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Abstract

Given a skeleton made of line segments we describe how to obtain a coarse quad mesh of a surface that encloses tightly the skeleton
and follows its structure - the scaffold. We formalize as an Integer Linear Program the problem of constructing an optimal scaffold that
minimizes the total number of quads on the mesh. We prove the feasibility of the Integer Linear Program for any skeleton. In particular we can
generate these scaffolds for skeletons with cycles. We additionally show how to obtain regular scaffolds, i.e. with the same number of quad
patches around each line segment, and symmetric scaffolds that respect the symmetries of the skeleton. An application to polygonization of
skeleton-based implicit surfaces is also presented.

Keywords: Quad mesh generation, Skeleton based modeling, Procedural modeling, Scaffold.

1 Introduction

Skeletons are used in 3D graphics for modeling and animating artic-
ulated shapes. The user can design a complex shape by sketching a
simple geometric object that is the input to a surface generating al-
gorithm. By making changes in the skeleton it is possible to change
the shape in an intuitive way. Due to their low dimensional nature,
skeletons can serve as an efficient and compact representation of a
surface. In this context a skeleton-based mesh generation method is
needed.

The idea developed here is to construct a “coarse” quad mesh that
tightly follows the structure of the skeleton. Following the termi-
nology of [21] we call this process scaffolding and the correspond-
ing coarse mesh a scaffold. This is used as an intermediate step in
many applications. A scaffold can be used to generate a surface,
either by subdivision as in [4], or as initial patchwork for a spline
surface [7, 16] (see Figure 1). It is used as an intermediate step in
the extraction of a quad layout on a given triangular mesh [5, 24],
and for compatible quadrangulation [26]. An application we present
here is the polygonization of skeleton-based implicit surfaces into
quad-dominant meshes. In particular, we use our method for visual-
ization of convolution surfaces [8, 27]. Our main contribution is in
the theoretical foundations of an algorithm that computes a scaffold
for any skeleton, independently of its topology, and with no user
interaction.

In this paper we deal with skeletons made of line segments that
do not intersect except at the endpoints, then called joints.

1.1 Previous work

One of the earliest ideas for a scaffold construction was to sweep a
fixed polygonal cross profile along the segments, stitching the gen-
erated quads by means of a convex hull construction at the joints.
This idea was first used in [23], producing meshes with some tri-
angular faces resulting from the stitching process. For quadrilateral

(a)

(b) (c) (d)

automatic
construction

input output

Figure 1: Recreation of some of the scaffolds used in [16], automat-
ically computed by our method from suitable skeletons.
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cross profiles B-meshes method [15] improved upon this by merg-
ing triangles in order to get a quad-dominant mesh. Still the stitching
process might leave some triangular patches at the joints.

[24] and [26] proposed a scaffolding technique that generates a
pure-quad mesh by extruding boxes emanating from cubes posi-
tioned at the joints. In [24] the subdivision of the cubes is modeled
with an Integer Linear Program, for which a solution might fail to
exist when there are cycles in the skeleton. “Lids” [24, Figure 6] are
introduced as a workaround. [26] also introduces extra quads around
joints [26, Figure 4].

The method we propose is based on the Skeleton to Quad-
dominant polygonal Mesh (SQM) method in [4] which was lim-
ited to skeletons without cycles. SQM first defines the mesh points
around the joints and then recreate a quad based “tubular” polyhe-
dral surface around each line segment. SQM can be regarded as a
three steps process:

1. Partition the unit sphere centered at the joints into regions, one
for each incident line segment.

2. Discretize each region into a cell (as an ordered set of points
on its boundary) such that the two cells at the extremities of
each line segment are compatible, i.e. have equal number of
points. Points on the boundary of two regions are part of the
two corresponding cells.

3. Link, in a bijective way, the cells at the extremities of each line
segment. These links define the quads on the mesh.

For Step 3, SQM [4] defines the links by minimizing the total
length of the line segments they define. In Step 2 Bærentzen et al.
propose an algorithm for inserting additional vertices on the cells
in such a way that the compatibility constraint is satisfied. Yet this
algorithm does not work in the presence of cycles [4]. The existence
of a possible discretization was actually not proved. Furthermore
there was no analysis on the optimality of SQM with respect to the
number of quads in the scaffold.

The partition of the sphere, in Step 1, used in [4] can be rec-
ognized to be a Voronoi diagram on the sphere. [21] introduces a
partition of the sphere in quadrangles that makes the compatibility
of cells (Step 2) trivial. Yet the partition is not canonical and the
convexity of the regions is not guaranteed.

1.2 Contributions

Our method follows SQM [4] but we address and solve the crux
difficulty that represents Step 2 for skeletons of arbitrary topology.
We formalize the creation of compatible cells (Step 2) as an Integer
Linear Program (IP) that minimizes the total number of quads. We
prove that, for a Voronoi partition of the spheres, there exists a so-
lution for the IP (feasibility), even in the presence of cycles. There
is thus always an optimal solution that can be computed by an IP
solver. Feasibility is proven thanks to a numerical characterization
by Rivin [22] of graphs combinatorially equivalent to inscribable
polyhedrons (i.e. with vertices on a sphere) that applies to the dual
of the Voronoi diagram. Our minimization criterion is what ensures
the coarsest mesh among those based on Voronoi partition of the
spheres and additional pragmatic geometric restrictions. The solu-
tion of the IP determines the cross profile on each segment.

We present two other constructions to generate symmetric and
regular scaffolds. In the former case the scaffold respects the sym-
metries of the skeleton. In the latter case, the scaffold has equal
number of quads around each line segment of the skeleton, ensuring
a similar cross profile for each line segment. Both possibilities are
natural requirements for geometric modeling. With either or both
requirements, we prove the feasibility of the constraints and are thus
in a position to compute optimal solutions in the total number of
quads.

To the extent of the knowledge of the authors the only paper that
integrates the symmetries of the skeleton into the computation of the
scaffold is [4], with the limitation that only one reflection symmetry
can be taken into account for each skeleton (in addition to being
restricted to cycle-free skeletons). Here we present a much more
general approach that is able to compute scaffolds that respect any
group of symmetries of the skeleton.

