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Abstract

Truss lattices are common in a wide variety of engineering applications, due to their high ratio of strength versus relative density.
They are used both as the interior support for other structures, and as structures on their own. Using 3D sphere packing, we propose
a set of methods for generating truss lattices that fill the interior of B-rep models, polygonal or (trimmed) NURBS based, of arbitrary
shape. Once the packing of the spheres has been established, beams between the centers of adjacent spheres are constructed, as spline
based B-rep geometry. We also demonstrate additional capabilities of our methods, including connecting the truss lattice to (a shell
of) the B-rep model, as well as constructing a tensor-product trivariate volumetric representation of the truss lattice - an important step

towards direct compatibility for analysis.

Keywords: B-spline container, free-form microstructures, volumetric representation

1. Introduction and previous work

Lattice structures are ubiquitous in engineering, as they ap-
pear in plenty of objects of various scales: starting from large
trusses in bridges and towers, over medium-sized light-weight
metal parts of motorbikes and bicycles, up to microstructures in
nano scale such as nanofibers [}, 2 [3]. Lattice structures can be
regarded as a composite material, consisting of solid materials
and voids [4], and the relative density, p, of a lattice structure
is the ratio between the volume occupied by the solid material
and the total volume of the object (including the void space),
p = V;",x;,’ A truss lattice is a lattice whose infrastructural de-
sign consists of interlaced beams that are mutually cross-linked
to provide higher stability and strength to a structure. Therefore,
truss lattices are an attractive choice for a wide variety of engi-
neering applications due to a high strength compared to small
relative density.

The construction of truss lattice structures poses several chal-
lenges. The layout of the nodes and the design of the beams that
connect them is an important issue, as it affects both the relative
density, p, and the mechanical properties of the overall structure.
The nodal connectivity of the lattice must also be considered: it
must be high enough to guarantee the rigidity of the lattice struc-
ture, but if the connectivity is too high, it may needlessly increase
p [3)]. Furthermore, the lattice may be required to support some
other connected structure(s) of an arbitrary shape, and therefore
the geometry that connects them must also be part of the overall
considerations. In this paper, we address these issues by intro-
ducing truss lattice structures raising from sphere packing.
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1.1. The sphere packing problem and its relation to lattice struc-
tures

Figure 1: The two optimal patterns of sphere packing (top) and the correspond-
ing truss lattices (bottom) which result from connecting the centers of adjacent
spheres. (a) Fcc packing. (b) Hep packing. (c) The corresponding octet cell, and
(d) the corresponding hexagonal cell.

The lattice structures are closely linked to sphere packing. One
finds this tight bond in nature where the hexagonal pattern ap-
pears in honeycombs [6] and the underlying lattice structure,
consisting of equilateral triangles, in fact determines the shape
of the honeycomb. That is, there is a certain duality relation be-
tween the tightly (with tangential contact) packed spheres and the
lattice structure with vertices being the sphere centers and edges
being the center connectors.

Two patterns of packing spheres of equal radius in 3D space,
which achieve maximum packing density are face-centered cu-
bic (fcc) packing, and hexagonal close packing (hep) [[7]], see
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Fig.[I] In an fcc cell, fourteen spheres are arranged on the ver-
tices and on the centers of the faces of a cube. The centers of
any two spheres that are in tangential contact with each other are
connected by a beam. The resulting truss structure is called the
octet cell [8]. In an hcp cell, the spheres are arranged as a trian-
gle sandwiched between two hexagons. The hcp lattice appears
frequently in nature in crystal-like structures [7].

Another simple case of using sphere packing to design truss
lattices is arranging the spheres in a sheet of tetrahedral struc-
tures [9]]. A tetrahedral lattice cell is formed by taking two layers
of optimally-packed spheres, such as the two bottom layers of
hep, or two diagonal layers of fcc. It can therefore be regarded
as a special case of both fcc and hcp. Sheets of tetrahedrons
made of trusses (often called fetrahedral-core sheets), including
non-planar variants, are used extensively in engineering and con-
struction as support linkages and stabilizers [10L [11}[12]. We em-
phasize that for existing lattice systems such as [13]], the beams
have to be congruent (beams of custom-length require custom
nodes which is very expensive and not supported in general).
Therefore, one needs to consider sphere packing that preserves
the tangential contact between the spheres, i.e., the distance be-
tween the centers of two neighboring spheres is, up to machine
precision, 2r. Note that approaches using Delaunay-like triangu-
lations correspond to overlapping spheres and do not match this
application.

It is therefore conceivable that, given a 3D geometric model,
finding a tight sphere packing for its interior, and constructing
a truss lattice from that sphere packing, may result in a plausi-
ble interior support structure. In this paper, we use this duality
and propose a computational framework that, to the best of our
knowledge, for the first time, exploits sphere packing to construct
truss lattices that fill the interior of a B-rep (smooth or discrete)
geometric model. A tight sphere packing results in a lattice of
octet or hexagonal cells that fills the interior parts of the model,
which will support the parts of the model closer to the boundary.
Octet lattices are known for mechanical strength [14], and are
widely used in engineering as load-bearing structures. Herein,
we strive to create such octet lattices that is conforming-to-the-
shape (e.g. see Figure[2).

Figure 2: A conforming-to-the-shape truss construction for a torus geometry.

Our approach consists of computing an initial honeycomb
sphere packing in the model, followed by an optimization cy-
cle to include as many new spheres as possible, to finally use the
duality argument to convert the sphere centers into the truss lat-
tice, represented as either trimmed B-spline surfaces, or tensor-
product B-spline trivariates.

1.2. Previous work

There are many issues in a pipeline dealing with truss lat-
tices: starting from (i) design and their geometric representa-
tions, through (ii) physical analysis and structural mechanics,
including material selection, up to (iii) the consequent fabrica-
tion. Our work is mostly related to the first class of research and
therefore we will discuss mainly issues on geometric design, in
this section. A 2014 survey [15]] argued that, in the context of ad-
ditive manufacturing, CAD tools were, at that time, ill-adapted
for designed lattice structures.

Since then, several approaches to the process of designing lat-
tice structures have been proposed. A review of lattice design
methods [16], which focuses on the end-to-end process of filling
a design domain (e.g. the interior of a model) with a lattice struc-
ture, categorizes these methods into two groups: uniform, and
conformal. Uniform lattice approaches construct a regular lat-
tice, with repeating elements at fixed distances from each other.
The uniform lattice can be constructed without considering the
boundary of the design domain, and must be restricted to fit into
it. An example of a uniform-approach work is [17], which pro-
poses to fill a geometric model with axis-aligned lattices, which
then need to be clipped at the boundary of the model. Uniform-
approach algorithms offer a high degree of control over the shape
of the elements in the lattice, as it does not depend on the shape
of the model that it fills, except near the boundary of the model,
where the lattice is clipped to fit its shape. Consequently, the
quality of the final result greatly depends on the initial orienta-
tion of the uniform lattice with respect to the design domain.

The conformal approach, on the other hand, attempts to con-
struct a lattice that follows closely the shape of the design do-
main. This may require parameterizing the entire design domain,
and using its parametrization as a deformation function for the
lattice. This approach is used in [[18]]. A different work which at-
tempts to construct a conformal lattice structure is [[19]. It com-
bines topological optimization with lattice construction by pa-
rameterizing the design domain using the principal stress direc-
tion, which are produced by the topological optimization process.
This parametrization is then used to construct a lattice structure
that conforms to the shape that results from the topological op-
timization. Alternatively, the design domain can be partitioned
into volume cells using a meshing algorithm, and each lattice el-
ement is fitted into a cell of the mesh. This approach is used in
works such as [20] and [21]]. The conformal approach requires ei-
ther a good volumetric parametrization, or high-quality meshing
of the design domain, which is non-trivial for complex shapes.
However, if employed successfully, this approach results in lat-
tices that conform well to the boundaries of the model.

The problem of meshing is conceptually related to filling the
volume of a model with a truss lattice, as both a mesh and a truss
lattice consist of graph nodes with positions in Euclidean space,
and edges (or beams) that connect them. The goal of meshing
algorithms is, given a 2D (3D) domain, to find a triangular (tetra-
hedral) discretization of the domain. The requirements from the
mesh depend on the application of the meshing algorithm.

Sphere packing, and its generalization, bubble packing, have
been used as a tool to construct well-behaved meshes [22] 23]
24, 125]]. This approach exploits the duality between the centers
of packed spheres (bubbles) and a mesh. As the error of the finite
element approximation is affected by the shape of the domain,
regular, Delaunay-like, triangulations are preferable. Sphere
packing serves to this purpose as it prevents creating degener-
ate triangles (tetrahedra) [22]. In this class of literature, how-
ever, the sphere arrangement allows overlaps and/or have small
gaps between neighboring spheres and should not be considered



as sphere packings in the classical Kepler’s sense, i.e., packing
where neighboring spheres possess a tangential contact [26].

