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Abstract: In additive manufacturing, infill structures are commonly used to reduce the weight and cost 

of a solid part. Currently, most infill structure generation methods are based on the conventional 2.5-

axis printing configuration, which, although able to satisfy the self-supporting condition on the infills, 

suffer from the well-known stair-case effect on the finished surface and the need of extensive support 

for overhang features. In this paper, based on the emerging continuous multi-axis printing 

configuration, we present a new lattice infill structure generation algorithm, which is able to achieve 

both the self-supporting condition for the infills and the support-free requirement at the boundary 

surface of the part. The algorithm critically relies on the use of three mutually orthogonal geodesic 

distance fields that are embedded in the tetrahedral mesh of the solid model. The intersection between 

the iso-geodesic distance surfaces of these three geodesic distance fields naturally forms the desired 

lattice of infill structure, while the density of the infills can be conveniently controlled by adjusting 

the iso-values. The lattice infill pattern in each curved slicing layer is trimmed to conform to an 

Eulerian graph so to generate a continuous printing path, which can effectively reduce the nozzle 

retractions during the printing process. In addition, to cater to the collision-free requirement and to 

improve the printing efficiency, we also propose a printing sequence optimization algorithm for 

determining a collision-free order of printing of the connected lattice infills, which seeks to reduce the 

air-move length of the nozzle. Ample experiments in both computer simulation and physical printing 

are performed, and the results give a preliminary confirmation of the advantages of our methodology. 
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1. Introduction 

Additive manufacturing (AM) technologies have brought a significant change to manufacturing, 

which makes it possible to fabricate parts with extremely complex features that are otherwise 

impossible to be produced by traditional means such as machining. Fused deposition modeling (FDM) 

is one of the most commonly-used types of AM, owing to its low cost and simplicity, which builds a 

part layer by layer by extruding a molten filament [1] on the layers. Most FDM systems are of the 2.5-

axis printing configuration, namely, the geometric model of the part is first sliced into a series of 

parallel planar layers and then the material is deposited layer by layer along a fixed direction (Z+). The 

biggest limitation of this configuration is that support structure is usually needed in order to prevent 

the collapse of material when printing overhang features, which not only causes the extra cost of the 

printing material and printing time but also subjects the part surface to potential damage when the 

support is being removed eventually. Moreover, due to the nature of parallel slicing, parts built under 

2.5-axis configuration are inherently susceptible to the staircase effect and the consequent poor surface 

quality.  

Infill structures are commonly used in AM to reduce the weight and cost of a solid part. One 

critical requirement for the design of infill structures is that they must be self-supporting, as it would 

be extremely difficult or even impossible to remove any interior support after the part is printed. Dong 

et al. [2] and Tamburrino et al. [3] reviewed the properties and the modeling processes of lattice infill 

structures in additive manufacturing. Wu et al. [4] used the idea of adaptive rhombic grids to generate 

infill structures to satisfy the manufacturing requirements on both the overhang-angle and wall-

thickness, and the generated infill structures exhibit improved properties of both high stiffness and 

static stability. Similarly, Lee et al. [5] proposed a method for generating support-free elliptic voids by 

constructing a Voronoi diagram of ellipses, which aims at not only avoiding the need of interior 

supports but also achieving better mechanical properties than Wu’s rhombic infill structures [4]. 

Kuipers et al. [6] proposed a new self-supporting infill structure called CrossFill, which has the 

advantage that the extrusion printing paths are continuous and free of self-overlap. Wang et al. [7] 

presented a support-free hollowing algorithm based on the offsetting operation which can reduce more 

volume of material than Wu’s method [4]. Yang et al. [8] also proposed a hollow-to-fill algorithm 

based on the voxel model to guarantee the support-free property of inner surfaces for shape 

optimization. Similar voxel model-based hollowing methods can also be found in [9–12]. Gupta and 

Krishnamoorthy [13] developed a framework that can guarantee a sparse infill pattern according to a 

given arbitrary polygonal mesh; in addition, it guarantees the existence of a single, continuous and 

crossover-free tool path in each layer by using a novel Euler transformation. Additionally, there are 
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also some infill structure generation methods based on topology optimization [14–16] with self-

supporting as a constraint. Notwithstanding their richness, all the above infill structure generation 

methods are based on the conventional 2.5-axis printing configuration, which means that, although the 

generated infill structures in the interior of the part are self-supporting, exterior supports are still 

required when printing the surface of overhang features. 

To reduce the exterior support, many approaches have been proposed, although they are still 

limited to the 2.5-axis printing configuration. Hu et al. [17] proposed an orientation-driven shape 

optimizer which could considerably slim down the support by finding an optimal building direction. 

Zhou et al. [18] developed a tree-like support structure generation method based on the Lindenmayer 

system and an Octree. Vanek et al. [19] presented an optimization framework for the reduction of 

support, which tries to minimize the support material while providing sufficient support. Tricard et al. 

[20] proposed an interior rib-like support structure to build hollowed parts. Nevertheless, although in 

certain cases the support volume could be significantly reduced by these methods, they are not able to 

fully eliminate the need of exterior support, simply due to the nature of 2.5-axis printing configuration.  

As a viable solution to the shortcomings of 2.5-axis printing configuration, the 3+2-axis 

configuration allows a part to be printed with a finite number of different building directions, although 

for each building direction the printing configuration is still of the 2.5-axis type. Gao et al. [21] 

proposed a method to properly decompose a model into several sub-parts, which can then be printed 

consistently with different building directions with a much reduced amount of supporting material. 

Wei et al. [22] developed a skeleton-based algorithm for partitioning a model into the least number of 

sub-parts, which can (at least in theory) totally eliminate the need of support. Wu et al. [23] gave a 

support-effective volume decomposition algorithm that can minimize the surface area of regions with 

large overhangs. Based on the 3+2-aixs configuration, Bhatt et al. [24] developed an algorithm to print 

accurate thin-shell parts with no support. Similar research can also be found in [25–31]. Nonetheless, 

all these improvements are based on the 3+2-axis configuration, which become less effective for 

freeform parts with complex features and thus lack generality.  