The article is organized as follows. In Section 2 we formalize the
notions of skeleton and scaffold. In Section 3 we prove the existence
of: standard, regular, and symmetric scaffolds, for any topology. In
Section 4 we define an objective function and introduce the IPs that
find optimal solutions. The algorithms to construct a scaffold are
detailed in Section 5 with some further discussion in Section 6. An
application to polygonization of skeleton-based implicit surfaces is
shortly presented in Section 7.

A sketch of the first feasibility proof was presented at the confer-
ence LAGOS 2017. An extended abstract of the talk given there is
available in the proceedings [13]. Here we generalize and extend
the result in [13]. The precise objective function of the IP, the de-
tails of the algorithms, as well as the regular and symmetric cases
are presented in this paper for the very first time.

2 Skeletons & Scaffolds
In this paper a skeleton is a finite set S of spatial line segments sat-
isfying the following property: any two line segments intersect at
most at one of their endpoints. A skeleton S defines naturally a graph
GS = (VS;ES) by identifying the set of nodes VS with the set of all
endpoints in S, and the set of edges ES with the set S itself. An edge
e 2 ES connecting two nodes a;b 2 VS can be alternatively repre-
sented as ab. If e = ab we say that e is incident to a (or b) and write
e( a (or e( b). A node with only one incident edge is called dan-
gling node while a node with more than one incident edge is called
a joint. A node with precisely two incident edges is called an articu-
lation. We denote by LS � VS the set of all dangling nodes, MS � VS
the set of all articulations, and NS = VS � (LS [MS) the set of the
remaining joints.

The sphere centered at v 2 VS with radius εv > 0 is denoted Sv,
and Av = fe\Sv j e 2 ES;e( vg is the set of the points that are the
intersection of the line segments incident to v with Sv (Figure 2b).
For what follows the choices of εv (v 2 VS) is independent of our
method. We assume though that no two spheres intersect. Note that,
once the scaffold mesh is created, maxv2VS εv is an upper bound to
the distance between any point in the edges of the scaffold and the
skeleton.

For a joint v 2 VS, the Voronoi diagram [3] of Av on Sv (Fig-
ure 2c), denoted Vor(Av), partitions the sphere Sv into regions
fRv

ege(v, with (Sv\ e) 2 Rv
e, that are delimited by arcs of great cir-

cles [2, 20]. The cell Cv
e associated to the region Rv

e consists of the
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(a) (b) (c)

(d) (e)

Figure 2: Construction of cells: for every joint (a) take the intersec-
tion of the incident segments with the unit sphere (b), compute the
Voronoi diagram (c), subdivide the arcs in the boundaries of Voronoi
regions (d) and take the ordered set of points (polyline) as represen-
tation of the cells (e).

end-points of the arcs delimiting Rv
e and some additional points (pos-

sibly none) per arc (Figure 2d). The points chosen in one arc define
a polyline that represents the arc (Figure 2e). The number of seg-
ments in the polyline is called number of subdivisions of the arc, it
is one less than the number of points taken in the arc.

One should also consider some geometrical constraints. The
number of points in a cell must be at least 3 (4 is more custom-
ary [15, 21, 24, 26]). Long arcs, i.e. arcs with length greater than or
close to π , must be subdivided into at least two segments. Examples
of degenerate cases for cells with at least 3 or 4 points are shown in
Figure 3.

(a)

(b)

Figure 3: Degenerate cases arise when allowing for only one subdi-
vision per arc, with at least 3 (a), or 4 (b), points on each cell. In
both cases long pole-to-pole arcs are discretized as single segments
going through the joint.

If the node v is an articulation, the arc separating the two Voronoi

regions inAv is a circle. Thus an associated cell Cv
e consists of points

on the boundary circle. For v a dangling node, Vor(Av) consists of
a single region with no boundary. In this case the associated cell
Cv

e consists of points on the circle defined by the sphere Sv and the
plane through v normal to e. In both cases the points on the cells
are given by only one arc (great circle) and are taken such that the
planar polygon they define encloses v.

There seems to be a preference in the literature for at least quad-
rangular cross profiles [15, 21, 24, 26]. To guarantee this the cells
must have at least four points. We show in Figure 14 that three is
also an adequate choice. In general, arcs can be discretized as a sin-
gle segment (i.e. with no additional point) but the extra restrictions
on the minimum number of points on each cell must be enforced to
avoid cases like in Figure 3.

A scaffold KS is defined as a pair (PS;ΦS), satisfying

1. PS = fCv j v 2 VSg, where each Cv = fCv
e j e 2 ES;e( vg

is a family of cells representing a partition of Sv according to
Vor(Av).

2. ΦS = fφe j e 2 ESg is a family of bijections φe between Ca
e and

Cb
e for e = ab.

For e = ab we say that Ca
e and Cb

e are linked cells. Similarly,
if Ca

e = hp1; p2; : : : ; pni we say that pi is linked with φe(pi) and
the pair hpi;φe(pi)i is called a link. The realization of a scaffold
as a mesh is through the quads defined by the four-points tuples
hpi;φe(pi);φe(pi+1); pi+1i.

To construct the links we follow the same strategy as in [4]: pro-
vided the cells have the same number of points, choose the bijection
where the total length of the segments defined by the links is mini-
mal.

The existence of the scaffold, for a given skeleton, is thus estab-
lished if and only if we can discretize the Voronoi regions into com-
patible cells: we need the cells Ca

e and Cb
e (for all e = ab 2 ES) to

have the same number of points. This is far from obvious, specially
in the presence of cycles in the skeleton.

3 Existence of scaffolds
We construct the set of linear equations over the integers that pre-
side over the existence of a scaffold. The achievement is to prove
the existence of a positive solution to this system, hence proving the
existence of a scaffold for any given skeleton. The proof strongly
relies on a property of Voronoi diagrams on the sphere, and more
precisely on their duals. We examine this property first. We then
prove the existence of a scaffold, which we qualify as standard. In
geometric modeling it is desirable to have scaffolds that respect the
symmetries of the underlying skeleton (symmetric scaffold), or to re-
quire a regularity on the number of quads around the line segments
(regular scaffold). We can even seek scaffolds that satisfy both prop-
erties. We prove the existence of all these scaffolds.