One of the key differences between the meshing problem and
lattice structure generation is the requirement for control over the
element size. In meshing algorithms, it is considered beneficial
to create smaller elements near the fine details of the boundary,
and smoothly transitioning into larger elements in the interior of
the domain. This results in a good balance between the fitting the
shape of the meshing domain and reducing the overall number of
elements, thus improving the efficiency of any further algorithms
that would be applied to the mesh. In lattice structure generation,
however, the preferred size of the lattice elements is typically dic-
tated by physical performance and manufacturing requirements,
and globally reducing the number of elements is not necessarily
desirable.

Our work looks strictly for sphere packing with tangential con-
tact and is therefore more related to [27, 26]. While [26] con-
siders spherical packings in unbounded domains of various di-
mensions, the closest work to our research is [27] that looks for a
packing of the maximal number of congruent spheres into a poly-
hedral containers in R®. The mathematical formulation is based
on ®-functions and is validated by examples on simple convex
polytopes which can contain some polyhedral obstacles inside,
such as polygonal prisms, convex polyhedral cones and dihedral
angles. In contrast, our approach supports arbitrary (non-convex)
free-form boundary. We emphasize, however, that our work is
not only about sphere packing, yet about a design of truss lattice
structures that comform to arbitrary free-form geometry.

In a different setting of the 2D circle packing problem, a set
of circles with non-uniform radii is given, and the objective is
to find or approximate the smallest possible container into which
they can be packed. The container is typically circular as well,
and a practical example of such a problem is finding the small-
est hole through which a bundle of electric wires of different ra-
dius can fit [28]. This problem is addressed in [28| 29]; both
approaches are based on generating an initial configuartion, and
then iteratively improving it by shrinking the domain, and simu-
lating shaking the circles.

Motivated by free-form architectural design that consists of
congruent and repetitive elements, packing circles and spheres
was applied to curved surfaces (manifolds) [30]. A concept of a
circle packing mesh is introduced. In such a triangular mesh, the
incircles of the triangles form a packing, i.e., the incircles of two
triangles with a common edge have the same contact point on that
edge. An optimization based framework is proposed to demon-
strate that circle packing meshes can comfort arbitrary free-form
geometry.

A representation of lattice structures based on the union of
spherical nodes guador (quadric of revolution) beams is pro-
posed in [31]]. This representation uses closed-form expressions
for all the components of the lattice, and allows to control over
the profile of the beams by adjustable parameters. The connec-
tion between the beams and the nodes is guaranteed to be smooth,
and symbolic expressions for the curves at which the contact oc-
curs are provided. In [32]], an ad-hoc programming language and
a user graphic interface have been introduced to design truss lat-
tices. A whole end-to-end additive manufacturing pipeline is pre-
sented, from design to the final fabrication. Both [31}[32] require
the user to explicitly define the shape of the lattice, rather than
fitting it to a given geometry. In contrast, our proposed work
constructs a truss lattice based on a sphere packing of the inte-
rior of the model, and therefore, attempts to fit its geometry. It
does not require the user to explicitly specify the structure of the
lattice. Additionally, and similarly to [32], it allows control over

the resulting lattice with a small number of parameters.

Another family of relevant research deals with volumetric
representation in the context isogeometric analysis. Analysis-
suitable volumetric parametrizations (meshes) should respect the
information coming from the boundary, such as normal vec-
tors or curvatures, and an efficient algorithm that computes such
paremetrization is introduced in [33]]. A volumetric parametriza-
tion that minimizes the distortion of the mapping between the
domain (unit cube) and physical domain is computed using har-
monic map in [34]. Our research can also be considered as a step
towards volumetric representations of curved objects composed
of a specific microstructure (truss lattice).

The rest of the paper is organized as follows: in Section [2]
we describe our sphere packing algorithms. In Section [3] we de-
scribe the basic truss lattice construction algorithms. In Section
M] we extend the capabilities of the truss lattice construction pro-
cess, in several directions, and present our results in Section E}
Finally, we conclude and discuss future directions in Section [6]

2. The sphere packing algorithms

In this section, we describe the sphere packing algorithms. The
goal of each of these algorithms is to find a configuration of as-
many-as-possible congruent spheres of a given radius such that
the spheres lie within a given shape. Herein, we define “within a
given shape” as “center of each sphere lies within the shape”.

Let us first define the problem formally. Given a bounded
closed continuous domain D c R?® (with a surface boundary D)
and a sphere radius r, the algorithm tries to find a configuration
C = {s1, 52, ..., 8, € R3} (a finite set of centers of spheres) such
that Vs; € C, s; € D, and ¥s;, s; € C, ||s; = 5,|| > 2r. We call the
last two conditions inclusion and non-penetration, respectively,
and we call any configuration that satisfies these two conditions
a valid configuration.

Since we are aware of no algorithm that guarantees an op-
timal result, for a general freeform shape D, and even in 1D
and 2D are at least as computationally complex as NP-hard [35]],
all three algorithms proposed here are heuristic, iteration-based,
and produce increasingly better results. The first one (Section
[2.1) attempts to find a rigid motion that will optimally position
a given initial honeycomb configuration of packed spheres in-
side the domain. The second algorithm (Section employs a
naive repelling approach, which, however, produces good results.
Finally, the third algorithm (Section [2.3)) tries to iteratively im-
prove an existing configuration, using simulated gravity forces.
All three algorithms are parallelized. In Section 2.4] we briefly
discuss how we compute the needed distances to the boundaries
of D, and in Section some implementation details are pre-
sented.

2.1. The “Rigid Body Motion” Algorithm

Our first packing optimization algorithm is based on moving
the initial honeycomb layout fully rigidly such that the maximum
number of spheres (i.e., sphere centers) lies inside D. In some
cases, it might be desired to provide regular packing so the truss
structure will consist solely of regular beams.

Consider an initial honeycomb layout that covers the whole D
and also some exterior neighborhood, see Fig. 3] The exterior
neighborhood of 0D is defined as the space between dD and an
outer offset of D, € being the offsetting distance (¢ is a parameter,
set experimentally to 4r in our implementation). We categorize
the sphere centers as internal (I), i.e., those that lie inside D, and
external (E) which are those that lie in the exterior neighborhood
of D.
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Figure 3: One iteration of “Rigid Body Motion” Algorithm. (a) The sphere centers from the exterior neighborhood (yellow) are orthogonally projected onto 9D,
resulting in a set of footpoints (black) and tangent planes (blue) of D. (b) The best instantaneous motion that moves the exterior centers towards D is computed via
Eq. @), resulting in a vector field (c, €) (green); for visualization purposes, the vector field is scaled by factor of 60. This vector field corresponds to a helical motion
with an axis G, whose Pliicker coordinates (g, g) are computed via Eq. @) (c) The optimized honeycomb layout of the spheres (with all centers inside D). The position

of the spheres before the optimization is shown top framed.

We look for a rigid body motion that moves the initial hon-
eycomb layout such that as-many-as-possible sphere centers are
located inside D. This is formulated as an optimization problem
as follows. We consider the first order approximation of the rigid
body motion, an instantaneous motion (aka a screw), defined by
its projectiveﬂ coordinates (c¢,€) € P°. Then an instantaneous
velocity vector v(x) of a point x € R? can be computed as

v(X) =C+ceXX, (1)

see [36] for more details.

There are two main objectives: (i) to move as many as possi-
ble external spheres into D while (ii) keeping as many as possible
internal spheres inside. To achieve (i), we require that the exter-
nal sphere centers move towards dD, where the boundary is, for
every point Xx;, represented by a tangent plane of D at its closest
point (aka footpoint) x}L This is formulated as

Fee® =Y (0 +exx;+&n)+d)) . 2)
=1

where d; = —(x}*,nj), <,> is the scalar product, and n; is the
boundary normal at the footpoint xj., see Fig. E}

The second objective that the internal sphere centers stay in-
side D is represented by a requirement that the centers move as
parallel as possible to dD, where the boundary is again repre-

sented by tangent planes of corresponding footpoints. This is
formulated as
n
Fie,®) = ) (exx+&m)” 3)
i=1

Finally, our search for the instantaneous motion (c, €) gives the
following minimization problem

F(c’ é) = Fl(c$ E) + WFE(C, E)’ - min’ (4)

where the weight w controls the importance of the external cen-

ters to be brought inside D, relative to the internal points being

moved inside D. In our all examples, w assumed to be in range
0.1 <w<04.

