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Abstract

Geometric predicates are a basic ingredient to implement a vast range of algorithms in computational geometry. Modern implemen-
tations employ floating point filtering techniques to combine efficiency and robustness, and state-of-the-art predicates are guaranteed
to be always exact while being only slightly slower than corresponding (inexact) floating point implementations. Unfortunately, if
the input to these predicates is an intermediate construction of an algorithm, its floating point representation may be affected by an
approximation error, and correctness is no longer guaranteed.

This paper introduces the concept of indirect geometric predicate: instead of taking the intermediate construction as an explicit input,
an indirect predicate considers the primitive geometric elements which are combined to produce such a construction. This makes it
possible to keep track of the floating point approximation, and thus to exploit efficient filters and expansion arithmetic to exactly
resolve the predicate with minimal overhead with respect to a naive floating point implementation. As a representative example, we
show how to extend standard predicates to the case of points of intersection of linear elements (i.e. lines and planes) and show that, on
classical problems, this approach outperforms state-of-the-art solutions based on lazy exact intermediate representations.

Keywords: Geometric predicates, Exact arithmetic, Filtering

1. Introduction

The study and design of computational geometry algorithms is
widely based on the so-called Real Arithmetic Model. Accord-
ing to that model, coordinates, lengths, angles, and many other
entities, are all considered real numbers, and the algorithm cor-
rectness is based on this assumption. Practical implementations,
however, are typically based on floating point (FP) arithmetic,
and the aforementioned entities are represented by FP numbers.
Floating point operations produce approximated results and, in
some cases, the mismatch with the theoretical exact result might
put the algorithm in an inconsistent state, cause infinite loops,
and lead to crashes [1] [2]. An easy solution to this problem is
to replace FP numbers with exact number types, but the conse-
quent slowdown is rarely acceptable for practical applications.
Geometric algorithms have the peculiar property that their flow
depends on the analysis of geometric entities and their configu-
ration, and geometric predicates are the basic building blocks to
perform such an analysis. Broadly speaking, a geometric pred-
icate is a function that maps a set of geometric entities to an
element of a (small) set of values. For example, the predicate
collinear maps a triplet of points to a value in the set {true,
false}, whereas the predicate orient2d maps a triplet of points
to a value in the set {left turn, collinear, right turn}. To
avoid inconsistencies, it is often essential that each predicate that
determines the program flow produces exact results.

Arithmetic filtering techniques (see Sect. 2.1) allow imple-
menting predicates so that they are always exact, while being
only slightly slower than a corresponding naive floating point
implementation [3]. These techniques are appropriate when the
predicate parameters are all input values and hence not computed
as intermediate constructions by the algorithm. Conversely, if
intermediate constructions are used as predicate parameters, an
approximation during their computation may corrupt the result
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of the predicate, independently of how cleverly it has been im-
plemented. Unfortunately, many useful algorithms require such
intermediate constructions, and for these cases state-of-the-art
robust solutions mostly rely on exact or lazy exact arithmetic
kernels, which are still significantly slower and more memory
intensive than floating point implementations.

In this paper, we show that most of these algorithms can be ro-
bustly implemented thanks to a novel concept of indirect geomet-
ric predicate. In particular, we show that the geometric construc-
tion itself can be filtered along with the predicate, thus leading
to provably robust algorithms which are comparable with naive
floating point implementations in terms of both performances
and memory footprint. The reference implementation and the
scripts to reproduce the results in the paper are provided in the ad-
ditional material and will be released as an open-source project.

2. Background and prior art

The majority of geometric predicates evaluate the sign of a
(homogeneous) polynomial, typically a matrix determinant. As
an example, the Cartesian 2D orientation of three points a, b, and
c corresponds to the sign of the determinant of the 2 × 2 matrix
whose rows are the vectors b−a and c−a. Instead of using exact
arithmetic everywhere, which is too slow, modern implementa-
tions use arithmetic filtering. These implementations evaluate
the polynomial sign using only FP arithmetic, but while keep-
ing track of the approximation error. If this error is large enough
to make the sign ambiguous (i.e. when the filter “fails”), they
switch to exact arithmetic. The idea is that the failure rate is low
enough to make the impact of exact arithmetic virtually negligi-
ble. Several approaches exist to bound the accumulated error. In
general, calculating a precise bound is slower but minimizes the
probability of filter failures. Conversely, conservatively approxi-
mating the bound is faster but less precise.
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2.1. Static, semi-static and dynamic filtering

Given an arithmetic expression involving a number of vari-
ables (e.g. the polynomial of a predicate), its evaluation using
FP arithmetic is subject to a roundoff error that depends on the
values assumed by the variables. This error can be bounded by
a constant threshold that, in turn, can be computed analytically
and initialized at compilation time. At runtime, if the magnitude
of the evaluated expression is larger than this threshold, its sign
is guaranteed to be correct. This approach is known as static fil-
tering [4], and the overhead with respect to a plain FP implemen-
tation is due to a simple comparison. Without any assumption on
the input, the threshold is typically too large and hence not really
useful in practice. Nonetheless, if all the potential input values
are known at the beginning of the program, the threshold can be
computed once for all and then used to filter all the calls to the
predicate.

Since the actual input to a predicate is typically made of points
which are close to each other, considering only these points to de-
rive a ”local” threshold leads to tighter error bounds and, hence,
to less filter failures. This approach is known as semi-static fil-
tering, and the overhead is due to a few additional operations to
compute the threshold at each predicate call [5].