3.1 Locally uniform discretization
The Delaunay triangulation Del(Av) is the dual of Vor(Av) [3]. For
each v 2 VS let Ev be the set of edges of Del(Av). Each edge in
Ev represents a common boundary between two regions in Vor(Av).
For f 2 Ev we define a positive integer xv

f representing the number
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of subdivisions to be done to the corresponding arc (i.e. the number
of segments in the polyline representation of the arc). For dangling
nodes Ev = /0, we nonetheless introduce a phantom edge νv, with an
associated variable xv

νv , so that actually Ev = fνvg.
The following lemma asserts that the Voronoi regions can be dis-

cretized uniformly, i.e. with an equal number of points. It is our
main ingredient in proving the existence of scaffolds.

Lemma 3.1. For v 2 VS, the local linear system

∑
f2Ev

f((Sv\e)

xv
f = λv 8e( v;e 2 ES (1)

has a solution (x̃v
f ; λ̃v) with positive integer entries.

We denote the solution (x̃v
f ; λ̃v) as local solution associated to the

local system (1).
To guarantee a positive solution we rely in a proposition due to

Rivin [22] (statement extracted from [12]) that gives a numerical
characterization for a graph of inscribable type (i.e. a graph combi-
natorially equivalent to a polyhedron inscribed on a sphere [12]).

Proposition 3.2 (I. Rivin). If a graph is of inscribable type then
weights w can be assigned to its edges such that:

(i) For each edge e, 0 < w(e)< 1=2.

(ii) For each vertex v, the total weight of all edges incident to v is
equal to 1.

Proposition 3.2 applies to Del(Av) that is combinatorially equiv-
alent to the convex hull of Av [10, 14], and hence of inscribable
type. It thus guarantees a positive real solution for (1). Note that
guaranteeing a positive solution for a linear system is not a trivial
task.

The following claim then relates the existence of an integer pos-
itive solution of a homogeneous linear system to the existence of a
real positive solution.

Proposition 3.3. A homogeneous linear system with integer coeffi-
cients has a positive integer solution whenever it has a positive real
solution.

of Proposition 3.3. Let Ay = 0 be a homogeneous linear system
where A is a n�m matrix with integer entries. Observe that if there
is a rational solution p with p 2 Qm, we can get an integer positive
solution multiplying p by the least common multiple of denomina-
tors in the entries of p. Thus it is enough to prove that the system
has a rational positive solution.

Let ỹ 2 Rm be the real solution of the homogeneous system with
positive entries, this implies that the set of solutions of the system is
a (non-trivial) subspace. Since A has integer entries we get a rational
basis for the solution space. Let fy1;y2; : : : ;ykg � Qm (k � 1) be
a basis of the solution space of A. We have that ỹ = ∑

k
i=1 c̃iyi for

some real coefficients c̃i. Let f : Rk ! Rm be a function mapping
c 2 Rk to f (c) = ∑

k
i=1 yici. Let U = (0;∞)m. Clearly U is open,

and f is continuous, thus V = f�1(U)� Rk is open. Moreover c̃ =
(c̃1; : : : ; c̃k) 2 V hence V is not empty. The set of rational points
in Rk is dense, thus there exists q 2 Qk \V . On the other hand
f (q) 2U , that is all the entries of f (q) are positive and rational and
by definition f (q) is in the solution space of A. Therefore f (q) is a
rational solution with positives entries for the system.

of Lemma 3.1. For v a dangling node or articulation, a solution is
trivially found. If v is a joint with at least three incident edges, the
existence of a real positive solution for the local system (1) comes
from the fact that Del(Av) is combinatorially equivalent to the con-
vex hull of Av [10, 14] which is an inscribed polyhedron. Thus
Proposition 3.2 guarantees the existence of a real positive solution
given by xv

f = w( f ) and λv = 1, the result follows from Proposi-
tion 3.3.

3.2 Standard scaffold

The number of points in a cell Cv
e (e 2 ES and e( v) is given by

jCv
e j= ∑

f2Ev
f((Sv\e)

xv
f : (2)

For each edge e = ab 2 ES, there is a bijection φe 2 ΦS in the scaf-
fold KS between the cells Ca

e and Cb
e . This is possible only if both

cells have the same number of points, which gives the following
compatibility equations

∑
h2Ea

h((Sa\e)

xa
h = ∑

g2Eb
g((Sb\e)

xb
g 8e = ab 2 ES: (3)

By definition xv
f is a positive integer for all v 2 VS; f 2 Ev. In

Section 2 we discussed some additional geometric constraints. They
can be written in the form

(
xv

f 2 Z; xv
f � 1 8v 2 VS; f 2 Ev

Λi(xv
f )� si i = 1;2; :::

(4)

where Λi(xv
f ) are linear forms on the variables xv

f with non-negative
integer coefficients (not all zeros), and si > 0 are integer constants.
These can capture the requirements of having at least 3 (or 4) points
on each cell, as well as subdividing long arcs into at least two seg-
ments. The existence proof works for any set of (Λi;si) with non-
negative coefficients. A practical realization of (4) for the geometric
constraints commented in Section 2 and that should also serve as
reference for the reader, is given by

8><
>:

xv
f 2 Z; xv

f � m(xv
f ) 8v 2 VS; f 2 Ev

∑
f2Ev

f((Sv\e)

xv
f � c 8v 2 VS;e 2 ES;e( v (5)

where c is 4 or 3; m(xv
f ) is 1 if the length of the arc associated to xv

f is
less than π�δ , and 2 otherwise. The choice of a small constant δ 2
(0;π) determines the long arcs. Yet other constraints that may arise
in applications, like subdividing specific arcs into a greater number
of pieces, or requiring specific cells to have a greater number of
points, can also be modeled in (4).