4The screw coordinates are points in 6-dimensional projective space P°, i.e
the six-tuple defines a screw up to a non-zero multiplication factor.

Vj=C+CXX;

Figure 4: We look for an instantaneous motion (¢, ¢), that moves the external
points x; towards D, represented as a tangent plane (translucent) at its orthogonal
projection, x/+.

Eq. (@) is a linear least squares problem in (c, €) and one there-
fore needs to solve only a (6 X 6) linear system. The solution is
an instantaneous motion, that can also be interpreted as a vector
field, see Fig. Ekb), that moves the centers best (in the least square
sense) according to our two main objectives. We recall a known
fact that moving the centers using this vector field is not sufficient
as one would distort the rigidity of the honeycomb structure (as
it is only the first order approximation of the rigid body motion).

To keep the structure fully rigid (i.e., to preserve that tangential
contact everywhere), one needs to apply a helical motion corre-
sponding to (¢, ¢). The Pliicker coordinates, (g, g), of the helical
axis G are computed via

c _ €-pc
g=—, &= , )
llell llell
where p is the pitch of the helical motion, p = {5, see e.g. [37].

Finally, the desired helical motion around G is a composition of
a rotation by an angle o = arctan ||c|| and a translation parallel to
G by a distance pa.

The whole algorithm is formalized in Algorithm|[T](and its sub-
routine Algorithm 2).

2.2. The “Randomization and Repulsion” Algorithm

In our second algorithm, each iteration is an attempt to find a
better configuration, which is performed by filling the shape with
randomly distributed spheres and letting them spread through D,
under repulsion forces. The overall algorithm can be thus de-
scribed as follows, while we discuss the details, in the coming
sections:



Algorithm 1 Sphere packing using rigid body motion
Input:
D: The domain in R? to be filled with spheres;
Dp: The exterior neighborhood of D with the offset distance ¢;
D,y := D U Dg;
r: The sphere radius;
Output:
The best valid configuration of spheres achieved after multiple applica-
tion of the “Rigid Body Motion”;
Algorithm:
1: C:= GenerateValidHoneycomb(D,, r);
2: fori=1toNdo
3 for all x; € C do
4 Cini:=GetlnternalS pheres(C, r);
RE Cext::C \ Cim‘;
6: Cinci:=FindClosestT oBoundary(C,, 0D);
7.
8

Couci:=FindClosestT oBoundary(C,y, 0D);
end for
9:  M:=GetOptHelicalMotion(Cinci, Cexci, D, 1); /| Alg. 2]
10: Chew:=MoveS pheres(C, M);
11: end for
12: return C,,,;

Algorithm 2 GetOptHelicalMotion - Optimum helical motion

Input:

D: The domain in R to be filled with spheres;

r: The sphere radius;

C: The configuration of the internal spheres;

C.xci: The configuration of the closest to dD external spheres;
Output:

The configuration of spheres after applying a screw motion;
Algorithm:

1: (¢, ) := the screw coordinates, see Egs.(T) — (@)

2: G := the axis of the helical motion, see Eq.;
3: for all x; € C U C,yc; do

4:  Rotate x; around G by a = arctan ||c||;

5:  Translate x; parallel to G by a distance %a;
6: end for

7: C: = S pheresTranslated(D, r);

8: return C;

Algorithm 3 Sphere packing using randomization and repulsion

Input:

D: The domain in R to be filled with spheres;

r: The sphere radius;

MaxNumRep: The maximum number of repulsions allowed within an
attempt (see Algorithm )

Output:

The best valid configuration of spheres achieved after multiple attempts;
Algorithm:

1: Cpes:=GenerateValidHoneycombFill(D, r); /| Alg. E]

2: while not S atis fied() do

3: Crew:=S P1RunAttempt(|Cpes| + 1, D, v, MaxNumRep); // Alg
4. if IsValid(C,,,, D, r) then

5: Cresi:=Cew;

6: end if

7: end while

8:

return Cj.;

First, in Algorithm[3] Line[I] we generate an initial, valid hon-
eycomb configuration, for example, using Algorithm (I} Then,
in Lines we iterate, in a search for a better configuration
(one that packs more spheres) until we are Satisfied, which is an
adjustable termination condition, in Line It could mean, for
example, a certain amount of time having passed. In each iter-

ation, we attempt to find a configuration with a greater amount
of spheres than the current best one. See the next subsection for
details. The configuration resulting from each attempt can either
be valid, in which case we treat it as a new best configuration,
or invalid, in which case we simply continue iterating until the
termination condition is met.

Algorithm 4 SP1RunAttempt - Running a single attempt

Input:
N: The number of spheres to try to fit into D on this attempt;
D: The domain in R to be filled with spheres;
r: The sphere radius;
MaxNumRep: The maximum number of repulsions allowed within an
attempt;
Output:
The configuration of spheres resulting from this attempt;
Algorithm:
1: C:=N random sphere center points within D;

: for 0 to MaxNumRep do

C:=S P1Repulse(C, D, r); [/ Alg. 5]

if IsValid(C, D, r) then

break;

end if
end for
return C;

RPRIN BN

Algorithm 5 SP1Repulse - Repulsion step

Input:

C,is: The configuration of spheres before the repulsion;
D: The domain in R to be filled with spheres;

r: The sphere radius;

Output:
The configuration of spheres after repulsion;
Algorithm:
I: Cnew : :¢;
2: for all Soid € Coig do
3: Snew+-=Sold>
4: for Sneighbor € C,a such that Sneighbor = Sold | <2rdo
5: V::sneighbor = Sold>
6: Snew:=Snew + a(zr - ”V”)mv
7: end for
8: Spew:=argming.p, [|d — s,,|l; // make sure s,,,, € D.

9: Cnew::Cnew U {Snew};
10: end for
11: return C,,,;

2.2.1. Finding a Better Configuration

The SPIRunAttempt function looks for a new valid config-
uration with N spheres. It starts with a random configuration
with a desired number of spheres, which satisfies inclusion in
D, but not necessarily non-penetration. Then, iterative repulsion
forces are applied between the spheres, which makes the spheres
spread around in the shape, aiming for the configuration in a non-
penetrating state.

In Algorithm 4] in Line [T we generate N random sphere cen-
ters within D. This can be done by generating random points
within the bounding box of D and filtering out those outside D,
until we find N centers. The configuration may be trapped in a
local minimum, which could result in an infinite loop. Hence, in
Line[2] we limit the number of repulsions by MaxNumRep.

In Algorithm [5] for each sphere s, that penetrates other
spheres (distance is less than 2r) we move s,.,, away by a frac-
tion of the penetration depth (0 < @ < 1). Our experiments have



Algorithm 6 Sphere packing using gravity shaking

Input:
D: The domain in R? to be filled with spheres;
r: The sphere radius;
Output:
The best valid configuration of spheres achieved after multiple applica-
tion of gravity;
Algorithm:
1: C:=GenerateValidHoneycomb(D,r);
2: while not S atisfied() do
3:  C:=SP2ApplyRandomGravity(C, D, r); /| Algorithm[7]
4: end while
5: return C;

Algorithm 7 SP2ApplyRandomGravity - Applying random gravity

Input:
C: The configuration of spheres to apply gravity to;
D: The domain in R to be filled with spheres;
r: The sphere radius;
Output:
The configuration of spheres after applying a gravity force once;
Algorithm:
1: g:=random unit vector in R?;
2: for all s; € C in descending order of (s;, ) do

3 StillMoving:=TRUE;,
4 while S tillMoving do
5: StillMoving:=FALS E;
6 Try move s; in some direction g, such that <gp"m, g} > 0;
7: if succeeded in moving s; then
8: StillMoving:=TRUE;,
9: end if
10: end while
11: end for

12: C:=S P2TryFillFreeS pace(C, D, r);
13: return C;

shown that @ = 0.5 is the best for convergence speed, as higher
values create significant oscillations and lower values reduce the
rate at which the spheres are spreading throughout D. Note that
the spheres are repulsed relative to the old positions of the neigh-
bors, which allows us to repulse each sphere in parallel. In Line
[B] we make sure that the centers of the spheres never leave the
shape by ‘clamping’ the result of the repulsion to dD. Clamping
the position to the closest point in D allows the spheres to ‘slide’
along D when being pushed out by their neighbors.

2.3. The “Gravity Shaking” Algorithm

Our third sphere packing optimization algorithm is based on
the idea of ‘shaking’ an already valid configuration of spheres
inside D in some preferred random directions (applying ‘gravity
forces’ along these directions). This process is likely to create
some free space on the opposite side of D that can possibly be
filled with new sphere(s). Similarly to Algorithm[3] in Algorithm
[6] we iterate over the configurations until we are Satisfied.

