
Linear-time geometric algorithm for evaluating Bézier curves

Paweł Woźny∗, Filip Chudy

Institute of Computer Science, University of Wrocław, ul. Joliot-Curie 15, 50-383 Wrocław, Poland

Abstract

A new algorithm for computing a point on a polynomial or rational curve in Bézier form is
proposed. The method has a geometric interpretation and uses only convex combinations
of control points. The new algorithm’s computational complexity is linear with respect to
the number of control points and its memory complexity is O(1). Some remarks on similar
methods for surfaces in rectangular and triangular Bézier form are also given.

Keywords: Bernstein polynomials; Bézier curves; Bézier surfaces; Convex hull property;
Geometric algorithms; Linear complexity.

1. Introduction

Let bk : D → R (k = 0, 1, . . . , N ; N ∈ N) be
real-valued multivariable functions such that

bk(t) ≥ 0,
N∑
k=0

bk(t) ≡ 1 (1.1)

for t ∈ C ⊆ D.
Let us define the rational parametric object

SN : C → Ed (d ∈ N) by

SN (t) :=

N∑
k=0

ωkWkbk(t)

N∑
k=0

ωkbk(t)

(1.2)

with the weights ωk > 0, and control points
Wk ∈ Ed (0 ≤ k ≤ N). If ω0 = ω1 = . . . =
ωN , then

SN (t) =
N∑
k=0

Wkbk(t).

∗Corresponding author. Fax +48 71 3757801
Email addresses: Pawel.Wozny@cs.uni.wroc.pl

(Paweł Woźny), Filip.Chudy@cs.uni.wroc.pl (Filip
Chudy)

In the sequel, we prove that for a given t ∈
C, the point SN (t) ∈ Ed can be computed by
Algorithm 1.1.

Algorithm 1.1 Computation of SN (t)

1: procedure GenAlg(N, t, ω,W)
2: h0 ← 1
3: Q0 ←W0

4: for k ← 1, N do

5: hk ←
(
1 +

ωk−1bk−1(t)
hk−1ωkbk(t)

)−1

6: Qk ← (1− hk)Qk−1 + hkWk

7: end for
8: return QN

9: end procedure

Remark 1.1. Let us fix t ∈ C. Suppose that
there exists 1 ≤ k ≤ N such that bk(t) = 0.
Then one has the division by 0 in the line 5
of Algorithm 1.1. Such special cases should
be considered separately. Observe that it is
always possible because at least for one 0 ≤
j ≤ N we have bj(t) > 0 (cf. (1.1)).

Theorem 1.2. The quantities hk and Qk
(0 ≤ k ≤ N) computed by Algorithm 1.1 have

Preprint submitted to Elsevier June 20, 2019

ar
X

iv
:1

80
3.

06
84

3v
4 

 [
cs

.N
A

] 
 1

9 
Ju

n 
20

19



the following properties:

a) hk ∈ [0, 1],

b) Qk ∈ Ed,

c) Qk ∈ Ck ≡ conv{W0,W1, . . . ,Wk} (i.e.,
conv{Q0,Q1, . . . ,Qk} ⊆ Ck).

Moreover, SN (t) = QN .

Proof. Let us define

hk :=
ωkbk(t)
k∑

j=0

ωjbj(t)

, Qk :=

k∑
j=0

ωjWjbj(t)

k∑
j=0

ωjbj(t)

(k = 0, 1, . . . , N).
It is clear that hk ∈ [0, 1], Qk ∈ Ed for 0 ≤

k ≤ N , h0 = 1, W0 = Q0, and SN (t) = QN .
Certainly,

Qk ∈ conv{W0,W1, . . . ,Wk} (0 ≤ k ≤ N).

To end the proof, it is enough to check that:{
(1− hk)Qk−1 + hkWk = Qk,

ωkbk(t)h
−1
k = ωk−1bk−1(t)h

−1
k−1 + ωkbk(t)

for 1 ≤ k ≤ N (cf. lines 5, 6 in Algorithm 1.1).

