to be remeshed. It
just fills other zones by tets instead of nothing.

Our contributions. Our contribution is two-fold: we
propose a robust technical solution that identifies and
remeshes parts of models where the result of the global pa-
rameterization method is not satisfying. We also provide a
complete testing environment that allows to compare ex-
isting frame field generation and global parameterization
algorithms.

Technical solution. Global parameterization generates
hexahedra in a large part of the input volume, that is
where the parameterization is not degenerate. The re-
maining void conceptually corresponds to the (volumetric)



Figure 3: Left: boundary of the hexahedral mesh. Middle: incom-
patibility with the input boundary (blue). Right: compatibility with
our quad dominant remeshing (blue).

boolean difference between the input volume and the hex-
ahedra generated from the parameterization. However, it
can not be directly computed this way because the bound-
aries do not match (see Figure [3)).

We instead compute this void by working on its bound-
ary. It defines the void boundary as the difference between
the object boundary and the hexahedra mesh boundary.
To be able to place hexahedra on the object boundary,
we first remesh the object boundary by introducing quads
that are likely to match hexahedral facets. The robustness
difficulty is to guarantee that the void can always be com-
puted from the surface we manipulate. Similar problems
(with a union operation) are still open for mesh assem-
bly [6 B] but, in our context, we can exploit the mapping
between quads and triangles.

Our solution is able to control the Hausdorff distance to
the original mesh, and is very robust, as discussed in §7}

Testing environment. We complement this algorithm
with a processing pipeline that decomposes hexahedral-
dominant meshing into independent steps.  Existing
remeshing algorithms as well as the corresponding soft-
ware involve a long sequence of steps orchestrated within
a complicated architecture, and no existing research arti-
cle of reasonable length can address all of them in a self-
contained and complete manner. It makes it difficult to
reproduce previous results, and to evaluate the impact of
improving one step of the pipeline. For instance, if one
wants to work on the quality of frame field generation (e.g.
[T1]), it is not possible to focus on the extraction of hex-
ahedra from the parameterization (e.g. [I3]) in the same
research article.

Our open-source implementation in the supplemental
material will help comparing existing and future algo-
rithms for each step of the pipeline (3D direction field
generation, global parameterization, hexahedral mesh ex-
traction). More importantly, it will make it possible to
focus on each part of the pipeline independently, and to
evaluate its impact on the quality of the output.
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Figure 4: Overview of the pipeline with the result of each step.

1. Overview of the hex-dominant meshing pipeline

Our hexahedral remeshing pipeline is decomposed into
three main steps (refer to Figures [2[ and E[):

e compute a global parameterization (,
e generate hexahedra and extract the remaining void:

— we compute a quad-dominant mesh from the
input boundary. The goal is to make it compat-
ible with the hexahedral mesh that we compute
in the subsequent step; we generate quads that

are likely to match hexahedra faces.
— {4 we extract the hexahedra from the pre-image

of the parameterization (i.e., the deformed grid
shown in Figure[2]a). From this set of hexahedra,
we remove the elements that self-intersects or in-
tersects the quad-dominant mesh of the bound-
ary;

— g5t we compute the boolean difference between
the surface of the hexahedral mesh and the quad-
dominant mesh of the boundary. Since the
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Figure 5: Upper row: A map deforms an input object (left) to
align its normals with the (z,y, z) axis (middle-left). A regular grid
(middle-right) defined on the image of the object can be deformed to
match the original object using the invert function. Lower row: a
global parameterization accepts a larger, more relaxed class of maps
(grid preserving), that may include some discontinuities.

boundary is compatible with the quad facets
of the hexahedra, the boolean difference is no
longer a geometric operation, it becomes purely
combinatorial.

e remesh the void (§g5}j6)).