On each iteration of Algorithm[7] we push all the spheres along
one random direction g, as much as possible, in an attempt to
free up some space in the opposite direction. This is a similar
approach to the one used for the 2D case in [38] 28} [29].

2.4. Testing Border Conditions

For the three algorithms, described in Sections [2.1] [2.2] and
@ to work, we need to validate mutual non-penetration of the
spheres and to compute closest points on 9D, to ensure inclusion.
Let p be the center of a sphere during the execution of our sphere

packing algorithms. If D is formed by a polygonal border, this
query can simply be answered by finding the closest points to p
on each polygon and then choosing the closest one among them.
As is shown in Section 2.5] optimizations are possible to avoid
the examination of all polygons, every time.

The idea is similar for shapes formed by freeform surfaces in-
stead of polygons: one can find the closest point on each surface
patch and then choose the closest one among them. For each
parametric surface patch s(u, v), assuming it is C' continuous,
there are three possibilities for the location of the closest point.
The first possibility is in the interior of the surface itself, at some
point s(it, V) where the tangent plane of the surface is orthogonal
to the vector p — s(i1, V), i.e.,

P P
<p—ﬂﬁﬂﬂi@ﬁ»=0, <p—ﬂ&®%£@ﬁ»=0.6)

The second possibility of distance extrema is on the boundary of
the patch, formed by four curves ¢;(7), at some point c;(f) where
the tangent of the curve is orthogonal to the vector p — ¢;(?), i.e.,

(p=ci(B.ci(H) =0, j=1,..4 (7)

Equations (€) and (7)) are solved using a solver such as [39]]. The
final possibility one should examine for the closest point is at the
four corners of the patch.

2.5. Implementation considerations

The repulsion algorithm tries to push spheres by a fraction of
their penetration depth on each step, effectively reducing the pen-
etration depth inverse-exponentially, whenever possible. Such
behavior means that reaching zero penetration depth would take
infinite number of repulsions, or, when dealing with floating-
point numbers, be a matter of floating-point precision errors.
Since checking for zero penetration depth is fundamental in the
configuration’s validity check, we need to make this check with a
certain degree of tolerance (epsilon). The choice of the exact tol-
erance is task-specific, but should be selected as high as the task
allows, since increasing this tolerance would reduce the number
of repulsion steps needed to accept a configuration as valid, and
thus speed-up the whole process. Specifically, for truss struc-
tures, this accuracy need not be very tight.

Finding the sphere’s neighbors and finding the closest point on
0D, are two tasks that are solved numerous times, in both algo-
rithms. Optimization of these two tasks is, therefore, of utmost
importance. A naive algorithm for finding the neighbors of a sin-
gle sphere would involve checking all other spheres and returning
those with positive penetration depth. This naive algorithm runs
in linear time, traversing all other spheres. A constant time al-
gorithm can be implemented which involves a bounding volume
hierarchy (BVH) or a partitioning of the space around D into a
uniform grid with each grid cell tracking which spheres are cur-
rently inside of it. The same idea can be applied for optimizing
the process of finding the closest point on dD. For example, if
the shape is polygonal, we can pre-build a uniform grid with each
grid cell knowing a small subset of polygons that is guaranteed
to contain the closest point to any point within the cell.

The repulsion algorithm is parallelizable. Within each repul-
sion step each sphere can be processed in parallel as it does not
modify any memory besides the sphere’s new position. A high-
performance parallel implementation is therefore possible, de-
pending on the shape border type. Separate independent attempts
can also be run in parallel, allowing a larger-scale parallelization.
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Figure 5: A node, consisting of a sphere and half-beams (in opaque dark blue),
shown as part of a (translucent) truss lattice.
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Figure 6: A cross-section of the components of a node with one half-beam. In
(a), the sphere (dark red), the filleting (green), the cylindrical half-beam (light
blue), and the axis of the half-beam (dashed gray) are shown. (b) A zoomed-in
view of the filleting between the sphere and the half-beam. The control polygon
of the filleting (dashed gray) indicates that the quadratic filleting is tangent both
to the sphere and the half-beam.

The gravity algorithm can be parallelized using another ap-
proach. Whenever a new improved configuration is found (or
within fixed time intervals), it is possible to run several inde-
pendent instances of gravity shaking process branched from the
current best one (each with its own random seed for a direction
£). One of these instances will probably succeed faster or better
than the others, thus improving the overall performance.

Another routine that is called frequently in our rigid body mo-
tion algorithm is the computation of footpoints on a mesh 9D
and then the subsequent estimation of the normal vectors. De-
pending on the location of the footpoint (vertex, edge, or face),
the normal vector is computed accordingly (e.g., in the case of
a vertex by weighted averaging the normal vectors of the sur-
rounding faces, the weights being the areas of the faces). This
task is the bottleneck of the rigid body algorithm and was paral-
lelized by processing every point (a sphere center) in a separate
thread. Such a parallelization gave a speed-up of (almost) the
number of threads. The algorithm performance could possibly
be further improved by considering a better initial honeycomb
configuration. Currently, the initial configuration is built without
considering rotations of the honeycomb w.r.t. D.

3. Basic truss lattice construction

Once we have computed a sphere packing for the interior of
the model, we need to determine the connectivity of the asso-
ciated lattice, and then construct it. The lattice will be con-
structed from nodes consisting of a sphere (smaller than the
spheres packed in Section 2] while sharing the same center), and
the half-beams that exit from it (for an example, see Fig.[5). Each
half-beam will form half the length of the connection between
two adjacent sphere centers, P;, P;, allowing us to represent all

(a) (b) (c)

Figure 7: The three components of a node with one beam: the sphere in red, the
filleting in green, the beam in blue. Magenta indicates the reverse side of the
surfaces. (a) Shows an exploded view of the three components, before clipping
the sphere. (b) Presents an exploded view of the components, after clipping the
sphere. Finally, (c) is the assembled node.

the geometry associated with P; independently from other points
(again, for an illustration, see Fig.[5). The process for construct-
ing the lattice is described in Algorithm [8] and the process for
constructing a single node is described in Algorithm 0] These
two processes depend on several parameters (see also Fig. [6):

o deommect _ the threshold for connecting two nodes. If the
sphere packing algorithm packs spheres of radius r, then
we require that d°"™! > 2r.

e r*Phe¢ _ the radius of the spheres at the center of the lattice
nodes.

e /7¢M _ the beam radius.

o r/illet _the filleting radius.

e /el _ the filleting height.

The parameters /7 and h/"¢' together govern the computed
rounding between the spheres at the centers of the nodes, and the
beams in the node. We require that 757h¢7¢ > pfillet 5 ybeam

Algorithm 8 Lattice construction

Input:
P = {P;}: A setof points where the nodes will be placed (e.g., the centers
of the spheres computed by a sphere packing algorithm);
d“"'; The threshold for connecting two nodes by a beam;
(psphere ybeam pfillet pfillery: The parameters for constructing the nodes;
Output:
L: A truss lattice, as a set of lattice nodes;
Algorithm:
1: Np:={P; # P;| P; € P and |P; — P;| < d“"™}; // All nodes
neighboring P;.
2: for all (P;,P)) € {(P; € P,P; € P) | P; # P;} do // Filter out
intersecting beams.
for all P, € Np,, P,, € Np; do
if LineS egDist(P, — P;, P,, — P}) < 2rflet and
|Py — P;| > |P,, — P;| then

5: Np,;:=Np, — {Pi}; /| Disconnect Py from P;.
6: Np,:=Np, — {P;}; // And vice-versa.

7: end if

8: end for

9: end for

10: L:=¢; // The set of nodes.

11: for all P; € P do

12:  L:=L U ConstructNode(P;, r*Phere, pbeam pFillet pfillety. 1 Alg. El
13: end for

14: return L;

Given a packing of spheres of radius r, two lattice nodes,
P;, P;, are connected by a beam, if |P; — P;| < deomeet  Since
for all but the most trivial models, the sphere packing is not a
perfect fcc or hep packing, we typically use d“oe! = 2rv/2.
This heuristic stems from the likelihood that if four spheres are
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Figure 8: The clipping of two intersecting trusses. The color-coding is the same
as in Fig. m (a) Shows an exploded view of a node with the clipped sphere and
two (clipped) intersecting half-beams. (b) Is the assembled node.

arranged (approximately) in a planar quadrilateral, a beam will
be formed from only one of the diagonals.