Let us notice that Algorithm 1.1 has a geo-
metric interpretation, uses only convex combi-
nations of control points of SN and has linear
complexity with respect to N — under the
assumption that all quotients of two consec-
utive basis functions can be computed in the
total time O(N).

Remark 1.3. It may be worth mentioning
that

1− hk =
hk
hk−1

ωk−1bk−1(t)

ωkbk(t)
(1.3)

for 1 ≤ k ≤ N . Using this simple relation,
one can propose a subtraction-free version of
Algorithm 1.1. Such formulation can be im-
portant for numerical reasons (cf. the problem
of cancellation of digits; see, e.g., [2, §2.3.4]).

We use relation (1.3) in the proof of the
following theorem which shows an important
property of Algorithm 1.1.

Theorem 1.4. Let us fix t,u ∈ C. Assume
that the numbers hk (1 ≤ k ≤ N) computed
by Algorithm 1.1 are non-zero. Suppose that

bk(t)

bk+1(t)
≤ bk(u)

bk+1(u)
(0 ≤ k ≤ N − 1).

Then the point SN (u) ∈ Ed is in the convex
hull of the points Q0,Q1, . . . ,QN computed by
Algorithm 1.1.

Proof. Let the numbers hk and the points Qk

(0 ≤ k ≤ N) be computed by Algorithm 1.1
for a fixed t ∈ C.

Using relation (1.3) and the assumption
that hk 6= 0 (1 ≤ k ≤ N), observe that

Wk = h−1
k Qk − h−1

k−1

ωk−1bk−1(t)

ωkbk(t)
Qk−1

for 1 ≤ k ≤ N . Thus, after simple algebra,
we obtain

SN (u) = DN (u)−1

(
ωN

hN
bN (u) · QN

+
N−1∑
k=0

ωk

hk
bk(u)

(
1− bk(t)bk+1(u)

bk+1(t)bk(u)

)
· Qk

)
,

where DN (u) :=
∑N

k=0 ωkbk(u) > 0.
Now, from our assumptions, it easily fol-

lows that the point SN (u) belongs to the set
conv{Q0,Q1, . . . ,QN}, because the hk (0 ≤
k ≤ N) are positive (cf. Theorem 1.2).

The main aim of this article is to use the
presented results to propose a new method
for evaluating a polynomial or rational Bézier
curve, which has a geometric interpretation,
linear complexity with respect to the num-
ber of control points, good numerical proper-
ties and computes only convex combinations
of points from Ed. See Section 2.

A similar approach can also be used for the
evaluation of polynomial and rational tensor-
product, as well as triangular, Bézier surfaces.

2



Some remarks on this issue are given, without
technical details and rigorous algorithms, in
Section 3.

2. New algorithm for evaluating Bézier
curves

Let there be given points W0,W1, . . . ,Wn ∈
Ed (n, d ∈ N). Let us consider the (polyno-
mial) Bézier curve of the form

Pn(t) :=
n∑

k=0

WkB
n
k (t) (t ∈ [0, 1]), (2.1)

where Bn
k is the kth Bernstein polynomial of

degree n,

Bn
k (t) :=

(
n

k

)
tk(1− t)n−k (0 ≤ k ≤ n).

(2.2)
For a given t ∈ [0, 1], the point Pn(t) ∈ Ed

can be computed by famous the de Castel-
jau algorithm (see, e.g., [3, §4.2] and Ap-
pendix), which has good numerical proper-
ties, a simple geometric interpretation and
computes only convex combinations of con-
trol points Wk (0 ≤ k ≤ n). However, the
computational complexity of this method is
O(dn2), which makes it quite expensive.

Probably, the fastest way to compute the
coordinates of the point Pn(t) ∈ Ed is to use
the algorithm proposed in [5] for evaluating a
polynomial p given in the form

p(t) :=
n∑

k=0

pkt
k(1− t)n−k (pk ∈ R)

d times (once for each dimension). This
method has O(dn) computational complex-
ity and O(1) memory complexity. It uses
the concept of Horner’s rule (see, e.g., [2,
Eq. (1.2.2)]).