Instead of computing an explicit threshold, interval arithmetic
can be used to tightly bound the exact result. Basically, the result
of any single operation is rounded by both excess and defect, thus
leading to an interval containing the exact result. All the opera-
tions accumulate these approximations into growing intervals. If
the interval representing the eventual result does not contain the
zero, then its sign is defined without ambiguity. This approach
is an example of dynamic filtering, and evaluating the predicate
in this way takes from three to eight times longer than plain FP
calculation [6].

It is often advantageous to use all these approaches in a cas-
caded multi-stage evaluation. Thus, the first attempt is based on
plain FP calculation, and a single additional comparison allows
implementing a static filter. If this filter fails, a few more compar-
isons (e.g. four for the orient2d predicate) allow implementing
a semi-static filter. If this filter also fails, the polynomial is re-
evaluated using interval arithmetic, which is the last attempt. As
mentioned above, the first (static) filter makes sense only if a
reasonably tight bound can be computed based on the input. In
general, the process may safely start from the semi static filter
while keeping the overhead reasonably small.

2.2. Exact and lazy exact evaluation

When all the filters fail, the predicate expression must be eval-
uated using exact arithmetic. State-of-the-art libraries allow, for
example, to represent intermediate results using rational num-
bers, thus without any loss of precision [7]. Also, polynomi-
als can be exactly evaluated by using arbitrary precision float-
ing point numbers [8] or so-called floating point expansions [9].
This latter approach is particularly efficient as it fully exploits
the floating point hardware. Shewchuck’s geometric predicates
[10] and Levy’s Geogram [11] exploit floating point expansions
and are nearly as efficient as plain FP implementations on classi-
cal test beds. At the time of writing, Geogram predicates can be
considered to represent the state of the art.

When intermediate constructions are used as input to a predi-
cate, current robust solutions are based on lazy exact evaluation
[12]. This is the approach adopted in CGAL’s Lazy Exact kernel:
any intermediate construction is symbolically represented by the
history of all the operations that combine input values to build
the construction [13]. Besides keeping track of the operations,

the construction is also approximately evaluated using interval
arithmetic [6]. Since predicate expressions are also evaluated us-
ing interval arithmetic, their parameters can be intermediate con-
structions whose intervals propagate throughout the predicate’s
expression evaluation. If the resulting interval contains the zero,
it means that the sign is ambiguous, and all the involved symbolic
representations are tracked back and explicitly evaluated using
exact arithmetic. The expectation is that in most of the cases in-
terval arithmetic is sufficiently precise to reach an unambiguous
conclusion, and hence exact evaluation is necessary only in a mi-
nority of the cases. Nonetheless, even in the ideal case where
exact arithmetic is never called into play, interval arithmetic can
be up to eight times slower than FP arithmetic [6], and keeping
track of the whole history has its own cost too.

Note that all the mechanisms described so far have been de-
signed to compensate for numerical imprecision. Nonetheless,
numerical imprecision is not the only source of ambiguity in ge-
ometric computation: many algorithms assume that their input is
in so-called general position and, if this is not the case, this pre-
condition needs to be simulated [14]. This is rather orthogonal to
compensating for numerical imprecision, and the two techniques
should be combined when necessary.

3. Geometric algorithm classification

Herewith, we classify geometric algorithms based on the num-
ber of steps that require intermediate constructions. There are al-
gorithms that have no such steps, that is, where all the predicates
depend directly on input values. Then, there are algorithms hav-
ing only one such step, where predicates depend either on input
values or on intermediate constructions that, in their turn, depend
directly on input values. And so on, up to arbitrarily complicated
algorithms with cascaded sequences of predicate evaluations and
intermediate constructions that mutually depend on each other.
Our key observation is that the vast majority of state-of-the-art
practical algorithms belong to the first two classes.

If S is a set of 2D points whose coordinates are FP numbers,
calculating their Delaunay triangulation amounts to repeatedly
evaluate orient2d and incircle predicates whose input are
points in S . Thus, this is a typical example of algorithm of
the first class. Other examples include calculating convex hulls,
Voronoi diagrams, surface interpolation, and many others.

If S is a set of 2D segments that possibly intersect, calculat-
ing the constrained Delaunay triangulation of their arrangement
is an example of algorithm of the second class. Indeed, the in-
tersection of two segments is an intermediate construction used
as input by the orient2d and incircle predicates. Other ex-
amples include the calculation of Minkowski sums [15], mesh
booleans [16], exact mesh repairing [17], and so on.

Current techniques allow combining robustness and efficiency
only for algorithms of the first class thanks to arithmetic filtering.
In this paper, we propose a novel approach to move forward and
include algorithms of the second class too, thus covering a much
wider subset of fundamental geometric algorithms.

4. Indirect geometric predicates

The core intuition behind our contribution is the following: if
the code to calculate the intermediate construction is included
in the predicate itself, arithmetic filtering may be applied to that
code as well, and the predicate can be evaluated using FP arith-
metic as long as the filter does not fail.
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When intermediate constructions are used as parameters for
a predicate, they are passed to the predicate in an unevaluated
form: in this case, we say that these parameters are implicit and
the predicate is indirect. An indirect predicate must accept at
least one implicit parameter, but may accept standard explicit pa-
rameters too. In the latter case, the parameter has an explicit
value and can be assumed to be exact (e.g. it is an input value or
the result of an operation that does not introduce approximation
errors). Conversely, in the former case the parameter is defined
as an unevaluated function of explicit values (e.g. the average
of input values). Since most geometric predicates have points as
parameters, we extend this terminology to points and say that an
explicit point is represented by its explicit coordinates, whereas
an implicit point is represented by a geometric construction over
explicit points (e.g. by the intersection of two lines, each defined
by two explicit points).