Next, we check if any of the beams (which do not share a node)
intersect each other, by checking distances between two line seg-
ments in 3D (the axes of the two beams). Since the thickness of
each beam is bounded by /| we can determine that if the dis-
tance between the axes of the beams is greater than 27/ then
they do not intersect. If they do intersect, we filter out the longer
beams (see Algorithm [§] Lines ZHI).

With the connectivity of the truss lattice determined, all the
topological information needed to construct each node unit is
available. This construction process is described in Algorithm
El Each node is constructed from a sphere S;, and a set of half-
beams {C;;}. The half-beams are constructed by creating a pro-
file curve which consists of a filleting part which is tangent to
the sphere, and a linear part, only to construct a surface of rev-
olution from the profile curve. For an illustration of the con-
struction of the profile curve, recall Fig. [f] The central sphere
of the node is clipped by planes which form the bases of the
beams, to form a trimmed surface (see Fig. |Z|) Each half-beam,
at sphere center P;, C;, needs to be clipped at the contours of its
intersections with all other half-beams C;,, (if such intersections
exist). If the shapes (r2¢@", pfillet pJillety of all the half-beams are
the same, then the intersection curve is planar, and the clipping of
the half-beams can be efficiently computed by finding the plane
that bisects C;x, C; . and clipping C;x, C;,, against that plane. If
the shapes of the beams are not the same, the clipping must be
performed by computing full surface-surface intersections. An
illustration of the clipping of the intersecting beams is shown in
Fig.[§

The resulting lattice is constructed as a collection of bi-
quadratic rational (trimmed) B-spline surfaces. Each node con-
sists of a trimmed spherical surface, and half-beams that are (pos-
sibly) trimmed surfaces of revolution.

4. Extensions of the construction of truss lattices

The basic algorithm for the construction of truss lattices, pre-
sented in Section [3] can be extended in several directions. We
consider two such extensions here. In Section 4.1} we describe
a method for connecting the boundary shell of a freeform model
to a supporting truss lattice, and in Section [£.2} we adapt our
algorithm to generate a tensor-product trivariate volumetric rep-
resentation of the truss lattice, towards (isogeometric) analysis.

4.1. Connecting the model’s shell to the truss lattice

One of the several applications of truss lattices is supporting
the weight of other structures. With some simple modifications
to the algorithms described in this paper, we propose a method
for constructing a shell supported by a truss lattice, from a B-rep
freeform model.

Algorithm 9 ConstructNode - Constructs a single node

Input:
P;: The point at which the node will be constructed;
Np,: The set of nodes neighboring P; (see Algorithm@);
r’ pere, : The required radius of sphere i;

: The required radius of each beam i, k;

beam

f ile!. The required filleting radius of each beam i, k;

hf ile!. The required filleting height of each beam i, k;

Output

A lattice node (consisting of a sphere S (u,v), and a set of half-beams
that emenate from it, 7°);

Algorithm:

sphere

1: S (u, v):=Sphere of radius r;
2: T :=¢; [/ The set of beams.

3: for all P; € Np, do

4 Cix(t, r)' A cylinder of radius rbe‘"” height (

sphere

, centered at P;;

1P Pl hfillet _

5: ,A(t u) =A ﬁllet of radius rlf x and height hf illet to be G-
continuously joined with both C, «(t,r)and S;

6:  T:=T U{Cix(t,r) U Cix(t,w)};

7: S (u,v):=Clip(S (u,v), BasePlane(C;(t,1)));

8: end for

9: for all (Cix,Ci,) € {(Cix, Ci) €T XT | m # k} do
10: Cinter-=Intersect(C;y, C;); // The intersection contour.
11: if Cier # ¢ then

12: Ci,k::Clip(Ci,k, Cinrer);
13: end if
14: end for

15: return (S (u,v),7); // The clipped sphere and the set
of (possibly) clipped half-beams.

First, the B-rep of the shell must be obtained. It can be either
supplied by the user, or computed from the input B-rep model.
If the shell is not supplied, we compute an offset of the model,
to create the interior-side of the B-rep of the shell. Given a G'-
continuous surface S (i, v), we assume its normal field, N° (u, v),
is oriented so that it points to the interior of S. The offset sur-
face S 0775y, v) is defined as S Y75 (u, v) = S (u, v) + aNS (u, v),
where N (u, v) is the unit normal field, and « is the offset amount
- a parameter which will govern the thickness of the shell. The
computation of the precise offset surface is a complex task. It is
beyond the scope of this work, as it cannot, in general, be rep-
resented as a polynomial or rational surface. Any algorithm for
approximating an offset surface can be used, e.g., [40]]. Then, we
apply a sphere packing algorithm to the inner offset surface, and,
as in the basic algorithm (described in Section @) take the cen-
ters of the spheres, $ = {P;}, as the positions of the lattice nodes.
Additionally, for each P; € P, we compute the nearest point Q;
on S O/fs¢t Bvery Q; for which |P; — Q| < d*°™' will be used to
connect S °ffs¢t (o p;.

The connection of the node P; to the shell is done by inter-
secting S /7 with a cylinder with P; — Q; as its axis, and a
radius of #/"*!. The cylinder is positioned to ensure that its in-
tersection with §O/7set forms a closed loop. The intersection
contour, ¢%, forms one of the rails of the fillet, and also it is
trimmed out of SOffset The other rail of the fillet is a circle,
c’, of radius r*¢*", which is on a plane perpendicular to P; — Q;,
and positioned A/ above S /7% (along the P; — Q; direction).
The middle curve of this quadratic fillet is determined to ensure
G' continuity with both §%//5¢" and the beam (which is yet to
be constructed). A filleting surface is then constructed between
¢ and ¢”. Finally, a virtual neighbor, Q:, is assigned to P; at



Figure 9: Three views of a configuration of four nodes (red) connected to a shell,
S — §Offset (light blue), by beams (green). (a) The entire configuration. (b) An
exploded view of the connection between the shell and a beam by a fillet (dark
blue), with the fillet rails ¢! (tan) and ¢% (red). (c) A zoomed-in view of an
assembled node, connected to the shell by filleted beams with G! continuity.

Q) = P; + 2(Center(c") — P;), so that Algorithmwill connect
the node P; to the circle ¢’ by a half-beam. An illustration of the
resulting filleting is shown in Fig.[9](b), (c).

The entire process of constructing a truss lattice that is con-
nected to a shell is detailed in Algorithm[T0} An illustration of a
simple set of few nodes connected to a shell is shown in Fig.[9]

4.2. Converting the B-rep truss lattice to tensor-product trivari-
ates

The lattice construction processes we described until now have
all used a (trimmed) B-spline surface boundary representation of
the geometry. Inspired by a recent work on converting trimmed
B-spline geometry to tensor-product trivariate B-spline geometry
[41], we developed an algorithm for converting the lattice struc-
ture constructed by Algorithm [8] to a tensor-product trivariate
B-spline representation - an important step towards being (isoge-
ometric) analysis-ready.

Since Algorithm [§] is designed to produce a closed B-rep
model with a hollowed interior, we must start by constructing
a complete representation of the boundary surfaces of the node
and of each half-beam. We accomplish this by constructing the
interior surfaces which separate the half-beams from the sphere
and from other beams, as well as the caps of the half-beams. The
boundary surfaces of the node are S (u, v) (defined in Algorithm

, which is a sphere with parts of it trimmed out (see Algorithm
@ Line[7), and the bases of the half-beams. The boundary sur-
faces of each half-beam are Cj; (also defined in Algorithm [3),
the base and top caps of the half-beam, and, if C;; intersects
with any other half-beams C;,,, the boundary surfaces at which

Algorithm 10 Connecting the lattice to the shell

Input:
P = {P;}: A set of points where the nodes are to be placed (similarly to
Algorithm|[g);
de"™e': The threshold for connecting two nodes by a beam;
(psphere ybeam yfillet pfillery: The parameters for constructing the nodes;
§Offset: The B-spline boundary surface, representing the interior of the
shell model,;
Output:
A truss lattice;
Algorithm:

1: M:=¢; // The resulting geometry.

2: for all P; € {P; € P | Dist(P;, S %/fst) < deomecty do
. Qp=ClosestPt(P;, S 0ffsery;
C:= A cylinder with (P; — Q;) as its axis, centered at Q;;
¢S :=Intersect(S %1 C);
cT:= A circle normal to (P; — Q;), with its center positioned at a
distance of A/ from Q; along (P; — Q;).