The emerging continuous multi-axis printing configuration is perhaps the ultimate solution to the 

support-free requirement. Basically, on a multi-axis printing platform, we can not only slice the model 

into non-planar (i.e., curved) layers, but also continuously adjust the nozzle orientation to align with 

the layer normal, so to restrict the overhang angle below a threshold, thus achieving a total support-

free printing (at least in theory). Dai et al. [32] proposed a curved layer decomposition method for 

multi-axis printing based on the voxel model. This method is considered to be general for printing 
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freeform parts; however, it demands a huge computational cost due to the nature of voxelization. Xu 

et al. [33] recently presented a curved layer-decomposition algorithm, which first establishes a 

geodesic distance field on the part surface, then generates a set of closed iso-geodesic contours on the 

part surface, and finally fills these 3D contours into curved layers. However, one critical problem with 

their algorithm is that, as the curved layers are obtained by hole-filling the boundary loops, they are 

easy to intersect with each other when the slicing distance is small. Xu’s method uses the geodesic 

distance field as an intrinsic indicator to slice the part, which shows good generality and robustness. 

In terms of the calculation of geodesic field, Crane et al. [34] proposed an efficient and robust method 

for computing geodesics in a Riemannian manifold. Facilitated by a geodesic distance field embedded 

on the solid model, the part can be decomposed into a set of curved layers [35,36] that might be suitable 

for multi-axis printing. Additionally, Etienne et al. [37] proposed a curved layer generation method for 

printing a part on a 3-axis printers, which can effectively eliminate the staircase effect. Their method 

first uses planar planes to slice a deformed model of the part and then maps the planar layers back to 

the original model to obtain the corresponding curved layers. 

Although the above curved-layer decomposition methods based on continuous multi-axis printing 

configuration can significantly reduce or even, in most cases, completely eliminate the need of exterior 

support, they are all for printing the entire solid volume. Actually, to the best of our knowledge, due 

to the newness of continuous multi-axis printing configuration, so far there has no published reports 

on how to automatically design an infill structure and generate a printing path for an arbitrary freeform 

solid such that no support will be required for either the boundary or the infill structure. In this paper, 

under the continuous multi-axis printing configuration, we present a new methodology for 

automatically generating an infill structure as well as the accompanying multi-axis printing path for 

an arbitrary freeform part, which will be support-free for printing both the infill structure and the 

boundary surface of the part. The outline of the methodology is given next while its details will be 

presented in the ensuing sections. 

First, a new geodesic distance field (GDF) based curved-layer slicing algorithm is proposed. 

Rather than using only the iso-geodesic contours on the part’s surface as the boundary loops of the 

curved layers as did in [33], we compute the geodesic distance field directly inside the 3D volume of 

the part, which provides a more natural volume decomposition. Referring to Figure 1, for a three-

dimensional manifold (i.e., a watertight a solid), from the base of the part, we can define locally parallel 

geodesics that will fill the entire manifold, and the iso-geodesic distance surfaces (IGDSs) of this 3D 

field naturally decompose the whole part. Let us call this geodesic distance field the 𝛾-GDF. Because 

IGDSs are always perpendicular to the geodesics, the overhang angle at the boundary of any IGDS of 

https://scholar.google.com.hk/citations?user=ocs-R98AAAAJ&hl=zh-CN&oi=sra
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𝛾-GDF will be significantly reduced, making it possible to print the part without any support. As 

IGDSs never intersect each other, the tangling issue of potential intersections between close-by curved 

layers as filled contours is now conveniently averted. 

Then, based on 𝛾-GDF, a new lattice infill structure generation method is proposed, which will 

enable support-free printing for both the part boundary surface and the generated infills. Assuming 

that the printing always begins from the base (i.e., the bottom), a series of IGDSs of 𝛾-GDF, called 𝛾-

IGDSs (as shown in Figure 1 (b)), can be constructed which naturally decompose the entire part. These 

IGDSs are exactly the sought curved layers on which lattice infills will be planned. To generate the 

interior lattice infills, two other types of GDF, called 𝛼-GDF and 𝛽-GDF respectively, are established, 

which satisfy the desirable orthogonal property – the geodesics of the three fields are mutually 

orthogonal to each other. Next, the other two clusters of IGDSs – i.e., the 𝛼-IGDSs and the 𝛽–IGDSs 

– are generated, and the three clusters of IGDSs (i.e., the 𝛾-IGDSs, the 𝛼-IGDSs, and the 𝛽-IGDSs) 

are orthogonal to each other, as illustrated in Figure 1 (b). For each 𝛾-IGDS, a lattice infill pattern is 

formed by the intersection lines (isolines) between this 𝛾-IGDS and the 𝛼-IGDSs and the 𝛽-IGDSs. 

Because the three clusters of IGDSs are orthogonal to each other, the generated lattice pattern on each 

𝛾-IGDS is assured of self-supporting. In the rest of the paper, the symbols “𝛾-”, “𝛼-” and “𝛽-”, or the 

superscripts 𝛾, 𝛼 and 𝛽 will be used to differentiate similar elements regarding the three GDFs.  

Finally, to cater to the collision-free requirement and also to improve the printing efficiency, we 

propose a printing sequence optimization method that aims at effectively reducing the air-move length 

of the nozzle while upholding the collision-free constraint. 

The rest of the paper is organized as follows. In Section 2, the detailed algorithm of curved layer 

slicing and lattice infill structure generation is presented. Then Section 3 gives the details of the 

printing sequence optimization method and the printing path planning method for the lattice infill 

patterns. In Section 4, to validate the proposed methodology, we report the results of both computer 

simulation and physical printing experiments on several representative freeform parts. Finally, in 

Section 5, we conclude the paper and offer some discussions. 
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(a)                                                                                     (b) 

Figure 1  Illustration of the infill structure generation method: (a) the three geodesic distance fields; (b) the 

lattice structure formed by the intersection of the three clusters of IGDSs. 