The idea is to rewrite the expression of an implicit parameter
i as a fraction λ/d where both the numerator λ and the denom-
inator d are polynomials. Then, any standard predicate can be
rewritten by substituting, in its own polynomial Λ, explicit pa-
rameters with polynomial fractions representing implicit param-
eters, thus reducing the whole predicate expression to another
polynomial fraction Λ′/D′. Evaluating the sign of such a frac-
tion amounts to evaluate the sign of both the numerator Λ′ and
denominator D′, and both can be done robustly and efficiently
through arithmetic filtering.

When an implicit parameter is a point, we derive a common
denominator for all the fractions representing its Cartesian co-
ordinates. Hence, an implicit point i = (ix, iy, iz) is rewritten as
i = (λix/di, λiy/di, λiz/di) or, using homogeneous coordinates, as
(λix, λiy, λiz, di).

Note that possible singular/degenerate configurations must be
detected and appropriately handled. Typically, this amounts to
check whether d becomes zero for each of the implicit input val-
ues.

In the following subsections, we show how to apply this trans-
formation to some non-trivial geometric constructions, and how
to apply them to fundamental geometric predicates.

4.1. Line-line intersections in 2D

Let p be an implicit 2D point defined as the intersection of two
lines la and lb, each defined by two points. Specifically, ea1 and
ea2 define la, whereas eb1 and eb2 define lb (Fig. 1-left). There-
fore:

p = (
λx

d
,
λy

d
)

where:

λx = (ea1xea2y − ea2xea1y)(eb1x − eb2x)+

− (eb1xeb2y − eb2xeb1y)(ea1x − ea2x)

λy = (ea1xea2y − ea2xea1y)(eb1y − eb2y)+

− (eb1xeb2y − eb2xeb1y)(ea1y − ea2y)

d = (ea1x − ea2x)(eb1y − eb2y) − (ea1y − ea2y)(eb1x − eb2x)

Note that p is undefined if d = 0, which happens if la and lb
are parallel or if either of the two point pairs is degenerate.

Figure 1: Implicit point examples. Left - line-line intersection: four explicit 2D
points define the implicit point p. Right - line-plane intersection: five explicit 3D
points define the implicit point p.

4.2. Line-plane intersections in 3D
Let p be an implicit 3D point defined as the intersection of a

straight line L and a plane Π, let L be defined by two points q1,
q2, and let Π be defined by three points r, s, t in the Euclidean
space (Fig. 1-right). Therefore:

p = (
λx

d
,
λy

d
,
λz

d
)

where

d =

∣∣∣∣∣∣∣∣
q1 − q2

s − r
t − r

∣∣∣∣∣∣∣∣ , n =

∣∣∣∣∣∣∣∣
q1 − r
s − r
t − r

∣∣∣∣∣∣∣∣
λx = dq1x + nq2x − nq1x

λy = dq1y + nq2y − nq1y

λz = dq1z + nq2z − nq1z

Note that p is undefined if d = 0, which happens if L and Π
are parallel, if q1 = q2, or if r, s, t are collinear or coincident.

4.3. orient2d
Let p1, p2, p3 be three points on the Euclidean plane. The

polynomial expression of the classical orient2d predicate is
Λ = det|p2 − p1; p3 − p1| = (p2x − p1x)(p3y − p1y) − (p2y −

p1y)(p3x − p1x). To start with, consider the simple case where
just one of the points is an intermediate construction. Let it be
p1, and let us assume that we are able to rewrite its Cartesian co-
ordinates as polynomial fractions (e.g. as described in Sect. 4.1).
Therefore:

p1x =
λx

d
, p1y =

λy

d
By substituting p1 with (λx/d, λy/d), we obtain Λ = (p2x −

λx/d)(p3y − λy/d) − (p2y − λy/d)(p3x − λx/d) = Λ′/D′, where
Λ′ = (dp2x −λx)(dp3y −λy)− (dp2y −λy)(dp3x −λx) and D′ = d2.
Since the denominator is a square, it can be safely dropped and
the sign is unambiguously defined by Λ′.

Now, let us consider the most generic case where all the three
points are intermediate constructions. We obtain:

p1x =
λ1x

d1
, p1y =

λ1y

d1

p2x =
λ2x

d2
, p2y =

λ2y

d2

p3x =
λ3x

d3
, p3y =

λ3y

d3

3



Where the λi and the di are computed as above. By substi-
tuting p1, p2, p3 with their corresponding fractions, we obtain
Λ = (λ2x/d2−λ1x/d1)(λ3y/d3−λ1y/d1)−(λ2y/d2−λ1y/d1)(λ3x/d3−

λ1x/d1) = Λ′/D′, where

Λ′ = (d1λ2x − d2λ1x)(d1λ3y − d3λ1y) − (d1λ2y − d2λ1y)(d1λ3x − d3λ1x)

D′ = d2
1d2d3.