: M:=MU {Fillet(c,cT)}; /| A G'-cont. C-S 2775 fillet.
8 SOIfset:=Trim(S 0I5 ¢S5,
9:  Np:={P; +2(C enter(c” — P;))}; // The virtual neighbor,

0Q;, in the SectionF.T] Np, is used in Alg. 8]

AN A

10: end for
11: Mi=MU (SO%Fs¢} U LatticeConstruction(P); || Alg.
12: return M;

Ciy was clipped (in Algorithm 0] Line [T2). For an example of
the boundary surfaces of a half-beam, see Fig. [10]

Once all boundary surfaces of the node and half-beams are
constructed, they are converted (if trimmed) from trimmed B-
spline surfaces to tensor-product B-spline surfaces, using an al-
gorithm, such as the one described in [42]. Finally, we can obtain
the B-spline trivariates by constructing ruled trivariates between
the untrimmed surfaces that form the node (the sphere and the
half-beams), and kernel points (represented as degenerate sur-
faces). For the surfaces of the sphere, the kernel point is the
center of the sphere. Similarly, for each half-beam, we con-
struct ruled trivariates between the boundary surfaces that form
the half-beam (the half-beam from Algorithm[9] the base, the top
cap, and the separating surfaces, as shown is Fig. [I0) and a ker-
nel point inside the half-beam. This kernel point is chosen near
the base, to guarantee that the lines connecting the kernel point
and the boundary surfaces of the half-beam are all contained in-
side the half-beam, ensuring that the Jacobians of the constructed
trivariates are strictly positive in their interior (the trivariates can
have singularities on their boundaries, which is considered tol-
erable in IGA applications). The overall process is detailed in
Algorithm[TT]

A special, but simpler, case for constructing the trivariate rep-
resentations of the half-beams occurs when a half-beam does not
intersect with any other half-beam. In this case, the half-beam
Cix is not clipped in Algorithm EI, and therefore can be con-
structed as a single ruled tensor-product trivariate between C;y
and a line going along the axis of the half-beam. In our exper-
iments, tensor-product half-beam surfaces were a very common
case in most of our tests. E.g., in the duck model in Fig. ﬂ;fl (d),
4759 out of 12932 half-beams were tensor-products. For a com-
parison, see the exploded view of the node in Fig. [I0[d): the
two tensor-product half-beam trivariates appear in light blue, and
the components of the half-beams that were trimmed and then
untrimmed appear in shades of green, purple, teal and bright
blue.

Algorithm[TT] constructs the trivariates in such a way that they
are non-overlapping, and without gaps between them. This, in
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Figure 10: The boundary surfaces of a beam needed to construct a trivariate model. (a) A node with four half-beams, two of them mutually intersect (green), while
the other are intersection-free (blue). The seemingly-irregular parameterization of the sphere is due to untrimming (see Algorithm@. (b) The boundary surfaces of a
beam (opaque) and (c) its zoomed-in image; the planar section separating the beam from its neighbor is shown in teal. (d) An exploded view. The components of the
central node are shown in shades of red. The components of the trimmed (and untrimmed) half-beams are shown using the colors: the outer boundary of the half-beams
(green), with the top caps (purple), the base caps (bright blue), the separating surfaces between the half-beams (teal), and the non-trimmed half-beams (light blue).

Algorithm 11 Trivariate node construction

Input:

S (u,v): The sphere surface at the center of the node;

T : The set of beams, as surfaces;

Output:

A lattice node, represented by compatible tensor-product trivariates;

Algorithm:
1: 7 :=¢; // The trimmed surface components of all the half-beams.
2: forall C;y € 7 do

Bix:=AllBoundarySrfs(Ciy); /| A set of all the boundary

surfaces of Cj.

hed

4 forallC;,, € 7 |m # kdo
5: Bix:=Clip(Bix, Cinm); /| Clip B, against C, .
6:  end for
7 T:=T U{Bir}
8: end for
9: r7~'triv:= ¢;
// Construct all the trivariates in the half-beam:
10: for all B;; € 7 do
11: K:=KernelPointIn(C;;); // Find a kernel point in C;.
122 7"V:=7"" Y ConstrTrivarElem(B;y, K); // Untrim all surfaces
in B, (if needed), and construct ruled trivariates with K.
13: end for
// Construct all the boundary surfaces of the center sphere, S (u, v):
14: S"™:=AllBoundaryS rfs(S (u, v));
15: S’"V:={ConserrivarElem(Sl’.”’", Center(S (u, v))), YSIm € S’”"’};
// Ruled trivariates between surfaces Sl’.’i’” and sphere center.
16: return S U 7", // The trivariates representing all the
components of the node and half-beams.

addition to the guarantee that the Jacobian of the trivariates is
non-negative (and strictly positive in the interior), allows precise
integration operations over the entire truss lattice.

5. Results and evaluation

We have tested our proposed methods on several models, both
B-spline and polygonal, and in this section we discuss the results.
The graphic results are described in this section, an analysis of
the quality of the resulting lattices is presented in Section[5.1]and

the performance of the sphere packing algorithms is discussed in
detail in Section

Figure 11: The results for sphere packing and truss construction for the duck
model. (a) The sphere packing results with 230 spheres of » = 0.09 and (b) the
associated truss lattice. (c,d) The analogous layout for r = 0.05.

First, a duck model, shown in Fig. |3|, is a B-spline surface of
orders 3 X 4 with 24 x 17 control points, and its outward dimen-
sions are 2.3x 1x1.1. We used Algorithm[6]to produce two pack-
ing of its interior: one with 230 spheres of radius 0.09 (shown in
Fig. fl;fl (a),(b)), and the other with 1067 spheres of radius 0.05
(shown in Fig. ﬂ;fl (¢),(d)). The two sphere packings demonstrate
an expected result, namely that a finer packing (greater number
of spheres of smaller radius) better captures the surface details
of the model, such as the smooth surfaces of the head and back



of the duck. Needless to say, such control over the sphere radius
has implications beyond the geometry, such as stress behavior.

Next, we created a modified version of the Stanford bunnyE]
(the original Stanford bunny has holes in the bottom, making it
unsuitable for sphere packing). The Stanford bunny is a polygo-
nal model with outward dimensions of 1.7 X 1.2 X 1.6. We used
Algorithm [3] to pack it with spheres of radius 0.06, resulting in
885 spheres. The result is shown in Fig. The bunny is a
more challenging model than the duck, especially in finding a
good sphere packing in narrow regions such as the ears. The
truss structure, however, seems to be able to fit the geometry of
the ears well, as shown in Fig. [I2[e). The resulting truss lattice
cannot preserve the fine surface details of the bunny. This would
require using much smaller spheres, in the sphere packing algo-
rithm. A honeycomb (regular) packing is shown in Fig.[I3]

An additional model we tested is a mechanical polygonal
model, with outward dimensions of 2.8 X 1.8 x 0.4. This model
does not have fine surface details, but its boundary is comprised
of both smooth (approximately) curved surfaces and planar faces.
On this model, we used Algorithm@]with spheres of radius 0.06,
resulting in 1086 spheres. The results are shown in Fig.[T4 One
can observe in this result, that in concave parts of the boundary,
and especially near corners, some of the beams go outside the
polygonal model. If we assume the mechanical model needs to
fit into a space designed specifically for it, or alternatively, bolts
needs to fit inside the bores (see Fig.|15|(a) and (b)), then these
beams may cause the model to fail to fit correctly. To allow the
user to address this issue, we offer an option to delete all beams
that go outside of the boundary of the model.

We perform an approximate clipping of the beams that go out-
side the model, considering only the line segments that form the
axes of the beams. To accomplish this, we perform two different
tests. For beams which neither start nor end at spheres that lie on
the boundary of the model (up to a tolerance), we simply test the
line that connects the start and end points of the beam for inter-
section with the boundary surface. For beams which start or end
at points on the boundary, we find all the contact points of the
beam with the boundary surface (including tangential contact),
if any. Then, for each of the segments between adjacent contact
points, we determine whether the middle of the segment is inside
or outside the model, using the same point-surface distance test
described in Section[2.4] We show the results of removing beams
that go outside the model boundary in Fig. (c) and (d), respec-
tively. Clearly, a more precise testing is feasible too. Considering
the minimal distance of the center line segment of the beam to
the boundary, an algebraic constraint similar to the point-surface
distance test described in Section[2.4] can be built and evaluated.

Another model we present is a knot-shaped tube, with outward
dimensions 1.9 x 0.8 x 1.9. Its B-spline model has orders 4 x 4
with 10 X 43 control points. The results for the sphere packing
and truss lattice construction are presented in Fig. Similarly
to the mechanical model, in the lattice that fills the knot-shaped
tube there are beams that go outside the model, connecting far-
apart regions. However, in particular applications that involve
structural mechanics, these extra beams may be beneficial, as
they could increase the structural strength of the structure. In
Fig. we show the knot-shaped tube with and without beams
that go outside the boundary of the model.