2. Geodesic distance field-based slicing and infill generation  

In this section, we present our GDF-based algorithms for curved layer slicing and generating a 

self-supporting lattice infill structure. Specifically, in Section 2.1, the details of computing the three 

mutually orthogonal 3D GDFs on a tetrahedral mesh are given. Then, in Section 2.2, the algorithms 

for curved layer slicing and the generation of a lattice infill pattern in each layer are presented. Finally, 

in Section 2.3, the algorithm for the generation of a skeleton tree of the connected lattice infill patterns 

is proposed, which will facilitate the printing sequence optimization to be presented in Section 3. 

2.1 Generation of the three mutually orthogonal geodesic distance fields  

We assume that the given freeform model is represented by a tetrahedral mesh M (V, E, F, T ), 

where V, E, F and T are the collections of vertices, edges, faces, and tetrahedrons respectively. First, a 

3D GDF embedded on the tetrahedral mesh M is established, where the field value at any vertex is its 

geodesic distance to the specified bottom of the model, and this GDF is named as 𝛾-GDF (see Figure 

1 (a)). We apply the Crane’s heat method on the tetrahedral mesh to calculate 𝛾-GDF by setting the 

bottom as the heat source. In their method, the heat flow equation 𝑢̇ = ∆𝑢 is firstly solved discretely 

for a fixed time t; then, the gradient vector field X can be calculated by 𝑋 = −∇𝑢/|∇𝑢|; and finally the 

GDF can be determined by solving the Poisson equation ∆𝜙 = ∇ ∙ 𝑋.  

First, to solve the heat diffusion equation 𝑢̇ = ∆𝑢 on the tetrahedral mesh, it is rewritten in a 

discrete form as 

         (𝐈 − 𝑡𝐕−1𝐋𝑐)𝒖𝑡 = 𝒖0                                                         (1)  
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where 𝐈 is the identity matrix, 𝒖0 is the initial temperature field vector, 𝒖𝑡  is the temperature field 

vector at moment t, 𝐕 ∈ ℝ𝑛×𝑛 is a diagonal matrix containing the vertex volumes, and 𝐋𝑐 ∈ ℝ
𝑛×𝑛 is 

the Laplacian matrix. The detailed values of matrix 𝐋𝑐 can be found in [34]. For the initial temperature 

field vector 𝒖0, the temperatures at the bottom vertices are set as 1, while the temperatures at other 

vertices are set as 0. The appropriate time step t can be set as 𝑡 = ℎ2, where h is the average length of 

edges [34]. Then, the temperature field 𝒖𝑡 at moment t can be calculated by solving Eq. (1).  

For the kth tetrahedron 𝑇𝑘, the temperature scalar field inside its volume is defined as a piecewise 

linear function 𝑢𝑘(𝑥) = ∑ 𝜑𝑖𝑘(𝑥)𝑢𝑖𝑘
4
𝑖=1 , with 𝜑𝑖𝑘  being the piecewise linear basis function that is 

valued 1 at vertex 𝑣𝑖 and 0 at all other vertices, and 𝑢𝑖𝑘 being the temperature value at vertex 𝑣𝑖. The 

discrete temperature gradient inside the tetrahedron can then be expressed as  

        ∇𝑢𝑘 = ∑ 𝑢𝑖𝑘∇𝜑𝑖𝑘
4
𝑖=1                                                           (2)  

It should be noted that ∇𝜑𝑖𝑘 is simply the vector orthogonal to face 𝑓𝑖𝑘 and opposite to vertex 𝑣𝑖 in 

tetrahedron 𝑇𝑘, pointing towards vertex 𝑣𝑖 and with a magnitude of |∇𝜑𝑖𝑘| =
𝑎𝑟𝑒𝑎(𝑓𝑖𝑘)

3|𝑇𝑘|
 [38], where |𝑇𝑘| 

denotes the volume of tetrahedron 𝑇𝑘.  

The gradient vector field 𝒈𝑘
𝛾

 of 𝛾 -GDF can be obtained by normalizing  ∇𝑢𝑘 , i.e., 𝒈𝑘
𝛾
=

∇𝑢𝑘/|∇𝑢𝑘|. In order to generate the other two vector fields 𝒈𝑘
𝛼 and 𝒈𝑘

𝛽
 which are orthogonal to 𝒈

𝑘
𝛾, a 

reference vector 𝒓 is introduced, which can usually be set as 𝒓 = (1 0 0). Then, 𝒈𝑘
𝛼 and 𝒈𝑘

𝛽
 can 

be calculated by  

{
𝒈𝑘
𝛼 =

𝒓×𝒈𝑘
𝛾

|𝒓×𝒈𝑘
𝛾
|

𝒈𝑘
𝛽
= 𝒈𝑘

𝛼 × 𝒈𝑘
𝛾

                                                                         (3) 

wherein the vectors 𝒈𝑘
𝛾

, 𝒈𝑘
𝛼  and 𝒈𝑘

𝛽
 are all mutually orthogonal with each other. The integrated 

divergence of the gradient field associated with vertex 𝑣𝑖 can then be written as  

(𝐷𝑖𝑣𝒈)(𝑣𝑖) = ∑ ∇𝜑𝑖𝑘 ⋅ 𝒈|𝑇𝑘|𝑇𝑘∈𝑁(𝑖)                                                           (4) 

where N(i) is the set of vertices immediately adjacent to vertex 𝑣𝑖. Finally, the three GDFs, i.e., the 𝛾-

GDF 𝝓𝛾 , the 𝛼-GDF 𝝓𝛼 , and the 𝛽-GDF 𝝓𝛽  for all the vertices can be obtained by solving the 

following discrete Poisson equation  

𝐋𝑐𝝓 = 𝒃                                                                (5) 
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where 𝒃 is the divergence field vector of the gradient field. 