4.4. incircle
Let p1, p2, p3, p4 be four points on the Euclidean plane. The

polynomial expression of the classical incircle predicate is the
following:

Λ =

∣∣∣∣∣∣∣∣
p1x − p4x p1y − p4y (p1x − p4x)2 + (p1y − p4y)2

p2x − p4x p2y − p4y (p2x − p4x)2 + (p2y − p4y)2

p3x − p4x p3y − p4y (p3x − p4x)2 + (p3y − p4y)2

∣∣∣∣∣∣∣∣
If each of the four points is implicitly defined, we can rewrite

this expression as:

Λ =

∣∣∣∣∣∣∣∣∣∣
λ1x
d1
−

λ4x
d4

λ1y

d1
−

λ4y

d4
( λ1x

d1
−

λ4x
d4

)2 + ( λ1y

d1
−

λ4y

d4
)2

λ2x
d2
−

λ4x
d4

λ2y

d2
−

λ4y

d4
( λ2x

d2
−

λ4x
d4

)2 + ( λ2y

d2
−

λ4y

d4
)2

λ3x
d3
−

λ4x
d4

λ3y

d3
−

λ4y

d4
( λ3x

d3
−

λ4x
d4

)2 + ( λ3y

d3
−

λ4y

d4
)2

∣∣∣∣∣∣∣∣∣∣
The common denominator to all the nine elements is D′ =

(d1d2d3d4)2. When none of the d’s is zero, the sign of Λ corre-
sponds to the sign of the following Λ′:

Λ′ =

∣∣∣∣∣∣∣∣
m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

∣∣∣∣∣∣∣∣
m1,1 = d1d2

4λ1x − d2
1d4λ4x

m1,2 = d1d2
4λ1y − d2

1d4λ4y

m1,3 = d2
4(λ2

1x + λ2
1y) + d2

1(λ2
4x + λ2

4y) − 2d1d4(λ1xλ4x + λ1yλ4y)

m2,1 = d2d2
4λ2x − d2

2d4λ4x

m2,2 = d2d2
4λ2y − d2

2d4λ4y

m2,3 = d2
4(λ2

2x + λ2
2y) + d2

2(λ2
4x + λ2

4y) − 2d2d4(λ2xλ4x + λ2yλ4y)

m3,1 = d3d2
4λ3x − d2

3d4λ4x

m3,2 = d3d2
4λ3y − d2

3d4λ4y

m3,3 = d2
4(λ2

3x + λ2
3y) + d2

3(λ2
4x + λ2

4y) − 2d3d4(λ3xλ4x + λ3yλ4y)

4.5. orient2d3d
Let Π be an oriented plane identified by three non-aligned

points r, s and t in the Euclidean 3D space. Also, let p1,
p2, p3 be three points on Π. The orient2d3d predicate
generalizes the standard orient2d predicate, and states
whether p1, p2, p3 form a right turn, a left turn, or a straight
line on Π. It turns out that orient2d3d(p1,p2,p3, r, s, t) =
orient2d(Γ(p1),Γ(p2),Γ(p3)) ∗ orient2d(Γ(r),Γ(s),Γ(t)),
where Γ(pi) indicates the 2D projection of pi on one of the three
axis-aligned planes such that orient2d(Γ(r),Γ(s),Γ(t)) , 0.
An effective way to select an appropriate projection plane is to
consider a normal vector at Π and simply drop the coordinate
with largest magnitude. Without loss of generality, from

now on we assume that we are dropping the Z coordinate
or, equivalently, that we are projecting on the XY plane (i.e.
Γ(< px, py, pz >) =< px, py >).

Now, let us suppose that p1 is implicitly defined (e.g. as de-
scribed in Sect. 4.2). Therefore:

p1x =
λx

d
, p1y =

λy

d
, p1z =

λz

d

Since we are projecting on XY, we do not even need to
calculate λz, and simply re-write Λ = (p2x − p1x)(p3y −

p1y) − (p2y − p1y)(p3x − p1x) = (p2x − λx/d)(p3y − λy/d) −
(p2y − λy/d)(p3x − λx/d) = Λ′/D′, where Λ′ = (dp2x −

λx)(dp3y − λy) − (dp2y − λy)(dp3x − λx) and D′ = d2. Hence,
orient2d(Γ(p1),Γ(p2),Γ(p3)) = sign(Λ′).

4.6. orient3d

Similar arguments hold for the orient3d predicate. When all
its input points are explicit, the orient3d polynomial is:

Λ =

∣∣∣∣∣∣∣∣
p1x − p4x p1y − p4y p1z − p4z

p2x − p4x p2y − p4y p2z − p4z

p3x − p4x p3y − p4y p3z − p4z

∣∣∣∣∣∣∣∣
If we replace p1 with an implicit point we obtain the following

expression for an indirect orient3d predicate:

Λ′′ =

∣∣∣∣∣∣∣∣
λx − dp4x λy − dp4y λz − dp4z

dp2x − dp4x dp2y − dp4y dp2z − dp4z

dp3x − dp4x dp3y − dp4y dp3z − dp4z

∣∣∣∣∣∣∣∣
which, if d , 0, has the same sign as the simpler:

Λ′ =

∣∣∣∣∣∣∣∣
λx − dp4x λy − dp4y λz − dp4z

p2x − p4x p2y − p4y p2z − p4z

p3x − p4x p3y − p4y p3z − p4z

∣∣∣∣∣∣∣∣
where the corresponding D′ is d.
Formulas for the case where more than one point is implicit

can be easily derived using a similar rewriting.