Note that some other methods for evaluat-
ing a Bézier curve are also known. See, e.g.,
[1] or [4], where the case of Bézier surfaces was
also studied (cf. Section 3), and papers cited
therein.

Let Rn be a rational Bézier curve in Ed,

Rn(t) :=

n∑
k=0

ωkWkB
n
k (t)

n∑
k=0

ωkB
n
k (t)

(t ∈ [0, 1]) (2.3)

with the weights ω0, ω1, . . . , ωn ∈ R+. To
compute the point Rn(t) ∈ Ed for a given
t ∈ [0, 1], one can use the rational de Casteljau
algorithm (see, e.g., [3, §13.2] and Appendix),
which also has O(dn2) computational com-
plexity, good numerical properties, a geomet-
ric interpretation and computes only convex
combinations of the control points Wk (0 ≤
k ≤ n), or use the idea from [5], which leads to
linear-time method at the cost of losing some
geometric properties.

The main purpose of this section is to pro-
pose a new efficient method for computing
a point on a Bézier curve and on a rational
Bézier curve. The given algorithm has:

a) a geometric interpretation,
b) quite good numerical properties, i.e.,

they are safe for floating-point computa-
tions,

c) linear computational complexity, i.e.,
O(dn), and O(1) memory complexity,

and computes only
d) convex combinations of control points.

As we show later, the new method combines
the advantages of de Casteljau algorithms and
the low complexity of methods based on [5].

2.1. New method
Let Rn be the rational Bézier curve (2.3).

Let us fix: a parameter t ∈ [0, 1], a natu-
ral number n, weights ω0, ω1, . . . , ωn > 0 and
control points W0,W1, . . . ,Wn ∈ Ed (d ∈ N).

Let the quantities hk and Qk (0 ≤ k ≤ n)
be computed recursively by formulas

h0 := 1, Q0 := W0,

hk :=
ωkhk−1t(n− k + 1)

ωk−1k(1− t) + ωkhk−1t(n− k + 1)
,

Qk := (1− hk)Qk−1 + hkWk

(2.4)

3



for k = 1, 2, . . . , n.

Theorem 2.1. For all k = 0, 1, . . . , n, the
quantities hk and Qk satisfy:

a) hk ∈ [0, 1],

b) Qk ∈ Ed,

c) Qk ∈ Ck ≡ conv{W0,W1, . . . ,Wk} (i.e.,
conv{Q0,Q1, . . . ,Qk} ⊆ Ck).

Moreover, we have Rn(t) = Qn.

Proof. The proof goes in a similar way to
that of Theorem 1.2, where N := n, bk(t) :=
Bn

k (t).
Note that this method is robust — special

cases t = 0 and t = 1 do not cause division by
zero (cf. Remark 1.1) and yield W0 and Wn,
respectively.

In each step of the new method, the point
Qk, which is a convex combination of points
Qk−1 and Wk, is computed. The last point Qn

is equal to the point Rn(t). Thus, we obtain
the new linear-time geometric algorithm for
computing a point on a rational Bézier curve
which computes only convex combinations of
control points. For efficient implementations,
see Section 2.2.

Note that if all weights ωk are equal then
Qn = Pn(t) (cf. (2.1)) — the new method can
also be used to evaluate a polynomial Bézier
curve.

Figure 2.1 illustrates the new method in
case of a planar polynomial Bézier curve of
degree n = 5.

Using Theorem 1.4, one can prove the fol-
lowing result which tells even more about ge-
ometric properties of the new method.

Theorem 2.2. Let the numbers hk and the
points Qk (0 ≤ k ≤ n) be computed by (2.4)
for a given 0 ≤ t ≤ 1. The point Rn(u), where
u ∈ [0, 1], is in the convex hull of the points
Q0,Q1, . . . ,Qn if and only if u ≤ t. It means
that

Rn([0, u]) ⊂ conv{Q0,Q1, . . . ,Qn} (u ≤ t).