We say that the global system defined by (3) is feasible if it has a
solution satisfying (4). Such a solution gives a way to discretize each
region in the partition of the spheres into compatible cells, and thus
allows to construct a scaffold. Proving the existence of a positive
(integer or real) solution for a linear system is not a trivial task. The
main result in our paper is the formal proof of feasibility of (3) which
is stated in the following theorem.

4



Theorem 3.4. For any skeleton S, the linear system given by (3)
has a solution with the entries xv

f (v 2 VS; f 2 Ev) satisfying the
constraints given in (4). Therefore there exists a scaffold for S.

Proof. Using Lemma 3.1, for every v2VS, we take (x̃v
f ,λ̃v) as a local

solution satisfying (1). Then we take x̂v
f = s λ̂

λ̃v
x̃v

f for all v 2 VS; f 2

Ev, where λ̂ =∏u2VS
λ̃u and s=maxi si is an integer constant. Using

x̂v
f as subdivisions for the arcs we get that all the cells have the same

number of points: sλ̂ , it follows then that the equalities in (3) are
trivially satisfied. The factors sλ̂=λ̃v guarantee that the constraints
in (4) are also satisfied. Thus x̂v

f is a solution to (3) satisfying (4).

The discretization constructed in the proof above is far from op-
timal. Optimality is dealt with in Section 4 with the help of Integer
Linear Programming.

3.3 Symmetric scaffold
It is a desirable property for a scaffold to respect the symmetries
of the underlying skeleton [4]. As illustrated in Figure 4 and 6, a
standard scaffold need not satisfy this property. In this section we
first define what is a valid symmetry for the skeleton. We then give
the additional restrictions needed in order to obtain a scaffold that
respects the symmetries of the skeleton.

asymmetric
cells

asymmetric
links

π

(a)

symmetric
cells

symmetric
links

π

(b)

Figure 4: A symmetric scaffold is expected for a symmetric skele-
ton. In the picture the skeleton is symmetric through the plane π . (a)
The cells of one standard scaffold does not respect the symmetry,
links are not symmetric either. (b) The cells of a symmetric scaffold
respect the symmetry.

A skeleton symmetry of S is an isometry T : R3 ! R3 such that

(i) T (v) 2 VS 8v 2 VS, and

(ii) T (e) 2 ES 8e 2 ES.

If the radii εv are different then in order to have a symmetric scaf-
fold they must satisfy εv = εT (v) for all v 2 VS; T 2 TS. We assume
this is guaranteed for symmetric skeletons.

Conditions ((i)) and ((ii)) say that T keeps the set of nodes VS and
edges ES (hence GS) invariant, thus the whole skeleton is kept fixed:
T (S) = S. Since T is an isometry and e= ab2 ES is the line segment
between the nodes a and b (including both), then T (e) is the edge
(line segment) connecting T (a) and T (b).

With conditions ((i)) and ((ii)) we avoid cases, as illustrated in
Figure 5, where there is a geometric symmetry for S that does not

map elements of GS into elements of GS. Thus not all symmetries
are skeleton symmetries.

A B
O

C

Figure 5: A skeleton with a false symmetry: the central symmetry
with respect to O, maps the skeleton to itself when considered as a
curve but not as a graph (B is not mapped to another node).

The set of skeleton symmetries TS forms a finite group under
composition. For simplicity we denote T �R as T R.

We say then that a scaffold KS = (PS;ΦS) respects the skeleton
symmetry T 2TS if

CT (v)
T (e) = T (Cv

e) 8v 2 VS;e 2 ES;e( v; (6)

and
φT (e) = T �φe �T�1 8e 2 ES: (7)

Since Voronoi diagrams depend only on the distance between
points, it follows that

Vor(AT (v)) = T (Vor(Av)): (8)

Notice that it is also true that AT (v) = T (Av) and ET (v) = T (Ev).
Hence Equation (6) can be achieved as soon as the subdivisions are
done in a symmetric way for symmetric arcs. This is possible if

xv
f = xT (v)

T ( f ) 8T 2TS;v 2 VS; f 2 Ev: (9)

To guarantee (6) given (9), it is sufficient to subdivide the arcs
into equal length subdivisions since arc-length is preserved under
isometries: the arc corresponding to f 2 Ev (v 2 VS) with arc-length
θ is subdivided into xv

f sub-arcs of length θ=xv
f . Equation (7) means

that the links defined by the bijections in ΦS define symmetric line
segments, and hence symmetric quads.

Solutions of (3) satisfying (4) and the extra constraints given
by (9), yield compatible cells that respect the skeleton symmetries.
The existence of such a solution is denoted as feasibility of the sym-
metric scaffold, and it is established in Theorem 3.6.

The proof of Theorem 3.6 relies on the following lemma.

Lemma 3.5. Let x̂v
f be a solution of the linear system given by (3)

satisfying the constraints in (4). Then x̄v
f = ∑T2TS

x̂T (v)
T ( f ) is also a

solution of (3) satisfying (9) and (4).

Proof. Let T 2 TS. Since TS is a group we have TS = fRT j R 2
TSg. Hence

x̄T (v)
T ( f ) = ∑

R2TS

x̂RT (v)
RT ( f ) = ∑

R2TS

x̂R(v)
R( f ) = x̄v

f : (10)

Thus x̄v
f satisfies (9).

We prove now that x̄v
f is a solution of the linear system given

by (3). For e = ab 2 ES we have T (Ea) = ET (a) because of the

5



symmetric property of Voronoi diagrams (8), and hence of its dual.
Therefore

∑
h2Ea

h((Sa\e)

x̂T (a)
T (h) = ∑

k2ET (a)
k((ST (a)\T (e))

x̂T (a)
k : (11)

Similarly

∑
g2Eb

g((Sb\e)

x̂T (b)
T (g) = ∑

l2ET (b)
l((ST (b)\T (e))

x̂T (b)
l : (12)

T is a skeleton symmetry, thus T (e) 2 ES is the edge connecting
T (a) and T (b). Since x̂v

f is a solution of the system given by (3),
taking the equation for the edge T (e) in (3), it follows that

∑
k2ET (a)

k((ST (a)\T (e))

x̂T (a)
k = ∑

l2ET (b)
l((ST (b)\T (e))

x̂T (b)
l : (13)

From (11), (12) and (13) we get

∑
h2Ea

h((Sa\e)

x̂T (a)
T (h) = ∑

g2Eb
g((Sb\e)

x̂T (b)
T (g) 8e 2 ES: (14)

Summing the latter equation over T 2TS proves that x̄v
f is a solution

of (3).