5. Computational models and implementation

The input to an indirect predicate is a set of points, each being
either explicit or implicit. In the former case, the point is a stan-
dard array of Cartesian coordinates, each encoded as a double
precision FP number; in the latter case, it is a collection of ex-
plicit points to be combined. Upon invocation, an indirect pred-
icate determines which of its input parameters are implicit, and
internally calculates λ and d for each of them. In our implementa-
tion we consider three computation models: floating point arith-
metic (with semi-static filter), interval arithmetic (with dynamic
filter), expansion arithmetic (exact). The predicate is evaluated
with the fastest model which guarantees exactness.
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5.1. Filtered evaluation in floating point
We begin by calculating the d’s and, for each of them, use a

semi-static filter that states whether its sign is unambiguous. If
the filter succeeds for all the d’s, we compute the λ’s, evaluate
Λ′, and use another semi-static filter to guarantee that its sign is
correct. If the former filter fails for one of the d’s, it means that
precision is insufficient to exclude that the implicit point is unde-
fined (e.g. intersection of parallel lines). In this case, it makes no
sense to proceed with this arithmetic model. As soon as a filter
fails, we stop and switch to interval arithmetic (Sect. 5.2). Upon
success, the sign of Λ′ is possibly inverted depending on the sign
of D′. We observe that D′ is just a product of the d’s, therefore we
simply count how many of them have a negative sign (possible
multiplicities must be considered). If they are an even number,
we return the sign of Λ′, otherwise its inverse. Semi-static filters
for the floating point model are calculated using a variation of [5]
(see Appendix A for details).

5.2. Filtered evaluation using intervals
When starting with this arithmetic model, we first set the CPU

rounding mode to towards infinity. This is required to cor-
rectly and efficiently evaluate the subsequent interval arithmetic
block. Then, we calculate the d’s and check that their sign is not
ambiguous (i.e. their intervals do not contain the zero). If this dy-
namic filter succeeds for all the d’s, we compute the λ’s, evaluate
Λ′, and check that the resulting sign is not ambiguous. As soon
as one of the filters fail we stop and switch to exact arithmetic
(Sect. 5.3). If all the filters succeed, the sign of Λ′ is possibly in-
verted depending on the sign of the d’s. Upon termination (both
with success or failure), we reset the rounding to the standard
to nearest mode required by the other computational models.

5.3. Exact evaluation using expansions
When the predicate is computed using an exact arithmetic

model there is a minor difference. Indeed, when computing the
d’s it might happen that some of them are exactly zero. If so, the
predicate cannot be evaluated because at least one of its implicit
parameters is undefined. Conversely, if all the d’s are nonzero,
we calculate Λ′ and check whether it is zero. If so, there is no
need to check the d’s and the predicate returns zero. Otherwise,
we possibly invert the sign as in the previous models.

Since Λ′ is a polynomial, we may exactly evaluate its sign
using floating point expansions. Roughly speaking, an expansion
is an array of FP numbers whose sum is the exact number being
represented. Under certain assumptions, FP expansions can be
efficiently summed, subtracted, and multiplied, all without error
and while exploiting the floating point hardware [9].

5.4. Caching
If the same implicit point is used as input to many predicate

calls, its λ’s and d are recomputed many times. Therefore, upon
the first occurrence it is worth storing their values for future
reuse. For the sake of implementing filters, besides these values
we must also store information to accumulate error bounds. For
semi-static filters, this amounts to store an additional FP number
(see Appendix A). For dynamic filters, this amounts to store the
λ’s and d using intervals.

Clearly, such a caching mechanism speeds up the computation
at the expense of a higher memory usage. Our experiments (see
Sect. 7) show that caching λ’s and d’s for floating point and inter-
val arithmetic models produces relevant speed ups while requir-
ing a relatively low increase in memory footprint. Conversely,

storing these values for the exact model is not advantageous:
indeed, storing expansions for each point requires a significant
amount of memory, and the time overhead due to the manage-
ment of all this additional data is higher than what we save in the
few switches which are required in typical cases (Table 3). Note
that pre-calculated intervals are also used in CGAL Lazy exact
kernel [18], but the use of cached FP filters makes our predicate
evaluaton significantly faster (Sect. 7).

6. Code generation

An indirect predicate must consider all the possible configura-
tions of its input parameters. For example, the orient2d predi-
cate has three points as parameters, and the type of each of these
points can be either implicit or explicit. The most generic im-
plementation may assume that all the points are implicit and, if
any of them is explicit, its λ’s can be simply replaced with the
Cartesian coordinates and its d with 1. Though this approach
is correct, such a naive implementation would lead to unnec-
essarily loose filters which, in turn, would require unnecessary
switches to more precise models. Consequently, this implemen-
tation would be unnecessarily slow.

A much more efficient approach is based on the implementa-
tion of a specific instance of the predicate for each of the pos-
sible input configurations. If the three input points of our indi-
rect orient2d predicate are all explicit, the predicate reduces to
the standard orient2d, which is very efficient and accumulates
small errors. If only the first point is implicit, we may use a ded-
icated implementation based on the Λ and D described earlier in
Sect. 4.3. This is slightly less efficient than the previous version
and produces a slightly higher error. And so on. Hence, an indi-
rect orient2d predicate might be efficiently implemented using
eight instances (EEE, EEI, EIE, EII, IEE, IEI, IIE, III, where
the three characters indicate the type of each input point). Ac-
tually, many of these instances can be reduced to each other by
transposing their input parameters and possibly inverting the re-
sulting sign (e.g. orient2d(a, b, c) = orient2d(b, c, a) = -
orient2d(a, c, b)). It is easy to verify that four versions (EEE,
IEE, IIE, III) of orient2d are sufficient to cover all the cases.