Let us notice that the proposed method can
also be used for the subdivision of Bézier curve
(cf., e.g., [3, §5.4]). For example, let us fix
u ∈ (0, 1), it is well-known that the points

Vk :=

k∑
j=0

Bk
j (u)Wj (0 ≤ k ≤ n)

are the control points of the polynomial Bézier
curve PL

n being the left part of the Bézier curve
(2.1) with t ∈ [0, u]. One can check that

Vk =
k∑

j=0

h−1
j

n− k

n− j
Bk

j (u)Qj (0 ≤ k ≤ n−1),

Vn = Qn, where the numbers hj and the
points Qj (0 ≤ j ≤ n) are computed using
(2.4) with t := u, ω0 = ω1 = . . . = ωn := 1.

2.2. Implementation and cost
Let us give efficient and numerically safe

implementations of the new method which
have O(dn) computational complexity and
O(1) memory complexity.

Algorithm 2.1 First implementation
1: procedure NewRatBEval1(n, t, ω,W)
2: h← 1
3: u← 1− t
4: n1 ← n+ 1
5: Q←W0

6: for k ← 1, n do
7: h← h · t · (n1 − k) · ωk

8: h← h/(k · u · ωk−1 + h)
9: h1 ← 1− h

10: Q← h1 · Q + h ·Wk

11: end for
12: return Q
13: end procedure

The implementation provided in Algorithm
2.1 requires (3d+8)n+1 floating-point arith-
metic operations (flops) to compute a point
on a rational Bézier curve of degree n in Ed.

Algorithm 2.2 decreases the number of flops
to (3d+ 7)n+ 2. However, for numerical rea-
sons (cf. lines 7 and 15 in Algorithm 2.2), it

4



W0 = Q0

W1

W2

W3

W4

W5

Q1

Q2 Q3

Q4

Pn(t) = Q5

Figure 2.1: Computation of a point on a planar polynomial Bézier curve of degree n = 5 using the new method.

is necessary to use a conditional statement.
More precisely, one has to check whether t ∈
[0, 0.5] or t ∈ (0.5, 1], which can be easily
done (it is enough to check an exponent of
a floating-point number t).

Note that in the case of polynomial Bézier
curves (2.1), one only needs to set ωk := 1
(0 ≤ k ≤ n) in the given algorithms, thus sim-
plifying used formulas. Then the number of
flops is equal to (3d+6)n+1 in Algorithm 2.1
and (3d+ 5)n+ 2 in Algorithm 2.2.

The numbers of flops for the new algo-
rithms, as well as for de Casteljau algorithms
(see Appendix), which also have a geometric
interpretation and compute only convex com-
binations of control points, are given in Ta-
ble 2.1.

Example 2.3. Table 2.2 shows the compar-
ison between the running times of de Castel-
jau algorithm and Algorithm 2.2 both for
Bézier curves and rational Bézier curves (in
the case of Bézier curves, Algorithm 2.2 has
been simplified), for d ∈ {2, 3}. The re-

sults have been obtained on a computer with
Intel Core i5-2540M CPU at 2.60GHz pro-
cessor and 4GB RAM, using GNU C Compiler
7.4.0 (single precision).

More precisely, we made the following nu-
merical experiments. For a fixed n, 10000
curves of degree n are generated. Their con-
trol points Wk ∈ [−1, 1]d and—in the rational
case—weights ωk ∈ [0.01, 1] (0 ≤ k ≤ n) have
been generated using the rand() C function.
Each curve is then evaluated at 501 points
ti := i/500 (0 ≤ i ≤ 500). Each algorithm is
tested using the same curves. Table 2.2 shows
the total running time of all 501×10000 eval-
uations.