2. Global parameterization

A global parameterization [9, 17, 12| 211 [7, 8] is a map

that deforms a solid object in 3D space. Consider the unit
grid in parameter space and project it onto the object
space using the inverse of the deformation map, we can
get a hexahedral mesh of the object (see Figure |5, upper
row). In simple cases, the parameterization is a continuous
map (e.g. in [9]), but it can also be discontinuous, as was
shown in [I7, [12]. If this discontinuous map satisfies “grid
compatibility” constraints, then it can still produce a nice
hexahedral mesh (see Figure [5] bottom row).

To generate a global parameterization, the main diffi-
culty is to determine where to place the singularities i.e.
the points of the volume where the pre-image of the unit
grid is not a deformed grid. A common strategy is to
compute a frame field that places some of these singular-
ities, then to optimize a grid-compatible map guided by
the frame field. In §8:2] we compare different solutions for
both steps.

The output of the global parameterization is a set of lo-
cal linear maps attached to (a subset of) the tetrahedra.
The robustness of our pipeline is independent of the global
parameterization quality. However, in order to produce
hexahedra, whose support spreads over multiple tetrahe-
dra, the parameterization has to be grid-compatible be-
tween pairs of adjacent tets.

3. Quad dominant mesh of the boundary

The objective in this section is to transform the original,
triangulated, object boundary into a quad-dominant mesh
that is compatible with the hexahedral mesh (see Figure
3).

The input of our algorithm is a tetrahedral mesh T with:
a 3D global parameterization given by a (u, v, w) triplet at-
tached to each tet corner, and a boolean flag per tet facet
that indicates whether the facet has a valid parameteriza-
tion.

The output is a quad-dominant remeshing of the bound-
ary OT, that is a closed manifold surface free of self-
intersection, as defined in §7] Moreover, we can ensure
that the Hausdorff distance between 0T and the quad
dominant mesh is smaller than a given threshold.

Algorithm:. The input boundary 9T is originally free of
self-intersections. Our algorithm starts with this surface
and transforms it into a compatible quad-dominant mesh
by applying a series of local operations. The surface is
guaranteed to remain free of self-intersections thanks to a
rollback procedure that we apply after each step of the al-
gorithm that modifies the surface geometry. This rollback
procedure is described in the robustness discussion.

The whole quad-dominant remeshing algorithm is illus-
trated in Figure [6] and detailed in the rest of this section:

Figure [0 1: Extract the input surface 9T and its 2D
parameterization (§3.1);

Figure[ 2: create extra edges that are likely to match
hexahedra edges (§3.2));

Figure[6 3: create charts of facets that correspond to
the facets we want to create in the quad-dominant
mesh, i.e. a set of quads that are likely to match
a hexahedron facet (, or the original triangles
elsewhere;

Figure [ 4: simplify the mesh by tentatively merging
the facets that belong to the same chart. The (op-
tional) control of the Hausdorff distance is performed
during this step.

8.1. Egxtract the 2D parameterization of the boundary from
the 8D parameterization

The 2D parameterization is defined as a restriction of
the 3D parameterization to a subset of the boundary tri-
angles. If exactly one coordinate has a constant integer
value on a triangle, then the parameterization is defined
on this triangle by the two other coordinates, else the tri-
angle is flagged as invalid.

Figure [6}input shows three input scalar fields. The
facets with an invalid 3D parameterization are shown in
blue. The 2D parameterization Figure [6}1 has a valid 2D
parameterization whenever it is drawn in red exactly once
in the “Input” figure. The group of two triangles in blue



Figure 6: Compute a quad-dominant mesh of the input boundary. (1) Restrict the 3D parameterization to 2D; (2) imprint the integer isovalues
of the parameterization into the mesh; (3) (left) regroup facets into charts separated by iso-values ; (middle) restore charts corresponding to
the original triangulation in non-quad zone (red dotted area) ; (right) remove unnecessary constraints from the quad-triangles interface. (4)
simplify the mesh w.r.t to the charts, producing the output quad-dominant mesh.

is invalid because one was already marked as invalid in
the 3D parameterization, and the triangle in the corner
(figure [6}1, marked by an arrow) is invalid because it has
no constant iso-integer coordinate (never marked in red in
the input).