As an additional capability, we demonstrate another feature
that our framework supports, namely connecting the truss lattice

SOur version of the Stanford bunny was based on the model in:
https://www.thingiverse.com/thing:3731/files.
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to a model’s shell. For this experiment, we used a sphere packing
of the duck model, in which we removed all the spheres with
their centers on the model boundary. Cut-out views of the results,
showing half of the shell of the duck, are presented in Fig. [I9]

Next, we demonstrate a truss structure with non-uniform beam
radius. Recall that in Algorithm [9] each half-beam can have a
different 7*¢“". We used a very coarse sphere packing of the
duck model (radius of 0.17, which resulted in 46 spheres), and
assigned to each beam a radius proportional to its position along
the duck, back to front. This resulted in a structure with graded
thickness, presented in Fig. Such a degree of freedom in
the truss lattice structure may have advantages in, for example,
structural mechanics. Another degree of freedom to control the
physical properties of the lattice structure is the relative thickness
of the node versus the beam. We use the nodes of 2.5 times the
thickness of the beams in our examples that is in accordance with
the existing lattice systems [[13].

For an additional experiment, we printed the truss lattice that
results from the coarse sphere packing of the duck model, with
graded-thickness beams (the same one we used in Fig. [20), in a
high-end 3D printer. The results are shown in Fig.

The final model we demonstrate is of a polygonal arch bridge
with outward dimensions of 3 X 0.3 x 0.4. The road that is sup-
ported by the bridge structure is connected to the truss lattice by
passing road surface as a partial shell surface to Algorithm [T0}
The results are presented in Fig. [I6{a-d).

In Fig. [I6(e), we present an alternative solution: we con-
structed a truss lattice from a honeycomb sphere arrangement.
The resulting truss lattice is clearly more regular.

5.1. Quality evaluation

As we discussed in Section an ideal sphere packing re-
sults in a lattice of fcc or hep cells, which have properties that
are desirable in many engineering applications, but is not always
possible inside a boundary model of general shape. To evalu-
ate the truss lattices produced by our algorithm, we conducted a
quantitative and qualitative analysis of some of our results.

The connectivity of the truss lattice is dictated by the sphere
packing, and by the parameter d°"*“’. In fcc and hcp lattices,
only spheres in tangential contact with each other are connected
by beams, forming tetrahedrons. Therefore, the lengths of all
beams are 2r, where r is the radius of the spheres in the packing,
and the acute angles between them are all equal to 60°. In our
algorithm, we allow the user to control the maximum distance
between the centers of the spheres that will be connected, via
choosing the value of d°°""*“!, Therefore, we consider a truss lat-
tice that forms an fcc or hep lattice in the interior of the model,
but also conforms to its shape near the boundary, to be the de-
sirable result. We also expect that a denser sphere packing with
smaller spheres will better approximate the ideal result. In Fig-
ure we compare the lengths and angles of the duck model
packed with spheres with r = 0.09 (Figure [[T(b)), vs. the duck
packed with spheres with r = 0.05 (Figure[T1{d)). This compari-
son shows that using smaller spheres in the sphere packing leads
to more 60° angles between beams, which results in more tetra-
hedral structures. To illustrate a high-quality lattice produced by
the algorithm, we show in Figure[23]the bunny model (from Fig-
ure [T2) with the beams colored according to their lengths. This
example shows that our algorithm does indeed construct a regu-
lar tetrahedral truss lattice in the interior of the model (the bottom
of the image in Figure[23|a)), while also fitting its boundary.

Next, we present a comparison between our sphere packing
approach to truss lattice construction, and a simple honeycomb



Figure 12: The Stanford bunny. (a) The input model. (b) The resulting packing and (c) the associated truss lattice. (d) The truss lattice, shown inside the translucent
input model. (e) A zoomed-in view of the ears. The truss lattice manages to fit the complex geometry of the model at the ears.
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Figure 13: Honeycomb packing of the Stanford bunny. (a) The regular (honey-
comb) spherical packing of 2805 spheres. (b) Interior spheres that are closer than
r = 0.04 penetrate the boundary.

Figure 14: The mechanical model. (a) The input CAD model. (b) The resulting
sphere packing and (c) the associated truss lattice. For a larger view of the marked
red regions, see Fig.[T3]

truss lattice (constructed from the honeycomb sphere packing
used for the initialization of Algorithms [T} 3] and [§), clipped to
the boundary. Also, we demonstrate the qualitative differences
between truss lattices constructed by our algorithms and truss
structures constructed via parametric deformations.

In Fig.[24] we show a swept volume of a curved cross-section
(a), and the truss lattices that resulted from packing it with
spheres using the gravity shaking algorithm (Alg. [f), compared
to the truss lattice constructed from a honeycomb arrangement of
spheres (b). Since the honeycomb arrangement does not fit the
shape of the swept volume, the truss lattices has a “’staircase” ef-
fect, which does not occur in the truss lattice that was constructed
using sphere packing. Additionally, we computed the numbers
of tetrahedrons in both lattices, at regions near the bends (highly-
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Figure 15: Zoomed-in views of the truss lattice for the mechanical model (c.f.,
Fig.@. that has cavities. (a, b) The lattice shown inside the (translucent) model,
with the regions where the beams go outside the boundary marked in red boxes,
in Fig‘E (c, d) The truss lattice after filtering out the beams that go outside the
model’s boundary.

Model Blue (1) Cyan (2) Green (3)
Gravity (Fig. |2_4kb)) 19 44 54
Honeycomb (Fig. |2_4kc)) 12 22 77

Table 1: The numbers of tetrahedrons near the bends and in a straight section of
a swept volume, for a sphere-packed truss lattice vs. a honeycomb truss lattice.

curved regions) of the swept volume (the box marked as (2) in
Fig. @ (b), (c)), near the boundary (the box marked as (1)), and
near a relatively smooth section (the box marked as (3)). Since
fcc and hep cells are both comprised of tetrahedrons, we use the
number of tetrahedrons as a heuristic approximate measure for
the likelihood of fcc and hcp being formed in the truss lattice.
Table [T] shows that due to the “staircase” effect, the truss lattice
that was constructed via sphere packing has more tetrahedrons
near the bend than the truss lattice that was constructed from the
honeycomb arrangement. Near the boundary, the lattice that was
constructed via sphere packing has slightly more tetrahedrons,
because spheres (and therefore more lattice nodes) are packed
near the curved boundary. Near the relatively smooth region of
the swept volume, the number of tetrahedrons is higher in the
lattice that uses the honeycomb arrangement. This is because the
a honeycomb arrangement results in a maximally-dense tetrahe-
dral mesh where it is not near the boundaries of the model.

In Fig. 25 we constructed two truss structures using para-
metric deformation techniques. In the first experiment, we po-
sitioned a regular grid of 4 X 4 X 20 points inside the parametric
space of the swept volume from Fig. [24](a), and mapped them to
Euclidean space. Then, we constructed a truss lattice using these



Figure 16: An arch bridge. (a) The polygonal input model. (b) The optimal sphere packing and (c) the truss lattice constructed from it. (d) A zoom-in of the optimal,
yet irregular, lattice. (e) In contrast, the truss lattice constructed from the regular (honeycomb) sphere arrangement.

(a) (b)
Figure 17: The knot-shaped tube model. (a) The input B-s

resulting sphere packing. See also Fig. [T§] Figure 20: A truss structure with beams of graded (non-uniform) thickness, from

left (thick) to right (thin), globally.

Figure 18: Zoomed-in views of the truss lattice for the knot-shaped tube, c.f.
Fig.m (a) Due to its complex geometry, the tube (translucent) contains regions
where topologically different parts are close to each other, and therefore some
lattice beams go outside the tube. (b) The truss lattice after removing beams that
go outside the model boundary.