Theorem 3.6. For any skeleton S with a group of symmetries TS,
the linear system given by (3) has a solution with the entries xv

f (v 2
VS; f 2 Ev) satisfying the constraints given in (4) and (9). Therefore
there exists a symmetric scaffold for S.

Proof. By Theorem 3.4 we have that there is a solution x̂v
f of (3) sat-

isfying (4). Lemma 3.5 then gives a solution x̄v
f to (3) satisfying (9).

Since x̄v
f � x̂v

f , we have that (4) is trivially satisfied by x̄v
f .

An example of a skeleton with a rotation symmetry is shown in
Figure 6. If one is not interested in a solution that respects all the
symmetries of the skeleton, one can restrict the set TS to be the
group generated by a subset of the skeleton symmetries.

5
edges

7
edges

6
edges

6
edges

6
edges

6
edges

(a)

(b) (c)

Figure 6: A three-fold rotation symmetry (C3). (a) Skeleton. (b)
Standard scaffold. (c) Symmetric scaffold.

3.4 Regular symmetric scaffold
We call a scaffold regular if it has the same number of quads around
each line segment. This is not an automatic property of standard
scaffolds, as can be seen in figure 6b and 7.

(a) (b) (c)

Figure 7: Complex closed skeletons (a), standard scaffolds (b), and
regular scaffolds (b)

To get regular scaffolds we need compatible cells that have the
same number of points, this means that (3) must be replaced by

∑
f2Ev

f((Sv\e)

xv
f = λ 8v 2 VS;e( v;e 2 ES (15)

with λ an additional free variable. Notice that λ is independent of
v 2 VS and so (15) implies (3). Solutions to the linear system (15)
satisfying (4) are called regular solutions. Regularity ensures that
all segments have a similar cross profile: a polygon with λ sides. If
there is a regular solution we say that (15) is feasible, which implies
the existence of a regular scaffold.

It is possible to get a scaffold that is at the same time regular and
symmetric. We just need to ensure, besides (4), the extra constraints
in (9). A regular scaffold need not be symmetric (Figure 8a). Con-
versely, a symmetric scaffold is not necessarily regular (Figure 8b).

The existence of regular symmetric scaffolds is established in the
following theorem. It is sufficient to prove the feasibility of regular
symmetric scaffolds to automatically get the feasibility of regular
scaffolds. Indeed a regular scaffold can be regarded as a regular
symmetric scaffold with TS the trivial group consisting of only the
identity symmetry.

Theorem 3.7. For any skeleton S admitting a group of symmetries
TS, the linear system given by (15) has a solution with the entries
xv

f (v 2 VS; f 2 Ev) satisfying the constraints given in (4) and (9).
Therefore there exists a regular symmetric scaffold for S.

Proof. As done in the proof of Theorem 3.4, for every v 2 VS
Lemma 3.1 gives a local solution (x̃v

f ,λ̃v) satisfying (1). Then

x̂v
f = s λ̂

λ̃v
x̃v

f with λ̂ = ∏u2VS
λ̃u and s = maxi si, is a local solution

such that all the cells have sλ̂ points, thus x̂v
f is a global solution

of (15) satisfying (4). Applying Lemma 3.5 to this solution we get a
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Asymmetric
cells

(a)

(b)

Figure 8: Symmetry and regularity are independent properties. (a)
Regular asymmetric scaffold: the highlighted cell is asymmetric
with respect to the reflection symmetry. (b) Symmetric irregular
scaffold: one edge has a quadrangular cross profile while the rest
are pentagonal.

symmetric solution x̄v
f with the same number of points on each cell.

Indeed

jC̄v
e j= ∑

f2Ev
f((Sv\e)

x̄v
f = ∑

f2Ev
f((Sv\e)

∑
T2TS

x̂T (v)
T ( f ) =

= ∑
T2TS

∑
g2ET (v)

g((ST (v)\T (e))

x̂T (v)
g = ∑

T2TS

jĈT (v)
T (e) j= sλ̂ jTSj:

Symmetry is an important property for the scaffolds as can be
appreciated in Figure 9 computed for one of the examples in [16].

(a) (b)

Figure 9: With symmetric requirements a scaffold can be greatly
improved. (a) The computation of the scaffold in Figure 1a with-
out symmetric requirements. (b) The “correct” symmetric scaffold
respecting all the symmetries of the skeleton (same as Figure 1a).

4 Optimal scaffolds
We have established that for any skeleton S admitting a group of
symmetries TS, there exist a standard scaffold, a symmetric scaf-
fold, a regular scaffold, and a regular symmetric scaffold. In this
section we address the computation of optimal scaffolds. We model
each scaffolding problem as an Integer Linear Program (IP) [11] that
looks for a solution with a minimal number of quads. For this we
need first to define an objective function, then the constraints of the
IPs. The existence of a minimal solution is guaranteed by the ex-
istence theorems on Section 3, thus such minimal solutions can be
computed with an IP solver.

4.1 Objective function
We want to express the total number of quads in a scaffold in terms
of the subdivision of the arcs. For this we proceed as follows. LetQ
be the set of all quads of a scaffold, and P the number of pairs hp;Qi
such that p 2 Q 2Q. Then we have that

jQj= 1
4 P: (16)

Indeed, the last equation is a consequence of the following observa-
tion: every fixed quad Q has 4 points and there are precisely 4 pairs
hq;Qi with p 2 Q.