3.2. Create new edges

This step imprints the integer isovalues of the 2D param-
eterization by splitting the facets. It is decomposed into
two substeps (split the edges, split the facets), as illus-
trated in figure [G}2. This step is protected by a rollback
procedure for each substep because the geometry of the
object is modified by the numerical imprecision of vertices
coordinates.

Split the edges. The first substep splits edges by introduc-
ing new vertices at integer values of the 2D parameteriza-
tion coordinates. The left image of Figure [6}2 shows the
resulting polygonal mesh. The blue vertices were added
by splitting the edges. The original vertices are marked in
green.

The algorithm that generates these new vertices works
as follows: for each edge, we choose one of its neighboring
polygons with a valid parameterization (if it exists) and
use its parametric coordinates to split the edge as follows:

e we compute the barycentric coordinates (w.r.t the
edge) of all points of the edge that have at least one
integer coordinate in the parametric domain,

e we sort these points by the barycentric coordinates,



e we interpolate the geometric and parameterization
coordinates on both adjacent polygons of the new
points. The (integer) coordinate used that triggered
the vertex is obviously not interpolated. We also
snap other parametric coordinates that are closer than
10719 to their nearest integer to account for numeri-
cal imprecisions in the grid preserving transition func-
tions,

e we split the edge by introducing new vertices one by
one. To avoid degeneracies, we only split the edge
when: for each coordinate (geometric or parametric),
the value of the new vertex is either strictly in the
range of the values of the edge extremities, or equal
to both values of the edge extremities.

At the end of the process, all coordinates (geometric or

parametric) are either constant or monotonic along orig-
inal edges, despite working with numerical imprecisions
and snapping parametric coordinates.
Split the facets. We iteratively split facets by creating a
new edge between a pair of vertices having a common in-
teger parametric coordinate. The new edge is split by
inserting new vertices at integer values of the other co-
ordinates. This process creates edges along each integer
isovalue, and introduces vertices at the intersections of in-
teger isovalues, as illustrated in Figure @-2 (right image,
red vertices). Once all facets are split, we triangulate the
facets.

Before splitting a facet, we check that:

e the new edge does not connect two successive vertices
of the polygon (would produce a facet with 2 vertices),

e and, in parametric space, all the vertices of the new
facets are located in the opposite half planes separated
by the cut (except the extremities of the cut).

These conditions are sufficient to ensure that the algo-
rithm terminates.

3.8. “Paint” the desired new mesh

Recall that the objective of this section is to produce
an intersection-free mesh that has: quad facets where the
parameterization is valid, the original triangles everywhere
else, and a valid mesh at the junction of these regions.

Thanks to the imprint realized by the previous step,
both the quads and the original triangles can be repre-
sented as groups of facets (that we call “charts”). The
present step determines these charts as follows (Figure @-
3):

e find quads: We create one chart per facet then, for
each pair of adjacent facets, we merge their charts if
both have a valid parameterization and are not sepa-
rated by an isovalue edge. We consider that a chart
corresponds to a quad if its boundary solely contains
isovalue edges and if it has 4 iso-value corners. Quads
that are not flat or too distorted can be filtered, but
it is optional (see Figure .

e find triangles: We create a chart per quad detected
earlier, and a chart per facet not included in one of
these quads. For each pair of adjacent facets, we
merge their charts if they where produced from the
same triangle of the original surface 0T

e relax the triangle constraint: For each pair of ad-
jacent facets, we merge their charts if they are not
separated by an isovalue edge, and have one extrem-
ity located on a quad chart boundary. This step al-
lows the mesh simplification algorithm to modify the
original geometry nearby the quads.