2.2 Curved-layer slicing and lattice infill structure generation  

Once the three orthogonal GDFs embedded on the tetrahedral mesh M (V, E, F, T ) are obtained, 

the curved layers and the lattice infill pattern in each layer can be constructed. The 𝛾-GDF is used to 

slice the whole part, namely, the curved layers are generated by interpolating a number of 𝛾-IGDSs, 

and each layer is sandwiched between two adjacent 𝛾-IGDSs. Let 𝛹𝛾 = {𝜙1
𝛾
, 𝜙2

𝛾
, . . . , 𝜙𝑖

𝛾
, . . . } be the 

set of sampling geodesic distances for 𝛾-GDF. For each 𝜙𝑖
𝛾
, a 𝛾-IGDS 𝑆𝑖

𝛾
 can be defined. Similarly, 

let 𝛹𝛼 = {𝜙1
𝛼, 𝜙2

𝛼, . . . , 𝜙𝑗
𝛼 , . . . }  and 𝛹𝛽 = {𝜙1

𝛽
, 𝜙2

𝛽
, . . . , 𝜙𝑗

𝛽
, . . . }  be the sets of sampling geodesic 

distances for the 𝛼-GDF and 𝛽-GDF respectively, and the corresponding 𝛼-IGDSs and 𝛽-IGDSs can 

also be interpolated. The lattice infill pattern in 𝑆𝑖
𝛾
can be formed by the intersection lines (i.e., the 𝛼-

isolines) between 𝑆𝑖
𝛾

 and the 𝛼-IGDSs, as well as the intersection lines (i.e., the 𝛽-isolines) between 

𝑆𝑖
𝛾

 and the 𝛽-IGDSs. Because the 𝛾-, 𝛼-, and 𝛽-IGDSs are all mutually orthogonal to each other, the 

generated lattice infill pattern in 𝑆𝑖
𝛾
 is assured of self-supporting if the nozzle orientation is aligned 

with the normal direction of 𝑆𝑖
𝛾
.  

Figure 2 illustrates an lattice infill pattern 𝐺𝑖(𝑉𝑖, 𝐸𝑖) at 𝑆𝑖
𝛾
, which is an undirected graph whose 

vertex set 𝑉𝑖 contains the intersection vertices between the isolines and faces of the tetrahedral mesh, 

the intersection vertices between the 𝛼-isolines and the 𝛽-isolines, and the interpolation vertices in 

terms of 𝜙𝑖
𝛾

 at the mesh boundary, and the edge set 𝐸𝑖 is a collection of edges between the vertices.  

Algorithm 1 shows the pseudocodes for the generation of 𝐺𝑖(𝑉𝑖, 𝐸𝑖). Specifically, Steps 1-12 find 

all the intersection vertices between the mesh faces and the 𝛼-isolines, wherein a function called 

GenGxVertex(𝐹𝑘 , 𝜙𝑖
𝛾

,𝜙𝑗
𝛼 , &𝑉𝛼 ) is used to judge whether there exists an intersection vertex 𝑉𝛼 

between the triangle face 𝐹𝑘 and an 𝛼-isoline in terms of 𝜙𝑗
𝛼– it returns true if an intersection vertex is 

found and false otherwise. Figure 3 illustrates the intersection vertex between an 𝛼-isoline in terms of 

𝜙𝑗
𝛼  and a face of the tetrahedral mesh. Because the 𝛼-isolines are on 𝑆𝑖

𝛾
 which has a 𝛾-geodesic 

distance of 𝜙𝑖
𝛾

, there must exist two interpolation vertices in terms of 𝜙𝑖
𝛾

 at the two edges of the 

triangle face respectively; assuming these two vertices are P and Q at edge AB and AC respectively 

(see Figure 3), the following condition must be true:  

{
(𝜙𝑎

𝛾
− 𝜙𝑖

𝛾
)(𝜙𝑏

𝛾
− 𝜙𝑖

𝛾
) < 0

(𝜙𝑎
𝛾
− 𝜙𝑖

𝛾
)(𝜙𝑐

𝛾
− 𝜙𝑖

𝛾
) < 0

                                                     (6) 
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where 𝜙𝑎
𝛾
, 𝜙𝑏

𝛾
 and 𝜙𝑐

𝛾
 are 𝛾-geodesic distances at vertex A, B and C respectively. Then, the coordinates 

of vertex P and Q, i.e.,𝑣𝑃 and 𝑣𝑄, as well as the corresponding 𝛼-geodesic distances can be calculated 

by 

{
 
 

 
 
𝑣𝑃 = (|𝜙𝑎

𝛾
− 𝜙𝑖

𝛾
|𝑣𝐵 + |𝜙𝑏

𝛾
− 𝜙𝑖

𝛾
|𝑣𝐴)/|𝜙𝑎

𝛾
− 𝜙𝑏

𝛾
|

𝑣𝑄 = (|𝜙𝑎
𝛾
− 𝜙𝑖

𝛾
|𝑣𝐶 + |𝜙𝑐

𝛾
− 𝜙𝑖

𝛾
|𝑣𝐴)/|𝜙𝑎

𝛾
− 𝜙𝑐

𝛾
|

𝜙𝑝
𝛼 = (|𝜙𝑎

𝛾
− 𝜙𝑖

𝛾
|𝜙𝑏

𝛼 + |𝜙𝑏
𝛾
− 𝜙𝑖

𝛾
|𝜙𝑎

𝛼)/|𝜙𝑎
𝛾
− 𝜙𝑏

𝛾
|

𝜙𝑞
𝛼 = (|𝜙𝑎

𝛾
− 𝜙𝑖

𝛾
|𝜙𝑐

𝛼 + |𝜙𝑐
𝛾
− 𝜙𝑖

𝛾
|𝜙𝑎

𝛼)/|𝜙𝑎
𝛾
− 𝜙𝑐

𝛾
|

                                       (7) 

where 𝑣𝐴, 𝑣𝐵  and 𝑣𝐶  are the coordinates of vertex A, B and C respectively, and 𝜙𝑎
𝛼, 𝜙𝑏