We can count P in another way: by fixing first a point and then
counting the pairs containing it. For a point p in the cell of a dan-
gling node, there are 2 quads containing p. If p is a point in the cell
of an articulation, there are 4 quads containing p. If p is a point in
an arc on the boundary of a Voronoi region of a joint (not an artic-
ulation), we get that p is in 4 quads if p is not an extremity of the
arc, or p is in 2d(p) quads if it is an extremity of an arc. Here d(p)
denotes the number of Voronoi regions that have p in their common
boundary.

The latter paragraph can be summarized as

P =∑
v2LS
f2Ev

2xv
f +∑

v2MS
f2Ev

4xv
f +∑

v2LS
f2Ev

4(xv
f �1)+ΘS; (17)

where ΘS is the number of pairs containing points that are extremi-
ties of the arcs in the Voronoi diagrams. Notice that ΘS is a constant
for a fixed skeleton S, thus (17) can be written as

P =∑
v2LS
f2Ev

2xv
f +∑

v2MS
f2Ev

4xv
f +∑

v2LS
f2Ev

4xv
f +ΦS; (18)

where ΦS = ΘS�∑v2LS
4jEvj is a constant for a fixed skeleton S.

From equations (16) and (18) we conclude that

∑
v2(VS�LS)

∑
f2Ev

2xv
f + ∑

v2LS

∑
f2Ev

xv
f (19)

is an objective function that minimizes the total number of quads in
a scaffold.

4.2 Integer Linear Programming models
We can now state the Integer Linear Programs (IPs) that compute
subdivision for the arcs such that the scaffold have a minimal num-
ber of quads. For all the IPs the optimality criterion is to minimize
the objective function (19). In Table 1 we show each model.
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Minimize
Scaffold Constraints function

Standard (3), (4) (19)
Regular (15), (4) (19)
Symmetric (3), (4), (9) (19)
Regular Symmetric (15), (4), (9) (19)

Table 1: Integer Linear Program models.

Theorems 3.4, 3.6 and 3.7 prove the feasibility of the standard,
symmetric, and regular symmetric models respectively. As dis-
cussed in Section 3.4, the feasibility of the regular IP model is a
consequence of the feasibility of the regular symmetric model.

A final observation is that once we can guarantee feasibility, and
since all the variables in (19) are positive integers, then an opti-
mal minimal solution always exists. The optimal solution can be
computed with a Mixed-Integer Linear Program Solver. In partic-
ular with the branch-and-cut [11, Chapter 12] implementation of
GLPK [19].

5 Algorithms
In this section we provide practical algorithms for the implementa-
tion of our method. Although our main contribution is in the the-
oretical foundation and the proofs of the existence of scaffolds, the
algorithms in this section show that our method can be readily im-
plemented to compute scaffolds for any skeleton.

The general steps for an implementation are described in Algo-
rithm 1. Sub-algorithms 2, 3 and 4 deal with the details of the con-
struction of compatible cells from the output of the standard IP and
the definition of the bijections between cells (linking process).

Input: The set of nodes VS and edges ES representing the skeleton.
Output: The quads that represent a scaffold.

1 foreach node v 2 VS do
2 Av fe\Sv : e 2 ES;e( vg;
3 Hv convexHull(Av);
4 Ev edgesO f (Hv);
5 Define and solve the Linear Program for the subdivision of arcs;
/* Alg. 2 */

6 Construct compatible cells; /* Alg. 3 */
7 Define bijections of linked cells; /* Alg. 4 */
8 foreach edge e = ab 2 ES do
9 Let Ca

e = hp0; p2; : : : ; pni;
10 for i = 0 to n do
11 Output quad hpi;φe(pi);φe(pi+1); pi+1i /* i+1 is

taken mod n */

Algorithm 1: General algorithm for constructing a scaffold.

Algorithm 1 follows the general three steps we introduced in Sec-
tion 1. In Step 1 we use spherical Voronoi diagrams for the partition
of the sphere at the joints (lines 1–4). We mostly work with their du-
als, Delaunay triangulations, which are equivalent to the the convex
hulls [10, 14]. The discretization of the regions, Step 2, is divided
into sub-algorithms.

The convex hull computed in Algorithm 1 (line 3) is not always
3-dimensional. It may be a 2-dimensional convex hull (a poly-

(a) (b) (c) (d)

Figure 10: Cases for the convex hull of Av. Edges of Ev are shown
in black. (a) 3-dimensional: more than three points in general po-
sition. (b) 2-dimensional: more than two coplanar points. (c) 1-
dimensional: two points. (d) 0-dimensional: one point.

gon), a 1-dimensional convex hull (one edge), or a 0-dimensional
one (a point). Those cases correspond respectively to: more than
three points in general position, more than two coplanar points, two
points, and only one point (Figure 10). 1-dimensional convex hulls
occur around articulations, while 0-dimensional ones are associated
to dangling nodes. In our implementation the convex hull is com-
puted by means of the QHull library [6].

Algorithm 2 deals with the standard IP whose optimal solutions
give compatible cells. It sets up and solves the IP using the convex
hull representation of the regions. Simple modifications can be done
for the other three variants of the scaffold. We follow (5). Thus we
chose to have at least 4 points on each cell to guarantee at least quad-
rangular cross sections as in [4, 15, 21, 24, 26]. We set the threshold
for long arcs at 5π

6 (i.e δ = π

6 ), above which at least two subdivi-
sions must be done. In our implementation we solve the IP with the
branch-and-cut [11, Chapter 12] implementation in GLPK [19].

Input: The set of nodes VS and edges ES representing the skeleton,
along with Ev for each v 2 VS.

Output: The values xv
f representing the number of subdivisions for

each arc that gives compatible cells.