Observe that in the case of Bézier curves,
the quantities h, which are computed in the
new algorithms, do not depend on the control
points. One can use this fact in the fast eval-
uation of M Bézier curves of the same degree
n for the same value of the parameter t. Such
a method requires (3dM +5)n+2 flops while
the direct use of the de Casteljau algorithm

5



new method
(cf. Alg. 2.2)

de Casteljau
(cf. Appendix)

Bézier curve in total (3d+ 5)n+ 2
3dn(n+ 1)

2
+ 1

add/sub (d+ 2)n+ 1
dn(n+ 1)

2
+ 1

mult 2(d+ 1)n dn(n+ 1)

div n+ 1 0

rational Bézier
curve

in total (3d+ 7)n+ 2
(3d+ 5)n(n+ 1)

2
+ 1

add/sub (d+ 2)n+ 1
(d+ 2)n(n+ 1)

2
+ 1

mult 2(d+ 2)n (d+ 1)n(n+ 1)

div n+ 1
n(n+ 1)

2

Table 2.1: Numbers of flops.

means that all computations have to be re-
peated M times, i.e., the number of flops is
equal to 3Mdn(n+ 1)/2 + 1.

Remark 2.4. In rather rare cases (hk ≈
1), the problem of cancellation of digits ([2,
§2.3.4]) can occur while 1 − hk is computed
(cf. h1 in Algorithms 2.1, 2.2). One can avoid
this problem using the relation

1− hk =
hk
hk−1

ωk−1k(1− t)

ωkt(n− k + 1)
(1 ≤ k ≤ n),

if computations with high accuracy are neces-
sary.

3. Remarks on evaluation of Bézier sur-
faces

The method of evaluation described in Sec-
tion 1 can also be applied to the rational rect-
angular and triangular Bézier surfaces.

Let Smn : [0, 1]2 → Ed (m,n, d ∈ N) be a
rational rectangular Bézier surface with the
control points Wij ∈ Ed and weights ωij > 0
(0 ≤ i ≤ m, 0 ≤ j ≤ n),

Smn(s, t) :=

m∑
i=0

n∑
j=0

ωijWijB
m
i (s)Bn

j (t)

m∑
i=0

n∑
j=0

ωijB
m
i (s)Bn

j (t)

.

Define T := {(s, t) : s, t ≥ 0, 1− s− t ≥ 0}.
Let there be given the control points Vij ∈ Ed

and positive weights vij (0 ≤ i + j ≤ n). Let
Bn

ij denotes the triangular Bernstein polyno-
mials,

Bn
ij(s, t) :=

n!

i!j!(n− i− j)!
sitj(1−s−t)n−i−j ,

where 0 ≤ i+j ≤ n. Let us consider a rational
triangular Bézier surface Tn : T → Ed (n, d ∈

6



Bézier curve rational Bézier curve

n d new method
(cf. Alg. 2.2)

de Casteljau
(cf. Appendix)

new method
(cf. Alg. 2.2)

de Casteljau
(cf. Appendix)

1 2 2.654 2.603 2.672 2.685

3 2.660 2.626 2.675 2.713

2 2 2.760 2.694 2.773 2.846

3 2.751 2.753 2.784 2.938

3 2 2.848 2.854 2.872 3.070

3 2.842 2.930 2.889 3.316

4 2 2.954 3.028 2.989 3.380

3 2.927 3.120 2.997 3.853

5 2 3.017 3.238 3.094 3.868

3 3.015 3.334 3.111 4.279

6 2 3.113 3.551 3.203 4.201

3 3.064 3.566 3.215 4.768

10 2 3.468 4.447 3.593 6.549

3 3.466 4.995 3.599 7.634

15 2 3.830 6.194 4.057 10.979

3 3.878 7.495 4.070 12.977

20 2 4.241 8.461 4.527 17.261

3 4.284 10.910 4.543 20.482

Table 2.2: Running times comparison (in seconds) for Example 2.3. The source code in C which was used to
perform the tests is available at http://www.ii.uni.wroc.pl/~pwo/programs/new-Bezier-eval-main.c.

N) of the form

Tn(s, t) :=

n∑
i=0

n−i∑
j=0

vijVijB
n
ij(s, t)

n∑
i=0

n−i∑
j=0

vijB
n
ij(s, t)

.