Implementing even a single instance with proper semi-static
and dynamic filtering, and with expansion-based evaluation, is a
tedious and error-prone process. Fortunately, this process can
be mostly automated [19]. If the predicate is naively imple-
mented as a C function using FP arithmetic, software tools ex-
ist [5] to parse such a function and produce another C func-
tion which includes a semi-static filter. These tools analyze the
polynomial and calculate an upper bound for the roundoff error.
In the produced code, the magnitude of the resulting determi-
nant is compared with such a bound and, if smaller, the predi-
cate returns a particular value indicating that the filter failed (e.g.
FPG UNCERTAIN). Meyer and Pion’s tool has been used and ex-
tended by Levy in the Predicate Construction Kit [11], where
both the semi-static filtered and the exact versions of the predi-
cate are produced.

We have further extended upon this approach, and have imple-
mented a software that parses a text-based formula representing
the polynomial. Starting from such a formula, our tool produces
three C++ functions, each implementing the formula using one
of the arithmetic models described earlier. A further fourth func-
tion is generated that calls the other three in order and terminates
as soon as one of them returns a guaranteed result.
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N. Points Exp. 1.1 Exp. 2.1
1000 0.000691 (2.74) 0.000862 (2.77)
10000 0.008698 (6.29) 0.008864 (6.49)
100000 0.117321 (27.99) 0.12001 (25.56)
1000000 1.79624 (268.53) 1.82953 (284.55)

Table 1: Results of our experiments 1.1 and 2.1. Elapsed time in seconds and, in
parenthesis, peak memory usage in Mbytes.

7. Experiments

For the sake of experimentation, we have implemented a
C++ library with an API defining a genericPoint class. A
genericPoint can be specialized to be either 2D or 3D, im-
plicit or explicit. The library also provides functions implement-
ing both standard and indirect predicates. Each such function
takes a number of genericPoint objects as input, internally
determines their type, and properly handles all the cases as de-
scribed in Sect. 6. The library has been used as a basis to im-
plement a simple Delaunay triangulation algorithm that can deal
with genericPoint objects. Both the library and the triangula-
tion algorithm have been compiled and tested on an MS Windows
10 OS using Visual C++ 2019. The objectives are measuring
the efficiency of our predicates, the overhead of indirect predi-
cates when compared to their direct versions, the impact of all the
possible caching levels, and the improvement with respect to the
state of the art. Tests were run on a standard PC equipped with
an Intel Core i7-4770 with 16 Gb RAM. Based on this setting,
the following experiments were run. Results are summarized in
Tables 1 and 2.

7.1. Experiment 1.1 - Random explicit 2D points
For this experiment, we created and triangulated a set of

genericPoint objects, each specialized to represent an explicit
2D point. Their Cartesian coordinates are randomly sampled
within the unit square [0, 1] × [0, 1]. Since all the points are ex-
plicit, the orient2d and incircle predicates used by the algo-
rithm always switch to the standard direct version of the predi-
cates. A parameter allows controlling the cardinality of the point
set in the range [1, 1000000]. The objective of this test is to de-
fine a reference for the other tests, in order to evaluate the over-
head due to the use of indirect predicates when compared with
their classical direct version.

7.2. Experiment 1.2 - Random mixed 2D points
Herewith, our set of genericPoint objects still contains 2D

points, but their type is mixed. A subset of them are explicit,
whereas the others are implicitly defined as the intersection of
line pairs. Explicit points are randomly scattered within the unit
square as in the previous experiment. Also, line pairs are created
so that their intersections are randomly scattered within the unit
square. A parameter allows controlling the percentage of implicit
points over a total of 1 million points constituting the entire set.
In this case, both orient2d and incircle may either switch to
the direct version or select the proper indirect predicate instance,
depending on the type of the genericPoints.

7.3. Experiment 1.3 - Regular mixed 2D points
This dataset of 1000000 genericPoint objects contains

mixed 2D points as in Experiment 1.2 but, instead of being ran-
domly scattered, they form a regular grid within the unit square.
A subset of them are explicit, whereas the others are implicitly

defined as the intersection of line pairs. Even in this case, a pa-
rameter allows controlling the percentage of implicit points over
the total. This dataset stresses the predicates that are largely re-
quired to switch to exact arithmetic.

7.4. Experiment 2.1 - Random explicit 3D points
For this experiment, we created a set of genericPoint ob-

jects, each specialized to represent an explicit 3D point whose
Cartesian coordinates are randomly sampled within the unit cube
[0, 1] × [0, 1] × [0, 1]. The Delaunay triangulation is calculated
on the projection of these points on the XY plane. As for Exper-
iment 1.1, the objective is to define a reference for the following
Experiments 2.2 and 2.3.

7.5. Experiment 2.2 - Random mixed 3D points
Here, our set of genericPoint objects contains 3D points,

both explicit and implicit, and the Delaunay triangulation is cal-
culated on their projection on the XY plane. As in the previous
experiment, the first half of the set is made of explicit points,
whereas the other half are implicitly defined as the intersection
of lines and planes. Explicit points are randomly scattered within
the unit cube [0, 1] × [0, 1] × [0, 1]. Line-plane pairs are created
so that their intersections belong to the unit cube. A parameter
allows controlling the percentage of implicit points over a total
of 1 million points constituting the entire set.