𝛼 and 𝜙𝑐
𝛼 are the 

𝛼-geodesic distances at vertex A, B and C respectively. The intersection vertex between the triangle 

face and the 𝛼-isoline in terms of 𝜙𝑗
𝛼 must be on edge PQ, and the following condition holds: 

 (𝜙𝑝
𝛼 − 𝜙𝑗

𝛼)(𝜙𝑞
𝛼 − 𝜙𝑗

𝛼) < 0                                                     (8) 

Finally, the coordinate 𝑣𝑁 of the intersection vertex N can be calculated by  

𝑣𝑁 = (|𝜙𝑝
𝛼 − 𝜙𝑗

𝛼|𝑣𝑄 + |𝜙𝑞
𝛼 − 𝜙𝑗

𝛼|𝑣𝑃)/|𝜙𝑝
𝛼 − 𝜙𝑞

𝑎|                                       (9) 

Function GenGxVertex(𝐹𝑘, 𝜙𝑖
𝛾
,𝜙𝑗
𝛼, &𝑉𝛼) first uses Eq. (6) and Eq. (8) to judge whether there 

exists an intersection vertex at the triangle face 𝐹𝑘, and then, if it exists, uses Eq. (7) and Eq. (9) to 

calculate the coordinate of the intersection vertex 𝑉𝛼 . After the calculation of all the intersection 

vertices on the 𝛼-isoline in terms of 𝜙𝑗
𝛼, the corresponding edges are constructed by traversing all the 

tetrahedrons, i.e., if two faces of a tetrahedron contain an 𝛼-vertex respectively, an 𝛼-edge is defined 

to connect these two 𝛼-vertices (as stipulated in Steps 7-11 in Algorithm 1).   

Similarly, Steps 13-24 are used to find all the intersection vertices between the mesh faces and the 

𝛽-isolines, wherein the function GenGyVertex(𝐹𝑘, 𝜙𝑖
𝛾
,𝜙𝑗
𝛽

, &𝑉𝛽) is used to judge whether there exists 

an intersection vertex 𝑉𝛽 between the triangle face 𝐹𝑘 and the 𝛽-isoline in terms of 𝜙𝑗
𝛽

– it returns true 

if an intersection vertex is found and false otherwise, and the corresponding 𝛽-edges are constructed 

by traversing all the tetrahedrons.  
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Figure 2  Illustration of the lattice infill pattern 𝐺𝑖(𝑁𝑖 , 𝐸𝑖) at 𝑆𝑖

𝛾
 

 
Figure 3  Illustration of the intersection vertex between an 𝛼 -isoline of 𝜙𝑗

𝛼and a face of the tetrahedral mesh  

After the generation of all the 𝛼-edges and the 𝛽-edges, the intersection vertices between them 

can be obtained by traversing all the tetrahedrons. As shown in Figure 4, a tetrahedron may contain 

several 𝛼-edges and 𝛽-edges, and some of them may intersect with each other. Take as an example the 

intersection vertex P between the 𝛼-edge AB and the 𝛽-edge CD shown in Figure 4, the following 

condition must be held: 

{
(𝜙𝑎

𝛼 − 𝜙𝑐𝑑
𝛼 )(𝜙𝑏

𝛼 − 𝜙𝑐𝑑
𝛼 ) < 0

(𝜙𝑐
𝛽
− 𝜙𝑎𝑏

𝛽
)(𝜙𝑑

𝛽
− 𝜙𝑎𝑏

𝛽
) < 0

                                                    (10) 

where 𝜙𝑎
𝛼 , 𝜙𝑏

𝛼  and 𝜙𝑐𝑑
𝛼  are the 𝛼 -geodesic distances of node A, node B, and the 𝛼 -edge CD 

respectively, while  𝜙𝑐
𝛽

, 𝜙𝑑
𝛽

 and 𝜙𝑎𝑏
𝛽

 are the 𝛽-geodesic distances of node C, node D, and the 𝛽-edge 

AB respectively. Then the coordinate 𝑣𝑃of the intersection vertex P can be calculated by: 

𝑣𝑃 = (|𝜙𝑐𝑑
𝛼 − 𝜙𝑎

𝛼|𝑣𝐵 + |𝜙𝑐𝑑
𝛼 − 𝜙𝑏

𝛼|𝑣𝐴)/|𝜙𝑎
𝛼 − 𝜙𝑏

𝑎| 
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𝑜𝑟. 𝑣𝑃 = (|𝜙𝑎𝑏
𝛽
− 𝜙𝑑

𝛽
|𝑣𝐶 + |𝜙𝑎𝑏

𝛽
− 𝜙𝑐

𝛽
|𝑣𝐷) /|𝜙𝑐

𝛽
− 𝜙𝑑

𝛽
|                                        (11) 

where 𝑣𝐴 , 𝑣𝐵 , 𝑣𝐶 , and 𝑣𝐷 are the coordinates of vertex A, B, C, and D, respectively. Inside the 

tetrahedron 𝑇𝑘, all the possible intersection points between the 𝛼-edges and the 𝛽-edges should be first 

calculated according to Eq. (10) and Eq. (11). Then, the corresponding edges will be segmented by 

these intersection vertices, and new edges should be defined according to these intersection vertices. 

The steps in Algorithm 1 from the 25th row to the 29th are used to find the intersection vertices between 

the 𝛼-isolines and the 𝛽-isolines by traversing all the tetrahedrons, where function GenGxyVertices(𝑇𝑘, 

&VL) is used to calculate the intersection vertices VL in the tetrahedron 𝑇𝑘  (it returns true if an 

intersection vertex is found, and false otherwise).   