Both surface types are, in fact, rational
parametric objects (cf. (1.2)). Thus, one can
apply Algorithm 1.1 to propose the methods
which have geometric interpretations, com-
pute only convex combinations of points and

allow to evaluate Bézier surfaces in linear
time with respect to the number of control
points, i.e., O(nm) in the rectangular case
and O(n2) in the triangular case. To do so,
it is necessary to rearrange the sets of con-
trol points, corresponding weights and basis
functions (cf. (1.1)) into one-dimensional se-
quences — but since the method is agnostic
of the ordering, the chosen ordering is only
a matter of preference. Taking into account
that the computations can be performed in
many ways, we do not present rigorous algo-

7



Algorithm 2.2 Second implementation
1: procedure NewRatBEval2(n, t, ω,W)
2: h← 1
3: u← 1− t
4: n1 ← n+ 1
5: Q←W0

6: if t ≤ 0.5 then
7: u← t/u
8: for k ← 1, n do
9: h← h · u · (n1 − k) · ωk

10: h← h/(k · ωk−1 + h)
11: h1 ← 1− h
12: Q← h1 · Q + h ·Wk

13: end for
14: else
15: u← u/t
16: for k ← 1, n do
17: h← h · (n1 − k) · ωk

18: h← h/(k · u · ωk−1 + h)
19: h1 ← 1− h
20: Q← h1 · Q + h ·Wk

21: end for
22: end if
23: return Q
24: end procedure

rithms and we pass some technical details.
In this section, to present a concise formula-

tion of the methods, we choose the row-by-row
order. For the reader’s convenience, the ana-
logues of quantities hk and points Qk from Al-
gorithm 1.1 have two indices instead, to cor-
respond with the surfaces’ structure.

3.1. Rational rectangular Bézier surfaces
Let Smn (m,n ∈ N) be a rational rectan-

gular Bézier surface with the weights ωij and
control points Wij (0 ≤ i ≤ m, 0 ≤ j ≤ n).

In this case, one can interpret the set of con-
trol points as a rectangular grid having m+1
rows with n + 1 points in each row. We set
the sequence of control points so that:

• the sequence begins with W00,

• Wi,j−1 is followed by Wij (0 ≤ i ≤
m, 1 ≤ j ≤ n),

• Wi−1,n is followed by Wi0 (1 ≤ i ≤ m).

In a similar way, we set the sequences of
weights ωij and basis functions Bm

i (s)Bn
j (t)

(0 ≤ i ≤ m, 0 ≤ j ≤ n).
It is well-known that if (s, t) belongs to

the boundary of the square [0, 1]2 then the
point Smn(s, t) lies on the boundary ratio-
nal Bézier curve with boundary control points
and weights. Thus, the method described in
Section 2.1 can be used in this case.

Let us fix (s, t) ∈ (0, 1)2. Now, based on Al-
gorithm 1.1, we define the sequences of quan-
tities hij and points Qij ∈ Ed (0 ≤ i ≤ m, 0 ≤
j ≤ n)—determined in the order described
above—in the following recurrent way:

hij :=



1 (i = j = 0),(
1 +

iωi−1,n(1− s)tn

miωi0hi−1,ns(1− t)n

)−1

(i 6= 0, j = 0),(
1 +

jωi,j−1(1− t)
njωijhi,j−1t

)−1

(otherwise),

Qij :=



W00 (i = j = 0),

(1− hi0)Qi−1,n + hi0Wi0

(i 6= 0, j = 0),

(1− hij)Qi,j−1 + hijWij

(otherwise),

where 0 ≤ i ≤ m, 0 ≤ j ≤ n, and mi :=
m− i+ 1, nj := n− j + 1.

Theorem 1.2 implies that Smn(s, t) = Qmn.

3.2. Rational triangular Bézier surfaces
Suppose Tn (n ∈ N) is a rational triangular

Bézier surface associated with the weights vij
and control points Vij (0 ≤ i+ j ≤ n).

The method described below is analogous
to the one for rectangular Bézier surfaces.
The main difference is that, in this case, the
set of the control points can be seen as a
triangular grid, i.e., the number of control
points in each row depends on the row num-
ber. Namely, there are n− i+1 points in the

8



ith row (0 ≤ i ≤ n) of this triangular grid.
We choose the following ordering of control
points:

• the sequence begins with V00,

• Vi,j−1 is followed by Vij (0 ≤ i ≤ n −
1, 1 ≤ j ≤ n− i),

• Vi−1,n−i+1 is followed by Vi0 (1 ≤ i ≤ n).