3.4. Simplify the mesh

The objective here is to replace as many charts as pos-
sible by their corresponding facet. To do so, we visit each
vertex that is not a quad corner, and try to remove it
according to the number of charts it touches:

e 1 chart: we remove the incident fan of triangles and
triangulate the hole (our implementation uses a min-
weight triangulation);

e 2 charts: we remove the incident fan of triangles and
triangulate the hole with the constraint that one edge
should follow the chart boundary;

e more than 2 groups: we do not remove the vertex.

At the end of the process, most quad charts are repre-
sented by two triangles, and most original triangles that do
not participate to quad charts are represented by a single
triangle.

Controlling the Hausdorff distance. We ensure (Figure [7))
that the symmetric Hausdorff distance between the bound-
ary of the generated mesh and the boundary of the original
mesh 0T is lower than a user-defined € by locking addi-
tional vertices before the rollback. The locked vertices are
either the vertices that produced a facet of the new mesh
with a point that is too far away from 0T, or the three
vertices of the triangle of 0T with a point that is too far
away from the new mesh. To evaluate an upper bound of
the Hausdorff distance, we sample each facet in such a way
that each point of the facet is closer than £/2 to a sample,
then we compute the distance between each sample and
the other mesh. If this distance is greater than /2, the
Hausdorff distance may be greater than e, so the facet is
considered as being too far away.

4. Hexahedral mesh

We would like the hexahedral mesh to be as large as
possible, but under the constraint that it does not produce
a void that would be impossible to remesh when combining
it with the quad dominant mesh. We operate as follows:
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Figure 7: The quad dominant mesh computed from the input mesh
(left) without (middle) and with (right) control of the symmetric
Hausdorff distance.

e we construct a set of candidate hexahedra by extract-
ing all possible hexahedra from the parameterization
as done in [I7],

e we merge position of vertices that are closer than
the numerical precision error (1071%). Tt allows to
merge combinatorial elements instead of removing
hexahedra due to geometric self-intersections. As the
void boundary will be composed by both hexahedra
faces and the quad-dominant mesh, all vertices to be
merge must match geometrically. However, we only
move hexahedra vertices because moving vertices of
the quad-dominant mesh may produce unchecked self-
intersections.

e we filter all hexahedra that would possibly produce
self-intersections in the final void boundary. For each
hexahedron that has an intersection with the quad-
dominant mesh or another hexahedron: if this inter-
section is a vertex, an edge or a quad then the hexa-
hedron is kept, otherwise, it is removed from the set
of hexahedra. (Figures El and . Optionally, geomet-
ric criteria can be used to filter bad shape hexahedra

(Figure [8 right).

As a result, the quad dominant mesh and the bound-
ary of the hexahedral mesh exactly intersect on a set of
facets, edges and vertices. In the next step, the bound-
ary of the void will merge these primitives and have no
self-intersections.

5. Void boundary

We define the boundary of the void volume as the dif-
ference between the quad-dominant mesh and the bound-
ary of the produced hexahedra. At this stage, the quad-
dominant mesh of the boundary and the extracted set of
hexahedra are both free of intersection and compatible
(the quad faces and hexahedra faces match), therefore the

o~

Figure 8: Examples of invalid configurations: hexahedra sharing 3
vertices (left) and a bad quality hexahedron (right).

Figure 9: The quad-dominant mesh (on the left) does not match the
facets of the red hexahedron, therefore it needs to be removed.

boolean operation that is required to compute the bound-
ary of the void boils down to a purely combinatorial oper-
ation, and this step is straightforward to implement (in a
certain sense, all difficulties have been pushed towards the
previous steps).

6. Hexahedral dominant mesh

The last step of our pipeline fills the remaining void.
The most robust solution is to build a constrained Delau-
nay tetrahedralization. We use TetGen [20] to do so.

It is also possible to plug algorithms that take into
account the specific structure of the remaining void;
paving [23] and whisker-weaving [22] present a (non-
robust) option to explore.