 

Figure 4  Illustration of the intersection vertices between the 𝛼-edges and 𝛽-edges inside a tetrahedron 

In Algorithm 1, the steps from the 30th to the 40th row are used to calculate the interpolation 

vertices in terms of 𝜙𝑖
𝛾

 at the boundary of the tetrahedral mesh, as well as to define the corresponding 

boundary edges for 𝐺𝑖(𝑁𝑖, 𝐸𝑖) . The interpolation vertices can be obtained by traversing all the 

boundary edges. Specifially, function GenBoundVertex(𝐸𝑘, &𝑉) is used to judge whether there is an 

interpolation vertex V in terms of 𝜙𝑖
𝛾

 at the boundary edge 𝐸𝑘, which returns true if an interpolation 

vertex is found, and false otherwise. Take the interpolation vertex A at the boundary edge MN shown 

in Figure 5 as an example, the following condition must be satisfied: 

(𝜙𝑚
𝛾
− 𝜙𝑖

𝛾
)(𝜙𝑛

𝛾
− 𝜙𝑖

𝛾
) < 0                                                     (12) 

where 𝜙𝑚
𝛾

  and 𝜙𝑛
𝛾

 are the 𝛾-geodesic distances at vertex M and N respectively, and the coordinate 𝑣𝐴 

of the interpolation vertex A can be calculated by 

𝑣𝐴 = (|𝜙𝑚
𝛾
− 𝜙𝑖

𝛾
|𝑣𝑁 + |𝜙𝑛

𝛾
− 𝜙𝑖

𝛾
|𝑣𝑀)/|𝜙𝑚

𝛼 − 𝜙𝑛
𝑎|                                    (13) 
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where 𝑣𝑀 and 𝑣𝑁 are the coordinates of vertex M and N respectively. After the calculation of all the 

boundary vertices, the corresponding boundary edges can also be established by traversing all the 

boundary faces. Take the boundary face MNL shown in Figure 5 as an example. Vertex A and B are 

the interpolation vertices in terms of 𝜙𝑖
𝛾

 at edge MN and ML respectively, with which the edge AB can 

be defined. However, if there are some intersection vertices between face MNL and the 𝛼-edges or the 

𝛽-edges, such as point C and E shown in Figure 5, edge AB will be broken by these intersection vertices 

and new edges (i.e., edge AE, EC and CB) should be defined between vertex A and B. The above 

procedure to define the boundary edges in 𝐺𝑖(𝑁𝑖, 𝐸𝑖) is realized by the steps in the 35th to the 40th row 

in Algorithm 1, where function GenBoundEdges(𝐹𝑘, &EL) is used to find all the boundary edges at 

face 𝐹𝑘. Finally, all the edges inside the tetrahedrons are saved in the edge list 𝐸𝑖 of 𝐺𝑖(𝑉𝑖, 𝐸𝑖) (i.e., by 

the steps in the 41st to the 43rd row in Algorithm 1). 

 

Figure 5  Illustration of the interpolation points of 𝜙𝑖
𝛾
at the boundary edges 

Algorithm 1  Generation of the lattice infill pattern 𝐺𝑖 at 𝑆𝑖
𝛾
 

Input: the tetrahedral mesh M (V, E, F, T ) of the part with three embedded GDFs (𝜙𝛾, 𝜙𝛼 

and 𝜙𝛽) , 𝜙𝑖
𝛾
, 𝛹𝛼 = {𝜙1

𝛼, 𝜙2
𝛼 , . . . , 𝜙𝑖

𝛼 , . . . } and 𝛹𝛽 = {𝜙1
𝛽
, 𝜙2

𝛽
, . . . , 𝜙𝑖

𝛽
, . . . } 

Output: the lattice infill pattern 𝐺𝑖(𝑉𝑖, 𝐸𝑖) at 𝛾-IGDS 𝑆𝑖
𝛾
 

1 for each 𝜙𝑗
𝛼 in 𝛹𝛼 

2         for each face 𝐹𝑘 in F 

3                 if GenGxVertex(𝐹𝑘, 𝜙𝑖
𝛾
,𝜙𝑗
𝛼, &𝑉𝛼) 

4                         Put 𝑉𝛼 into 𝑉𝑖, 𝐹𝑘 𝑉𝛼 

5                 end 

6         end 

7         for each tetrahedron 𝑇𝑘 in T 

8                 if two faces of 𝑇𝑘 contain a node 𝑉1
𝛼 and 𝑉2

𝛼 respectively 

9                         Build an 𝛼-edge 𝐸𝛼 of 𝑉1
𝛼 and 𝑉2

𝛼, 𝑇𝑘 ← 𝐸𝛼 

10                 end 

11         end 

12 end 
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13 for each 𝜙𝑖
𝛽

 in 𝛹𝛽 

14         for each face 𝐹𝑘 in F 

15                 if GenGyVertex(𝐹𝑘, 𝜙𝑖
𝛾
,𝜙𝑖
𝛽

, &𝑉𝛽) 

16                         Put 𝑉𝛽 into 𝑉𝑖, 𝐹𝑘𝑉𝛽 

17                 end 

18         end 

19         for each tetrahedron 𝑇𝑘 in T  

20                 if two faces of 𝑇𝑘 contain a nodes 𝑉1
𝛽

 and 𝑉2
𝛽

 respectively 

21                         Build a 𝛽-edge 𝐸𝛽 of 𝑉1
𝛽

 and 𝑉2
𝛽

, 𝑇𝑘 ← 𝐸𝛽 

22                 end 

23         end 

24 end 

25 for each tetrahedron 𝑇𝑘 in T 

26         if GenGxyVertices(𝑇𝑘, &VL) 

27                 Put all the vertices in VL into 𝑉𝑖 
28                end 

29 end 

30 for each edge 𝐸𝑘 in E 

31         if GenBoundVertex(𝐸𝑘, &𝑉) .and. 𝐸𝑘 is a boundary edge 

32                 Put V into 𝑉𝑖, 𝐸𝑘 ←V 

33         end  

34       end 

35 for each face 𝐹𝑘 in F  

36         if 𝐹𝑘 is a boundary face  

37                 GenBoundEdges(𝐹𝑘, &EL) 

38                 Put all the edges in EL into 𝐸𝑖 
39         end         

40 end 

41 for each tetrahedron 𝑇𝑘 in T  

42         Put all the edges inside 𝑇𝑘 into 𝐸𝑖 
43 end 

 

Take the Y model shown in Figure 6 (a) as an example. The tetrahedral model contains 4014 

vertices and 17260 tetrahedrons. The vertices at the bottom are set as the heat source to calculate the 

𝛾-GDF, as well as the 𝛼-GDF and the 𝛽-GDF. The maximum 𝛾-geodesic distance is 44.29 mm, and 

the whole part is sliced into 44 layers with the 𝛾-geodesic interval set to be 1 mm (𝛹𝛾 = {1,2,3. . .44}). 