Figure 19: Connecting a truss lattice to a model’s shell. (a) A cut-out view of (a
low resolution) truss lattice connected to (a half of) the duck surface model. Note
that some of the beams are connected to the half of the shell that is not displayed.
(b) A zoomed-in view of the duck’s head.

points as the lattice nodes. While the overall shape of the result-
ing truss lattice (Fig. |7_5ka)) fits the shape of the swept volume, Figure 21: A 3D printed model of the simplified (46 spheres) duck, with graded-
the distances between the points are highly non-uniform. This thickness beams (see Figure 20). (a) A view showing the overall shape of the
is because the uniformly-spaced grid of points in the parametric du.ck. (b) A zoomed-in Yiew, showing the details of the nodes. This model was
f the swept volume is mapped non-uniformly into Eu- ~ Printed ona Stratasys printer.

space o P pp y

clidean space, and as a result, in some regions the truss lattice is

significantly denser than in others. This demonstrates that for all

but the simplest deformation functions, controlling the position- of the same swept volume. Each cell consists of a lattice node
ing of the lattice node using parametric deformation is a difficult =~ and beams that connect to the neighboring nodes, if such exist
task. In Fig. @b), we constructed a truss lattice from a regular (see Fig. @ (c)). Then applied the parametric deformation to
rectangular grid of 4 x 4 x 20 cells inside the parametric space  the entire truss lattice, similarly to [18]. We, again, see that the
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Figure 22: The distributions of the beam lengths and acute angles between beams.
The beam lengths are divided into ten buckets spanning the range [2r, d*"¢'].
(a) The beam lengths and (b) angles of the duck model with r = 0.09. (c) The
beam lengths and (d) angles of the duck model with r = 0.05.
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Figure 23: (a) The truss lattice constructed from the Stanford bunny, with the
beams colored according to their length. Green beams correspond to the first
bucket of the histogram (the first tenth of the range [2r, d“”"¢“']), the red beams
correspond to the last bucket, and the orange beams correspond to all other
lengths. Note that since we used d°?"™¢! = 2r V2, extra beams (red) are added to
the tetrahedral lattice, as in (b) the example octet cell. (c) The distributions of the

beam lengths and (d) acute angles between beams.

distances between the lattice nodes are non-uniform, due to the
non-uniform parametrization of the swept volume, but in this ex-
ample, the lattice nodes themselves are deformed. In fact, in this
example, the nodes are no longer spherical, and the beams are no
longer straight. This issue has been partially addressed in [18]],
by proposing an adaptive subdivision of the parametric space of
the deformation volume that attempts to form cells of similar size
in Euclidean space. Additionally, a library of bifurcation tiles

is used for connecting cells across the subdivision boundaries.

However, with this strategy a certain amount of deformation is
still unavoidable, and consequently, it is a less appropriate solu-
tion in cases where spherical nodes and straight beams are re-

quired (e.g. when the truss lattice needs to be load-bearing).
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5.2. Performance analysis

To compare the two sphere packing algorithms, Algorithm 3]
(randomization and repulsion) and [6] (gravity shaking), we mea-
sured the number of spheres they packed, starting from the same
honeycomb arrangement. We performed all measurements us-
ing a 8-thread Core i7 7700K CPU. Fig. [26] shows that there is
no clear winner between the two algorithms, in the general case.
Algorithm 3] (shown in blue in Fig. 26) is clearly superior in case
(a), where the potential number of spheres is low, especially in
the short run. On the other hand, when we allow more spheres by
reducing the sphere radius, Algorithm [6| (shown in orange) per-
forms comparably in the short run and noticeably outperforms
Algorithm [3] if given enough time to run. However, herein we
were mostly working with cases of 1000-2000 spheres and ex-
ecuted each sphere packing algorithm for around 10 hours. In
these particular cases, Algorithm [6] happened to always produce
better final results.

As discussed in Section 2.4} our sphere packing algorithms
support both polygonal and freeform surface boundaries. How-
ever, in our implementation, using freeform boundaries ended up
being two to three levels of magnitude slower than their polygo-
nal counterparts. Considering all these observations, in the result
summary provided in Table [2] we mostly focus on the results
achieved with the gravity shaking on polygonal models. In addi-
tion, we demonstrate the effectiveness of our algorithms on dif-
ferent time scales in Table3l

6. Conclusion and future work

We have presented an end-to-end process for packing a B-rep
model with spheres and a consequent construction of a truss lat-
tice structure. Such a lattice connects the centers of the spheres
with beams and fills the interior of the model. We have presented
three sphere packing algorithms. Furthermore, we have proposed
two extensions for the truss lattice construction algorithm: one
allows connecting the truss lattice to a model’s shell, and another
converts the (trimmed) B-spline truss lattice to a tensor-product
trivariate model. There are several directions in which our algo-
rithms can be further explored and extended:

Isogeometric testing. While we designed our algorithm for
converting the truss lattice to a trivariate model such that the gen-
erated parameterizations are (isogeometric) analysis-compatible,
testing this capability is beyond the scope of this work. Analyz-
ing the truss structures produced by our algorithm, for example,
for principal stress analysis, can provide valuable insights on the
properties of truss structures that result from sphere packing, and
compare their performance to structures designed by human en-
gineers, or other algorithms. We expect to explore this direction
in the future.

Shape optimization. Another potential benefit of using (iso-
geometric) analysis in conjunction with our algorithms is op-
timizing the parameters controlling the shape and size of the
beams and the fillets, again, for example, in the context of stress
analysis. This utilizes the ability to construct beams of differ-
ent thickness, that we demonstrated in our results. An analysis-
optimization loop for truss structures can be a powerful tool for
engineering.

Trivariate representations. Finally, a challenging extension
of our algorithm is constructing a trivariate representation of a
model’s shell with the truss lattice connected to it. We have
shown that the geometry of the nodes and beams can be con-
verted to tensor-product trivariate B-splines. A shell of arbitrary
shape and joints to beams presents a challenge. One needs to par-
tition the shell into compatible components, that can form tensor-



Figure 24: A comparison between truss lattices constructed using different node positioning approaches. (a) The model which was filled with the truss lattice. (b) Our
sphere packing approach, using Alg. [0] (c) Regular honeycomb sphere packing. The numbers of tetrahedrons in each of the boxes numbered (1), (2), (3) are presented

in Table[Tl

Model Figure BB size Radius  Algor. #IniSph #OptSph  # TrimSrf  # Trivar Truss¢  Trivar ¢
Duck ﬁc) 23x1x1.1 0.05 RBM 1019 1035 12661 183596  2m4s 8m2s

Duck 11{c),(d) 23x1xI1.1 0.05 GS 1019 1140 14072 233503 2m34s  SmlSs
Duck 11f@), (b) 23 x1x1.1 0.09 RR 170 230 2510 52937 23s 1m24s
Knot 17 1.9x0.8x1.9 0.04 GS 1034 1495 14357 303562  1mS5s  11mSls
Bunny 13 1.7x12x1.6 0.04 RBM 2714 2805 36165 501336 6m37s  60m48s
Bunny E 1.7x1.2x1.6 0.06 RR 817 885 10241 216024  1m43s  5Sm59s
Bunny 1.7x1.2x1.6 0.04 GS 2785 2990 37944 594211  7m25s  15m55s
Bridge 16} 3x03x0.4 0.04 GS 564 666 6930 116298 56s 2m42s
CAD 14] 2.8%x1.8x0.4 0.06 GS 1020 1086 12576 212763  1m59s  4m55s

Table 2: Statistics on the sphere packing and truss lattice construction for various models. In the top row, BB states for the “bounding box”, and the columns, in turn,
show the sphere radii, algorithm applied, number of initial and optimized spheres, number of trimmed surfaces and trivariates, and finally computational times of truss
and trivariate construction. In the Algorithm column, RBM indicates rigid body motion (AlgorithmEb, GS indicates gravity shaking (Algorithm, and RR indicates
randomization and repulsion (AlgorithmEl).

//
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Figure 25: Constructing a truss lattice using parametric deformation techniques.
Note the density of the lattice nodes near the high-curvature regions of the model.
(a) A truss lattice constructed from points positioned in a regular grid in the para-
metric space of the swept volume (see Fig. @ (a)), and then mapped into Eu-
clidean space. (b) A truss lattice constructed from a regular grid of cells, inside
the parametric space of the swept volume, and then deformed. (c) A single cell
(before the deformation) of the truss lattice.

product trivariates with a non-negative Jacobian, and choosing
kernel points accordingly.
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Figure 26: A comparison of the number of spheres packed by the randomization
and repulsion algorithm (blue), versus the gravity shaking (orange), for the duck
model over 10 hours. (a) r = 0.09. (b) r = 0.05.
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Table 3:

Model Radius  Algor. Initial ls 10s Im 10m lh 10h
Duck 0.05 GS 1019 1039 1050 1063 1089 1114 1140
Duck 0.09 RR 170 181 206 222 227 228 230
Knot 0.04 GS 1034 — 1309 1375 1417 1455 1495
Bunny 0.06 RR 817 — 825 830 870 878 885
Bunny 0.04 GS 2785 — 2828 2846 2881 2923 2990
Bridge 0.04 GS 564 594 612 625 641 658 666
CAD 0.06 GS 1020 1024 1030 1041 1057 1075 1086

Statistics of time-effectiveness of the sphere packing algorithms, shown as the number of spheres achieved within a given time-frame. The models and

algorithms are the same as in Table[2] Missing 1-second data in some cases means that one iteration of the algorithm takes longer than one second for that model and
radius.
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