7. Discussion on Robustness

We demonstrate the practical robustness of our method
by running it without any failure on 200+ models, includ-
ing challenging parameterisations as in Figure The
main difficulty is to ensure that the surface used to rep-
resent the boundary of the void can always be filled by
tetrahedra.

7.1. Limitations of robustness
In practice, we only ensure that this surface is free of
self-intersections.

We consider that a triangulated surface is self-
intersecting if there exists a triangle that intersects another
triangle in another way than sharing a vertex, an edge or
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Figure 10: Extraction of quad-dominant boundary without our roll-
back procedure (left) produces self-intersections (red). Close-ups
(middle) show the corresponding charts, and our result are on the
right. A (non trivial) local remeshing strategy could fix some cases
(upper left), but not intersections between faces that do not belong
to the same part of the surface. The last model is an empty torus
(clipped rendering) with many intersections between the remesh of
its interior surface and its exterior surface.

the triangle with opposite orientation. This intersection
is evaluated with exact predicates. When our surface con-
tains quad facets, both possible triangulations of the quad
are tested.

This is not sufficient to ensure that the void can be
filled while working with a fixed precision floating point.
While it is always possible to tetrahedralize a polyhedron if
Steiner points are allowed, in practice it is possible to pro-
duce a Schonhardt polyhedron where there is no enough
numerical precision to represent the position of the re-

quired Steiner point. Therefore, it is possible to produce a
closed triangulated surface without self-intersections that
can not be filled by tetrahedra with TetGen. This con-
figuration is very unlikely: in tens of thousands of runs
with different settings and models, we have never ob-
served a TetGen failure when the input contained no self-
intersection.

Note that the only assumption we make on the param-
eterization is that wvw-coordinates (when available) are
valid floating-point numbers. As a consequence, it is pos-
sible that the imprint does not fit into memory because a
triangle is too large in parametric space (for example, due
to a bug).

7.2. Preventing self-intersections from appearing on the
boundary of the void
One part of the boundary of the void is defined by
remeshing the input surface, and the rest by the hexa-
hedral mesh. We detail here how to avoid producing self-
intersections in both parts.

7.2.1. Quad dominant remeshing of the object’s boundary

The boundary of the void is initialized as the boundary
of the input tetrahedral mesh, thus initially it is free of
no self-intersections. This property is preserved through-
out all the mesh editing by the rollback strategy described
below.

Rollback. We edit the mesh at different steps, and
each step guarantees to produce a mesh without self-
intersections thanks to a rollback procedure. All editing is
made with atomic operations (edge split, facet split, ver-
tex removal and triangle merge). During the mesh edition,
we assign to each new facet the id of the primitive (edge,
vertex and facet) that “triggered” the operation that pro-
duced the facet. At the end of the step, every facet that
participates to an intersection locks the primitive that pro-
duced it. Then we re-run the process, without triggering
operation on locked primitives, until no more intersections
are found. The process is guaranteed to finish because the
number of operations decreases at each iteration, and the
in worst case we just keep the input mesh.
We use this rollback strategy at the end of each step:

e imprint 1 — edges splits: lock original edges that in-
tersect, then rollback. Intersections are evaluated on
a triangulation of the facets.

e imprint 2 — facets splits: lock original facets that
have been subdivided into facets that participate to
an intersection, then rollback.

e simplifying the mesh: lock the original vertices that
have produced a facet with an intersection, then roll-
back.

e merge quads: lock the triangles that were merged into
a quad that participates to an intersection, and roll-
back.



All these rollback operations guarantee that the quad
dominant remeshing of the boundary of the surface has no
self-intersections.

7.2.2. Boolean difference with the hexahedral mesh

The final boundary of the void is defined as the boolean
difference between the quad dominant remeshing of the
original surface and the boundary of the hexahedral mesh.
The construction of the hexahedral mesh ensures that this
final boundary of the void will be free of self-intersection.
To do so, we start from all hexahedra extracted from the
parameterization, and remove those that participate to
an intersection (with the quad dominant mesh or other
hexahedra). It ensures that the result will be free of
self-intersections. To produce more hexahedra, we keep
those who intersects exactly on a primitive (vertex, edge
or quad), as we know that quads will cancel each other,
and other primitives are supported by TetGen.