At each layer, the lattice infill pattern is generated by Algorithm 1 (the maximum 𝛼-geodesic distance 

and 𝛽-geodesic distance are 24.17 mm and 10.11 mm respectively, and the geodesic intervals for these 

two fields are all set as 2 mm, i.e., 𝛹𝛼 = {2,4,6. . .24}, 𝛹𝛽 = {2,4,6. . .10}). The generated lattice infill 

structures are shown in Figure 6 (b-c), and Figure 6 (d) shows the lattice infill pattern at the 24th layer. 

It can be seen that the lattice infill pattern in each layer is self-supporting because both the 𝛼-GDF and 

the 𝛽-GDF are orthogonal to the 𝛾-GDF.   
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(a)                                                                        (b) 

                   
(c)                                                                       (d) 

Figure 6  Generation of lattice infill structures for the Y model: (a) tetrahedral mesh of the model; (b) the 

generated curved layers; (c) lattice infill structures from the 1st to the 24th layer; (d) lattice infill pattern in the 

24th layer.  

Referring to Figure 7, the overhang angle 𝜃 at the part boundary is defined as the angle between 

the nozzle orientation and the normal direction n of the boundary surface, which measures the degree 

of danger of material falling. When angle 𝜃 is larger than a threshold (e.g., 135°), external support 

structure will be required in order to avoid the falling of material. Figure 8 (a) and (b) show the 

overhang angles of the Y model under the traditional 2.5-axis planar slicing configuration and our 

multi-axis GDF based curved-layer slicing method, respectively. As clearly seen, under our method, 

by aligning the nozzle orientation with the gradient direction of 𝛾-GDF, angle 𝜃 is kept at or near 90o, 

thus avoiding the need of extra support.  



15 
 

 
                                              (a)                                                                      (b) 

Figure 7  The overhang angle: (a) traditional 2.5-axis planar slicing; (b) multi-axis curved layer slicing. 

 

(a)    

 

(b) 

Figure 8  Overhang angle of the Y model: (a) traditional 2.5-axis slicing method; (b) our multi-axis 

curved layer slicing method. 
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2.3 The skeleton tree of the connected lattice infill patterns 

The generated lattice infill pattern in each layer resembles an undirected graph that may contain 

several connected sub-graphs, which can be identified by using the DFS (depth first search) algorithm. 

For all the connected sub-graphs, we define a tree data structure simply called a skeleton tree that 

identifies the topological relationship between them. As illustrated in Figure 9, on the skeleton tree, 

each node represents a connected sub-graph, and every pair of adjacent sub-graphs are corresponded 

by an edge between the two representative nodes on the tree. For any node 𝑎 on the skeleton tree, if 

node 𝑏  is connected to 𝑎  by an edge on the tree, we call 𝑏  an upper-node of 𝑎  if 𝑏’s 𝛾-geodesic 

distance is larger than 𝑎’s, and a lower-node otherwise. For example, on the tree in Figure 9, node 

𝐺25,1 has two upper-nodes, i.e., 𝐺26,1 and 𝐺26,2, and only one lower-node, 𝐺24,1. The skeleton tree is 

constructed from the bottom towards the top, and the corresponding algorithm is given in Algorithm 

1, wherein function AreTwoGraphsAdjacent (𝐺𝑖,𝑗,𝐺𝑖+1,𝑘) is used to judge whether any two nodes 𝐺𝑖,𝑗 

and 𝐺𝑖+1,𝑘 are adjacent to each other (i.e., to be connected by an edge). Referring to Figure 10, to judge 

whether 𝐺𝑖,𝑗 and 𝐺𝑖+1,𝑘 are adjacent, we can first randomly select an edge on the triangular mesh (the 

boundary of the part) that intersects the boundary of 𝐺𝑖,𝑗 ; then, from this edge, we trace out a 

geodesically steepest ascending path on the triangular mesh. Similarly, we can also trace out a 

geodesically steepest descending path from 𝐺𝑖+1,𝑘. The two nodes are adjacent to each other if at least 

one of the two paths go through both.  

 

Figure 9  Generating the skeleton tree of the connected lattice infill patterns 

Algorithm 2  Construction of a skeleton tree 

Input: All the connected sub-graphs of the decomposed layers: 𝐺𝑖{𝐺𝑖,1, 𝐺𝑖,2, . . . , 𝐺𝑖,𝑗, . . . }, i 

= 1, 2, …, n. 

Output: Skeleton tree of the connected lattice infill patterns 

1 /* n = the number of layers */ 
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2 for i = 1 : n-1 

3         for each graph 𝐺𝑖,𝑗 of ith layer do          

4                 for each IGDS 𝐺𝑖+1,𝑘 of (i+1)th layer do 

5                       if AreTwoGraphsAdjacent (𝐺𝑖,𝑗,𝐺𝑖+1,𝑘) then           

6                               Construct an edge between the two graph nodes 

7                       end 

8                 end 

9          end 

10 end 

 

 

Figure 10  Judge whether the two sub-graphs are adjacent to each other  

3. Printing process planning 

We have now decomposed the whole part into a number of curved layers according to the 𝛾-IGDS 

and constructed the lattice infill pattern in each layer, as well as a skeleton tree that identifies the 

topological relationship of the connected sub-graphs of the lattice infill patterns. In this section, we 

will first present our printing sequence generation method (Section 3.1) and then describe how the 

printing paths are planned (Section 3.2). 