7.6. Experiment 2.3 - Regular mixed 3D points
This dataset of 1000000 genericPoint objects contains

mixed 3D points as in Experiment 2.2 but, instead of being ran-
domly scattered, their projections on the XY plane form a regular
grid within the unit square. Their Z coordinate is still randomnly
selected in the interval [0,1]. A subset of the points are explicit,
whereas the others are implicitly defined as the intersection of
properly configured line-plane pairs. Even in this case, a param-
eter allows controlling the percentage of implicit points over the
total. This dataset stresses the predicates that are largely required
to switch to exact arithmetic.

7.7. Comparison with state of the art
CGAL [18] is probably one of the most used libraries when ro-

bustness and efficiency must be combined, in particular when
important fundamental algorithms come into play (e.g. Delau-
nay triangulations). That is why we compare our results with
CGAL. In our comparison, we always strive to exploit CGAL in
its most efficient configuration while providing a guarantee of
correctness. Namely, we want to guarantee that the resulting De-
launay triangulation has the correct topology.

We re-run all our tests using CGAL Delaunay triangu-
lation algorithm. For experiments 1.1 and 2.1, where
all the points are explicit, we configure CGAL to use the
Exact Predicates Inexact Constructions kernel,
whereas for the others we need exact constructions to rep-
resent the intersections. Implicit points are generated using
CGAL::intersection(). For experiments that require projec-
tion on the XY plane, CGAL::Projection traits xy 3 was
used. We assume that CGAL implements efficient state-of-the-art
algorithms but, since using two different implementations may
introduce a bias independently of our contribution, we have also
re-implemented our own triangulation algorithm using CGAL’s
exact number type CGAL::Lazy exact nt<CGAL::Gmpq>
and its predicates CGAL::orientation() and
CGAL::side of oriented circle(). However, after
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% implicit Exp. 1.2 Exp. 1.3 Exp. 2.2 Exp. 2.3
0 1.79624 (268.53) 2.63308 (268.36) 1.82953 (284.55) 2.64815 (284.37)
10 2.23134 (292.84) 5.0791 (292.99) 2.56663 (321.96) 7.14617 (322.95)
25 2.82864 (328.84) 8.45898 (329.3) 3.41211 (377.43) 16.6439 (379.75)
50 3.62846 (389.14) 14.0788 (390.61) 4.24588 (469.68) 38.3586 (472.40)
100 3.81999 (509.93) 27.1925 (511.29) 4.29742 (654.52) 75.0639 (657.06)

Table 2: Results of our experiments 1.2, 1.3, 2.2 and 2.3. Elapsed time in seconds and, in parenthesis, peak memory usage in Mbytes.

% implicit no cache FP Interval Exact
0 1.79552 (268.51) 1.78396 (268.53) 1.79624 (268.53) 1.82953 (268.53)
10 2.49302 (283.07) 2.4852 (286.20) 2.23134 (292.84) 2.27749 (358.66)
25 3.5918 (304.77) 3.39718 (312.93) 2.82864 (328.84) 2.86765 (494.35)
50 5.25428 (341.23) 5.00143 (357.23) 3.62846 (389.14) 3.79824 614.96)
100 7.16629 (413.65) 6.9816 (445.84) 3.81999 (509.93) 3.9589 (1167.84)

Table 3: Results of our experiment 1.2 using different caching approaches. λ’s and d were cached only for the FP model (column FP), for both the FP and interval
arithmetic models (column Interval), or for all the available models (column Exact). Elapsed time in seconds and, in parenthesis, peak memory usage in Mbytes.

N. Points Exp. 1.1 Exp. 2.1
1000 0.000253 (3.52) 0.000273 (3.29)
10000 0.015636 (4.68) 0.015622 (4.72)
100000 0.098743 (16.64) 0.109367 (19.62)
1000000 1.168691 (135.81) 1.15617 (167.65)

Table 4: Results of our experiments 1.1 and 2.1 using CGAL with exact predi-
cates and inexact constructions kernel. Elapsed time in seconds and, in parenthe-
sis, peak memory usage in Mbytes.

having verified that this re-implementation is slower than CGAL’s
native algorithm, we have abandoned it. Tables 4 and 5 report
the results of our experiments using CGAL.

7.8. Results discussion

In all the experiments, the total number of predicate calls de-
pends on the input size. For Experiment 1.1, these numbers are as
follows: 1000 points ⇒ 4395 calls to orient2d and 7502 calls
to incircle; 10K points ⇒ 45K and 94K calls; 100K points
⇒ 469K and 1.14M calls; 1M points ⇒ 4.8M and 13.3M calls.
These numbers do not vary significantly across different experi-
ments with same input size.

Tables 1 and 2 show that the impact of having implicit points in
the input is rather limited. The maximum increase in both time
and memory usage is around 2x in 2D and 2.5x in 3D, which
happens when all the points are implicit. Most importantly, the
resource demand gradually increases as the relative amount of
implicit points in the set grows. Hence, our approach is partic-
ularly convenient in cases where implicit points are sparse. Ex-
periments 1.3 and 2.3 show that our predicates behave reasonably
well even in extremely degenerate cases where exact arithmetic is
used extensively. In particular, we observe that the peak memory
usage in these cases is virtually equivalent to that of correspond-
ing non-degenerate input sets. The impact on the elapsed time
is of course more significant but, even in this case, we observe
that it gracefully grows as the percentage of implicit points in-
creases. Table 3 shows the impact of caching the λ’s and d’s:
when these values are stored for the FP model only the overall
gain in speed is modest, but when the Interval model is included
the algorithm becomes nearly twice as fast with only 23% more
memory requirements.