Note that prior to filtering, we adjust hexahedra vertices
positions to make it easier to find exact matches between
primitives, however we do not move vertices of the quad-
dominant mesh, so this does not spoil the robustness.

8. Results and analysis

In this section, we compare our results to previous work
(, we demonstrate that our pipeline makes it possible
to compare different implementations of each step (,
and we propose a straightforward adaptation to produce
conformal meshes by introducing pyramids as interface
elements between hexahedra and tetrahedra (§8.3). We
experimented with our algorithm on a database of 200+
models, the reader can refer to the supplemental material
for the complete list, images and hex-proportion statistics.
General trends are summarized and analyzed below.

8.1. Positioning w.r.t the previous work

In this article we do not try to improve quality of indi-
vidual elements, but rather we focus on the mesh extrac-
tion. Therefore, the quality of the elements we obtain is
identical to the state of the art.

There are few articles with focus on the robust
mesh extraction: polyhedral agglomeration, PGP3D and
HexEx [21) [8, 13]. Let us recapitulate the main reasons
why we propose a new method of mesh extraction:

e PGP3D: we obtain a more faithful mesh boundary.
It is either the original mesh or the deformed grid,
whereas [2I] re-samples the surface and introduces
new points until a Hausdorff distance criterion is met.
Figure shows that the results are sensitive to the
distance threshold.

e PGP3D: hexahedra are directly extracted from the
parameterization rather than recombined from a
tetrahedral mesh generated from a point cloud. It pre-
vents extracting isolated hexahedra and mismatches

Figure 11: The mesh boundary produced by PGP3D [2I] depends
on a parameter that may miss some parts (left) or produce useless
tetrahedra (middle). Our method is not subject to these problems
(right).

Figure 12: We preserve geometric details with tetrahedra. Cubecover
and its extensions cannot directly handle them. Top row: direct
tetrahedralization of the remaining void, bottom row: paving +
whisker weaving used to fill the void.

that occur in [2I], Figure 20] when the parameteriza-
tion is distorted too much.

e HexFzx: works only when a grid preserving param-
eterization is defined everywhere. It does not help
facing problems of compatibility between hexahedral
and tetrahedral zones in hex-dominant meshing.

e HexFx does not control the Hausdorff distance to the
input mesh (Figures [I] and [12).

e Polyhedral agglomeration: this method may produce
inverted elements, and there is no guarantee that all
cases can be treated.

e Polyhedral agglomeration: suffers from the same prob-
lem than PGP: the parameterization is given by sam-
ples (not linear map), that may not be able to handle
strong anisotropy or shear. Another drawback of the
polyhedral agglomeration is the input mesh density,
it cannot create a hex-dominant mesh with finer ele-
ments than the input mesh.

8.2. The pipeline as a benchmarking tool

As we mentioned before, our contribution is two-fold:
first of all, it serves for a robust mesh extraction, and, due
to its modular structure, the pipeline provides a testing
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Figure 13: Distribution of the proportion of volume filled by hex-
ahedra for all the 200+ models of the database (horizontal axis:
proportion of hexahedra, vertical axis: number of models). In the
first column, the frame field is obtained by solving a linear system.
In the second column it is further optimized with non-linear itera-
tions. The rows correspond to the global parameterization algorithm:
Cubecover, PGP3D with curl correction, and PGP3D without curl

correction respectively.

environment to benchmark each step separately. This sec-
tion shows an example of such a benchmark.