We set the sequences of weights vij and basis
functions Bn

ij(s, t) (0 ≤ i+ j ≤ n) in the same
way.

Assume (s, t) is on the boundary of the tri-
angle T . Then the point Tn(s, t) lies on the
boundary rational Bézier curve having known
control points and weights and, again, one
can compute this point using the method pre-
sented in Section 2.1.

Let us fix a point (s, t) inside the triangle T .
Similarly, based on Algorithm 1.1, we intro-
duce the sequences of quantities gij and points
Uij ∈ Ed (0 ≤ i+ j ≤ n), which are computed
in the order described above, by the following
recurrent formulas:

gij :=



1 (i = j = 0),(
1 +

ivi−1,n−i+1t
n−i+1

nivi0gi−1,n−i+1sr
n−i

)−1

(i 6= 0, j = 0),(
1 +

jvi,j−1r
ni+jvijgi,j−1t

)−1

(otherwise),

Uij :=



V00 (i = j = 0),

(1− gi0)Ui−1,n−i+1 + gi0Vi0

(i 6= 0, j = 0),

(1− gij)Ui,j−1 + gijVij

(otherwise),

where 0 ≤ i ≤ n, 0 ≤ j ≤ n − i, and r :=
1− s− t, nl := n− l + 1.

Then Tn(s, t) = Un0, which follows from
Theorem 1.2.

Appendix. Implementations of de Ca-
steljau algorithms for Bézier curves

For the reader’s convenience, let us also
present efficient implementations of de Castel-
jau algorithms which have O(n) memory com-
plexity. See Algorithms A.1 and A.2 (cf., e.g.,
[3]). The numbers of flops for these methods
are given in Table 2.1.

Algorithm A.1 De Casteljau algorithm
1: procedure BEval(n, t,W)
2: t1 ← 1− t
3: for i← 0, n do
4: Qi ←Wi

5: end for
6: for k ← 1, n do
7: for i← 0, n− k do
8: Qi ← t1 · Qi + t · Qi+1

9: end for
10: end for
11: return Q0

12: end procedure

Algorithm A.2 Rational de Casteljau algo-
rithm

1: procedure RatBEval(n, t, ω,W)
2: t1 ← 1− t
3: for i← 0, n do
4: wi ← ωi

5: Qi ←Wi

6: end for
7: for k ← 1, n do
8: for i← 0, n− k do
9: u← t1 · wi

10: v ← t · wi+1

11: wi ← u+ v
12: u← u/wi

13: v ← 1− u
14: Qi ← u · Qi + v · Qi+1

15: end for
16: end for
17: return Q0

18: end procedure

9



References

[1] L. Bezerra, Efficient computation of Bé-
zier curves from their Bernstein-Fourier
representation, Applied Mathematics and
Computation 220 (2013) 235–238.

[2] G. Dahlquist, Å. Björck, Numerical meth-
ods in scientific computing. Vol. I, SIAM,
Philadelphia, 2008.

[3] G. Farin, Curves and surfaces for com-
puter-aided geometric design. A practical
guide, 5th ed., Academic Press, Boston,
2002.

[4] J. Peters, Evaluation and approximate
evaluation of the multivariate Bernstein-
Bézier form on a regularly partitioned sim-
plex, ACM Transactions on Mathematical
Software (TOMS) 20 (4) (1994) 460–480.

[5] L. Schumaker, W. Volk, Efficient evalu-
ation of multivariate polynomials, Com-
puter Aided Geometric Design 3 (1986)
149–154.

10


	1 Introduction
	2 New algorithm for evaluating Bézier curves
	2.1 New method
	2.2 Implementation and cost

	3 Remarks on evaluation of Bézier surfaces
	3.1 Rational rectangular Bézier surfaces
	3.2 Rational triangular Bézier surfaces