Our results also demonstrate that indirect predicates outper-
form state of the art methods with same guarantees. Even if
CGAL is faster when inexact constructions are allowed (Exper-
iments 1.1 and 2.1, see Tables 1 and 4), its lazy exact kernel
becomes necessary to represent implicit points and, in this case,
our implementation is from 3.86 to 11.7 times faster than CGAL,
while requiring up to 3.5 times less memory (see Tables 2 and 5
and Fig. 2).

8. Conclusions

We have shown that, even if intermediate geometric construc-
tions are necessary, the efficiency of floating point hardware can
be exploited to quickly evaluate geometric predicates with guar-
antees of correctness. This partly solves a problem introduced
by Meyer and Pion [5] more than ten years ago. The problem is
only partly solved because our approach requires that interme-
diate constructions can be represented as polynomial fractions.
Though this is sufficient for most of the algorithms of the second
type introduced in Sect. 3, there are still a few useful algorithms
that do not satisfy this requirement. One noticeable example is
the constrained Delaunay triangulation in 3D, where state of the
art algorithms use irrational numbers to generate Steiner points
[20]. Furthermore, more numerically complex techniques exist
which involve cascaded predicates and constructions, and hence
do not belong to our second class of algorithms (e.g. [21]). Un-
fortunately, indirect predicates do not help in these cases, and at-
tempting to generalize their paradigm is a challenging research
direction: indeed, the combination of cascaded constructions
would easily lead to rather complicated expressions whose filters
become too large to be useful in practice. Nonetheless, indirect
predicates enable much faster implementations for a wide range
of useful algorithms of the second class.

We also observe that indirect predicates allow implementing
algorithms with guarantees of robustness and combinatorial cor-
rectness. Nonetheless, if their results are the input to other al-
gorithms which expect floating point coordinates, implicit points
must be evaluated and their coordinates approximated. Such an
approximation may lead to invalid configurations (e.g. with self
intersections) even if the combinatorics is exact. This problem is
known as snap rounding and, though effective algorithms exist
for the 2D case, no practical guaranteed implementation exists
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% implicit Exp. 1.2 Exp. 1.3 Exp. 2.2 Exp. 2.3
0 6.92141 (168.86) 26.4514 (362.26) 33.2009 (193.40) 68.7454 (483.43)
10 8.09864 (252.48) 27.9512 (492.32) 35.0445 (338.69) 76.5043 (716.04)
25 9.76497 (377.75) 32.0291 (698.53) 38.7077 (553.73) 88.9425 (1060.50)
50 11.9211 (586.53) 40.966 (1040.29) 42.2784 (908.59) 111.112 (1634.54)
100 15.9442 (1006.73) 60.9706 (1682.76) 50.1841 (1605.84) crashed

Table 5: Results of our experiments 1.2, 1.3, 2.2 and 2.3 using CGAL with exact predicates and exact constructions kernel. Elapsed time in seconds and, in parenthesis,
peak memory usage in Mbytes.

Figure 2: Elapsed time for experiments 1.2, 1.3, 2.2 and 2.3 using indirect predicates (blue) and CGAL (orange).

yet for the 3D case. This problem is worth a further investigation
[22].
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A. Semi-static filter calculation

A semi-static filter needs to (1) calculate a threshold value
as a function of input parameters vi and (2) verify that |Λ′| is
larger than this value. In our code, the threshold ε(v1, ..., vn)
is calculated as a product δ(1)B(v1, ..., vn), where δ(1) is a con-
stant value which depends only on the predicate’s expression and
is computed at compile time as described in [5]. Conversely,
B(v1, ..., vn) depends on the input values vi and must be calcu-
lated at each predicate call. This dynamic part of the filter is the
product of k factors b1b2 . . . bk, where b j is the absolute value of
either one of the input variables vi or a difference va−vb between
two of them. Note that factors need not be different from each
other (e.g. bi and b j may be the same for i , j). Differently from
[5], we slightly overestimate B(v1, ..., vn) for the sake of efficient
caching. Specifically, we replace the product b1b2 . . . bk with the
power βk, where β = argmax{b1, . . . , bk}. The reason for this is
the following.

Let P(v1, . . . , vk, i1, . . . , in) be a predicate where the vi’s are ex-
plicit parameters whereas the i j’s are implicit. Any of the im-
plicit parameters i is defined as a composition of explicit values
w1 . . .wm. Upon evaluation using the FP model, we first use the
w’s to calculate the λ’s and d’s, and then use these λ’s and d’s
together with the explicit parameters v’s to evaluate the whole
predicate. The semi-static filter for this composed calculation
must take all the variables into account. Thus, the dynamic com-
ponent of our filter is βk, where β is the maximum of the bi’s de-
riving from explicit variables v and the b j’s deriving from the w’s.
The maximum over the b j’s is computed only once for each im-
plicit point and cached for later use. Hence, replacing the product
with the power allows using a single variable to cache the bounds
for any λ and d. When compared with the caching benefits, the
performance loss due to our overestimation is virtually negligi-
ble. Fig. 3 shows an example of the code produced by our tool.

Figure 3: Code produced by our tool for an indirect version of the orient2d

predicate. The first of the three points is implicitly defined by the intersection of
two lines that, in turn, are defined by explicit points w1, . . . ,w4. The values for
λx, λy and d (l1x, l1y, d1) are calculated externally and passed to this function
along with the maximum β deriving from the w’s (prev maxval). The constant
value of δ(1) ( = 1.048458195263004e-13) accumulates the error bounds of
this function and those of the external function that calculates the λ’s and d.
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