Test frame fields. Let us say we want to evaluate impact
of the frame field smoothing algorithm. [I9] proposes two
options: the first one requires only solving a least-squares
problem, and the second one further improve this initial-
ization with a non-linear optimization. The authors claim
that the initializer only can suffice. The impact of both
solutions is presented in the columns of Figure We
observe that it does not really impact the proportion of
hexahedra except for a few models that really need the
non-linear optimization. It confirms the observation done
in [19] that the non-linear optimization is mandatory for
objects of revolution (cylinders), but it is less important
for other models (Figure [14)).

Test the parameterization. Here we test three different
global parameterization algorithms: CubeCover [17] F]and

2Since we are aiming hex-dominant meshing, our default imple-
mentation runs [I7] on the mesh minus the frame field singulari-
ties (defined as in [19]). Not including frame field singularities makes
it easier to implement, and offers more degrees of freedom around
singularities that are not compatible with hexahedral remeshing.

FrameField, initialization only

Figure 14: Impact of frame fields computed without (left column) or
with (right column) the non linear part of the optimization. For the
cylinders (top row), the remaining tetrahedra are visualized alone,
to better reveal the inner structure.
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Figure 15: Two shapes remeshed by CubeCover, PGP3D with curl
correction and PGP3D without curl correction.

PGP3D with and without curl correction [21].

The performance of each algorithm is shown in the rows
of Figure We observe that CubeCover and PGP3D
with curl correction generate the same average proportion
of hexahedra 87%, but with a better median for cube cover
(93% versus 91%). PGP3D without curl correction obtains
only 68% on average. The distribution of hexahedra on
the model is very different (Figure : CubeCover may
produce large remaining voids whereas PGP3D evenly dis-
tributes them over the mesh.
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Figure 16: Hexahedral dominant meshes obtained by remeshing the
void with (from left to right) TetGen, our adaptation of [4], and our
paving + whisker weaving implementation. To better visualize the
mesh inside the volume we also show the tetrahedra separately.
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Figure 17: Conformal mesh with pyramids. Hexahedra are shown in
gray, pyramids in blue and tetrahedra in red. Left: a pyramid is
generated for each quad of the boundary of the void. Right: the
remaining void is still filled by tetrahedra.

Test the final fill. The final stage of our pipeline is the
meshing of the remaining void. The robust solution is
given by TetGen, however with additional efforts the pro-
portion of hexahedra can be significantly increased. Fig-
ure shows an example of our adaptation of [4] and
paving + whisker weaving. In general, when successful,
paving + whisker-weaving performs better than [4], but
is less robust (we observed many failure cases).

8.3. Conformal mesh with pyramids

Our pipeline can be adapted to generate conformal
meshes by introducing a pyramid for each quad of the
boundary of the void (Figure . In our pipeline, there
is a simple solution to ensure that these pyramids will
not produce self-intersections of the boundary of the void.
Everytime we evaluate the intersection between a quad
and another element (triangle, quad, or hexahedron), we
also test whether other elements intersect the pyramid that
would be generated by the quad.

9. Conclusion

In this article we presented a robust method of generat-
ing hex-dominant meshes free of degenerate or flipped el-
ements. Our pipeline architecture allows to focus on each
step independently, and to evaluate the impact of each al-
gorithm. It also gives additional possibility of plugging-in
specialized algorithms for meshing particular geometries,
such as fillets or tubular structures.

Note that evaluation is another topic that will require
further work. In the context of this article, we used for
the evaluation the proportion of generated hexahedra, con-
strained to have a metric tensor condition number smaller
than 10 (see . While it gives reasonably shaped ele-
ments, we think that a more thorough evaluation will be
needed in the future, where the meshes are evaluated in the
context of FEM (Finite Element Modeling) simulations. It
would be important to compare the impact of the mesh on
both the accuracy of the solution and speed of the simula-
tion. Setting-up such an experiment requires a substantial
amount of work, well beyond the scope of this article. It
may be considered as a first step towards this direction,
by providing an automatic and reproducible pipeline for
the mesh generation part.
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