1 Initialize the linear program IP;
2 foreach node v 2 VS, and edge f 2 Ev do
3 Add integer variable xv

f to IP;

4 if the arc associated to xv
f has length <

5π

6 εv then
5 Add restriction xv

f � 1 to IP;
6 else
7 Add restriction xv

f � 2 to IP;
8 foreach pair (v;e) with v 2 VS; e 2 ES and e( v do
9 Add following restriction to IP ∑

f2Ev
f((e\Sv)

xv
f � 4;

10 foreach edge e = ab 2 ES do
11 Add following restriction to IP ∑

g2Ea
g((e\Sv)

xa
g = ∑

h2Eb
h((e\Sv)

xb
h;

12 Define objective function ∑v2(VS�LS)∑ f2Ev
2xv

f +∑v2LS ∑ f2Ev
xv

f for
IP;

13 Solve IP by minimizing the objective function.

Algorithm 2: Compute subdivisions for compatible cells.

Algorithm 3 computes the cells from the subdivision numbers and
the convex hull representation of the Voronoi diagram, and such it
must handle the different cases of the convex hulls (see Figure 10).

The heuristic for the linking process (Step 3) is described in Al-
gorithm 4, from which the resulting quads are defined. It defines the
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Input: Nodes VS and edges ES of the skeleton, Ev;Hv and the
subdivision numbers xv

f .
Output: A list C of compatible cells for the scaffold.

1 C  emptyList();
2 foreach v 2 VS do
3 if Hv is 3-dimensional then

/* at least 4 not coplanar nodes */
4 foreach node ne in Hv do /* ne = e\Sv for e( v */
5 Cv

e  emptyList();
6 foreach f ( (e\Sv) do
7 Let F1;F2 be the two faces in Hv that have common

boundary f ;
8 Compute the outward pointing unit normals N1;N2 of

F1;F2 respectively;
9 Compute xv

f +1 points in the arc from v+N1 to
v+N2 going perpendicularly to f on Sv;

10 Add the points to Cv
e avoiding repetitions;

11 Add Cv
e to C ;

12 if Hv is 2-dimensional then
/* at least 3 nodes, all coplanar */

13 Let N1;N2 be the two unit normals of the plane supporting
Hv;

14 foreach node ne in Hv do /* ne = e\Sv for e( v */
15 Cv

e  emptyList();
16 Let f ;g be the two edges incidents to ne;
17 Compute xv

f +1 points in the arc from v+N1 to v+N2

going perpendicularly to f on Sv;
18 Compute xv

g +1 points in the arc from v+N1 to v+N2

going perpendicularly to g on Sv;
19 Add the points to Cv

e avoiding repetitions;
20 Add Cv

e to C ;
21 if Hv is 1-dimensional then

/* only one edge and 2 nodes */
22 Let f be the unique edge in Ev;
23 Compute xv

f points in the circle with center v and
perpendicular to f on Sv;

24 Add the points to Cv
e ;

25 Add Cv
e to C ;

26 if Hv is 0-dimensional then
/* only one node */

27 Compute xv
νv

points in the great circle with center v and
perpendicular to e on Sv;

28 Add the points to Cv
e ;

29 Add Cv
e to C ;

30 return C
Algorithm 3: Construct compatible cells.

bijections (links) by minimizing the total length of the links (same
heuristic used in [4]).

Input: The set of compatible cells C = fCv
e j v 2 VS; e 2 ESg.

Output: The bijections φe between linked cells.

1 foreach edge e = ab 2 ES do
2 Order points in the cells Ca

e and Cb
e according to the angle around

the edge e;
3 Let Ca

e = hp0; p2; : : : ; pni and Ca
e = hq0;q2; : : : ;qni;

4 Dmin ∑
n
i=0 kpi�qik; k 0;

5 for j = 1 to n�1 do
6 D ∑

n
i=0 kpi�qi+ jk;

7 if D < Dmin then
8 Dmin D; k j;
9 Define bijection the φe as pi 7! qi+k;

/* i+ k is taken mod n */

Algorithm 4: Construct bijections between linked cells.

To better reflect the geometry of the model, and depending on the
application at hand, the position of points in the discretization of
each arc can be modified by a Laplacian smoothing [9] or another
heuristic. A global optimization could be further applied to take
into account the twisting of the quads around a chain of articulation
nodes (Figure 11). The challenge is in devising such a “better” po-
sitioning of points that also respects the symmetries of the skeleton.
An intrinsic solution using our method is to subdivide each arc twice
(or more) as shown in Figure 11.

An example of scaffold with different radii for the spheres at the
joints is shown in Figure 12. Note that the skeleton is symmetric as
well as the scaffold, hence the values of the radii are also symmetric.

(a) (b)

Figure 11: In a chain of articulations the scaffold might have a twist-
ing behavior: (a) and (b) – different views of the same model; top
row – the skeleton; middle row – the standard scaffold; and bottom
row – the scaffold with extra subdivisions. Note how in the bottom
row the twisting behavior of the quads is diminished.

Symmetric and regular scaffolds Regular scaffolds can be ob-
tained with the algorithms described above, a simple variation of
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(a) (b)

Figure 12: A scaffold with different radii for the spheres at the joints:
(a) the original scaffold, (b) the scaffold with varying radii.

Algorithm 2 is needed in order to account for the restrictions given
in (15). Similarly, for symmetric scaffolds we need to add the ex-
tra restrictions in (9), taking special care with the definition of links
(Algorithm 4). Dangling nodes or articulations fixed by the skele-
ton symmetries might present issues if the linking is naively done.
In our implementation we modify Algorithm 4 such that the links
are propagated from one edge to its symmetric ones. The cells of
dangling nodes are computed by projecting the linked cells onto the
plane perpendicular to the incident edge (of the dangling nodes).
This guarantees that the links respect the symmetries.

Linear system simplification The IP in Algorithm 2 can be sim-
plified by removing variables and equations relative to dangling
nodes. The equations in a chain of articulations can be merged into
one equation relating the extremal cells of the chain, removing the
variables relative to intermediate articulations. In Figure 13 we il-
lustrate the simplification cases.

Remove
equation

Merge and
remove
equation

Merge into
one equation

Merge into
one equation

Figure 13: Simplification of the equations in the IP.

The general complexity of our method is bounded by the IP solver
algorithm, which theoretically is NP-complete [17]. In practice, as
usual with Linear Programming, the solver behaves well. The con-
vex hull implementation has average complexity n logn, with n the
number of skeleton edges. In Table 2 we show a summary of the
running time of our method for some examples. It illustrates the
general relation between the total time and the time spent in solving
the IP. The reported times are averages of 200 runs.

Our Python implementation is not optimal but versatile. It gener-
ates the IP problem file and call GLPK [19] (in particular the utility

Total IP Other Total IP Other

Fig. 9a 133 14 119 Fig. 9b 142 19 123
Fig. 6b 55 12 43 Fig. 6c 55 12 43
Fig. 7b-top 16 4 12 Fig. 7c-top 24 4 20
Fig. 7b-mid 29 6 23 Fig. 7c-mid 37 7 30
Fig. 7b-bot 44 7 37 Fig. 7c-bot 51 6 45

Table 2: Running time (in milliseconds) of our implementation.
Columns: Total – total running time, IP – time for finding the IP
solution, Other – rest of the time.

glpsol) to solve the IP. QHull [6] is also called as an external
utility and has a negligible running time. Better timings should be
expected from a production-ready C++ implementation with direct
linking to GLPK and QHull libraries.

6 Further simplifications of the scaffold
As we discussed in Section 3, the minimal number of points for
each cell can be set to three. This decreases the number of quads in
the final scaffold and might generate triangular cross-sections along
some skeleton edges. In Figure 14 we recompute the example in
Figure 1a with the new lower bounds, this decreases the number of
quads in the standard scaffold from 192 to 144.

Table 3 summarizes the number of quads and vertices per valency
of some of the scaffolds in this paper, all of which are optimally
computed with our implementation. It shows that the symmetric
scaffolds on Figure 4 and 6 are also optimal standard scaffolds.

v3 v4 v6 tquads v3 v4 v6 tquads

Fig. 14 * * 96 144 Fig. 6b 18 33 14 63
Fig. 1a * 48 96 192 Fig. 6c 18 33 14 63
Fig. 1b * 120 * 120 Fig. 16b 48 66 12 108
Fig. 1c * 72 * 72 Fig. 16c 96 150 12 216
Fig. 1d * 72 * 72 Fig. 16d 192 318 12 432
Fig. 4a-b 24 8 4 24 Fig. 16e 384 654 12 864

Table 3: Summary of some scaffolds in the paper. Columns: vk –
number of vertices with valency k, tquads – total number of quads.
The entries � mean zero.

Figure 14: Example of a scaffold constructed with 3 as minimal
number of points on each cell. Compare with Figure 1a.

Another simplification arises by noticing that any partition of the
sphere with an inscribable dual gives feasible solutions for the IPs.
Thus the computation of Voronoi regions can be modified by chang-
ing the minimal angle for which two triangles sharing an edge in
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the convex hull are considered to be coplanar. In our experience,
this helps to reduce the complexity of the cells around joints and
in general reduces (even more) the number of quads needed to con-
struct a scaffold. As an example, in Figure 15 four close-to-coplanar
points can be considered coplanar, yielding compatible cells with
less points (hence less quads). On the other hand, due to round-
off errors coplanar points may appear as not coplanar. This issue
provokes that very small arcs appear on the boundary of Voronoi re-
gions, consequently some quads may look like triangles at a large
scale (Figure 15b).

(a)

(b)

Figure 15: Close-to-coplanar points can be treated as coplanar as
a way to improve the scaffold. In the picture the four intersection
points in the joint are not coplanar. In (a) they are treated as coplanar
points, in (b) the exact Voronoi regions (and cells) are computed.

7 Application to polygonization
In this paper we focus on the feasibility of the scaffold construc-
tion, including the symmetric and regular variants. The scaffold is
in most applications an intermediate step [4, 5, 7, 15, 16, 23, 24, 26].
Although we present theoretical results and practical algorithms we
also want to showcase an example application.

Polygonization of implicit surfaces is usually done with March-
ing Cubes algorithm [18] or one of its variants [25, Chapter 2].
For computer graphics applications quad-dominant meshes are more
desirable and this requires a re-meshing of the standard triangular
meshes obtained with the Marching Cubes algorithms [9, Section
6.6]. For articulated models, it is a good improvement if the quad
mesh follows the structure of the skeleton. A scaffolding technique
can be used to bypass the re-meshing process and get directly a
quad-dominant mesh that follows the skeleton.

Figure 16 shows a mesh computed with our scaffolding technique.
The implicit surface (Figure 16a) is a convolution surface [27] for
which a scaffold is computed with a higher number of subdivisions
for each arc: multiplying the standard solution by an integer κ > 0
that also defines the number of quads along a segment. To obtain the
surface mesh we project the scaffold quads onto the surface. This
is done by ray-shooting: compute the intersection with the surface

of rays emanating from the skeleton in the direction given by quad
vertices. A similar projection was done in [1], the main difference
with our approach is that the mesh we project (scaffold) is computed
for the whole skeleton while in [1] a fixed set of meshes is defined
for each line segment. At the tips of dangling nodes, the quads are
computed by creating a polar-annular region with a singular point
(as done in [4]). The polar-annular meshes transform all valency 3
vertices on the boundary of the scaffold mesh into valency 4 vertices
at the cost of having an extra high valency vertex per dangling node.

8 Conclusions

We presented a method to construct a coarse quad-dominant mesh
around a skeleton made of line segments that can serve as interme-
diate step in several applications. The mesh follows the structure
of the skeleton and is computed in an optimal way, minimizing the
total number of quads. Our method works for any skeleton even in
the presence of cycles. We modeled the problem as an Integer Lin-
ear Program and proved its feasibility. We presented variants of our
method: we can generate a mesh with the same number of quads
around each line segment, or a mesh with the same symmetries as
the underlying skeleton. It is also possible to satisfy both conditions
at the same time. The scaffold thus obtained can be used to polygo-
nize implicit surfaces around the skeleton or as an intermediate step
in other applications. Our method overcomes some limitations of,
and add extra features to, previous work. The algorithmic descrip-
tion of each step gives a basis on which multiple implementations
can be developed.
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