3.1 Printing sequence generation  

The strict increasing geodesic order of the skeleton tree has already defined a partial order of 

printing – any node must be printed before its upper-node(s). However, since printing is a time-

continuous process, we must convert this partial ordering into a total ordering of traversal of the nodes, 

i.e., a single sequence of nodes to print, called a printing sequence. Hereafter we will interchangeably 

use the terms a “node” and a connected sub-graph (of a layer). The following criterion must be satisfied 

for any valid printing sequence:  

Criterion 1: a sub-graph can only be printed if its lower sub-graph(s) have already been printed.  
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Generally, there are two traversal strategies of a skeleton tree, i.e. the layer priority traversal (LPT) 

and the depth priority traversal (DPT). Refer to Figure 11, the layer priority traversal strategy traverses 

the skeleton tree layer by layer from bottom-up, which tends to avoid the collision to the utmost, for 

that the sub-graphs of each layer share the same 𝛾-geodesic distance. On the other hand, the depth 

priority traversal strategy traverses the skeleton tree along branches in priority, which favours 

minimizing the air-movement of the nozzle. However, as shown in Figure 12, under DPT, if a branch 

grows too deep, it may cause collisions when printing other branches.  

         

                                                                 (a)                                                                    (b) 

Figure 11  Traversal strategies of a skeleton tree: (a) layer priority traversal; (b) depth priority traversal. 

 

Figure 12  Illustration of possible collisions during a depth priority traversal 

In order to reduce the air-move path length while ensuring no collisions, we propose an 

optimization strategy which seeks a compromise between LPT and DPT. First of all, the collision 

check between the nozzle and the sub-graphs must be modelled. In this paper, the shape of the nozzle 

is simplified by its bounding cone, as shown in Figure 13 (a). Admittedly, this simplification is too 

conservative; however, because collision check is not the main topic of this paper, we opt for this 

simplification to implement our algorithm. When the nozzle cone sweeps along the boundary curve of 
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a sub-graph with its orientation coincident with the surface normal direction n, the envelope of motion 

will be a ring-like ruled surface 𝑆(𝑢, 𝑣) = 𝑷(𝑢) + 𝒗𝒌(𝑢), where 𝑷(𝑢) is an arbitrary point on the 

boundary curve of the sub-graph, and the unit vector 𝒌(𝑢)of the generator can be obtained by rotating 

the normal vector n at 𝑷(𝑢) around the tangent vector 𝝉(𝑢) of the boundary curve with the nozzle 

angle α, as shown in Figure 13 (a). Specifically, to construct the triangular mesh of the ruled surface, 

we first place a few sample points on the boundary curve of the sub-graph, then calculate their 

generators, and finally connect the generators as triangles. The upper and lower holes of the ring-like 

ruled surface should be filled to approximate the envelope volume of the cone over the entire sub-

graph. In this paper, we adopt the advancing front mesh (AFM) technique [39] to fill the holes, which 

is robust and simple. To determine whether there is a potential collision when printing a sub-graph, we 

only need to check whether there are intersections between other sub-graphs and this envelope volume. 

For each sub-graph, we can calculate all the potential collision sub-graphs (PCG) (i.e., other sub-

graphs that intersect the envelope volume of this sub-graph). Take the part shown in Figure 13 (b) as 

an example, the potential collision sub-graphs for sub-graph 𝐺4,1 will be 𝐺5,1, 𝐺6,1, 𝐺7,1, 𝐺7,2 and 𝐺8,2. 

The detailed procedures for calculating the PCGs of each sub-graph are given in Algorithm 3, where 

function CollisionCheck (Gi, Gj) is used to judge whether there are intersections between sub-graph Gj 

and the envelope volume of sub-graph Gi – it returns true if an intersection is identified and false 

otherwise.        

 
                                                            (a)                                                                          (b) 

Figure 13  Illustration of collision check between the nozzle and a sub-graph: (a) ring-like surface generated 

by sweeping the nozzle along the boundary of the sib-graph; (b) envelope volume of the nozzle motion.   

Algorithm 3  Calculation of the potential collision sub-graphs of each sub-graph 

Input: the graph list {G1, G2, …, Gi, …} and the nozzle cone angle α  

Output: PCGs list for each graph  

1 integer k = total number of sub-graphs 

2 for  i = 1: k  do         

3         for  j = 1: k  do 
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4              if  i != j then 

5                      if  CollisionCheck (Gi, Gj) then 

6                              Put Gj into the PCGs list of Gi. 

7                      end 

8              end 

9         end 

10 end 

 

Facilitated by the PCGs of each sub-graph, we propose a greedy traversal (GT) algorithm that can 

generate a collision-free printing sequence with a shorter air-move path length than that of the layer 

priority traversal. Besides Criterion 1, another criterion must be satisfied during the traversal: 

Criterion 2: a sub-graph can only be printed if the PCGs of all the unprinted sub-graphs exclude this 

sub-graph.  

Specifically, in Algorithm 4 below, function UpdateNodeCadidates (ST) is used to find all the 

printable candidate nodes which satisfy both Criterion 1 and Criterion 2 according to the current 

skeleton tree ST. And function SelectANode (NC, Nc) is used to update the current node Nc from the 

candidate node list NC. It will select the upper-node(s) of Nc in priority. However, if the upper-node(s) 

are not included in NC, the node which is nearest to Nc will be selected. To summarize, we traverse 

the skeleton tree along the branches in priority unless a potential collision is encountered.     

Algorithm 4  Printing sequence optimization algorithm  

Input: The skeleton tree ST of all the sub-graphs  

Output: Printing sequence list PQ of the sub-graphs  

1 Node candidates list NC = UpdateNodeCadidates (ST) 

2 Current node Nc = either node in NC 

3 while  NC != ∅  do 

4         Label Nc as printed  

5         Put Nc into PQ 

6         NC = UpdateNodeCadidates (ST) 

7         Nc = SelectANode (NC, Nc) 

8 end 

 

3.2 Printing path planning for lattice infill structures  

For any node (sub-graph) in the skeleton tree, a traversal printing path needs to be determined. As 

illustrated in Figure 14 (a), for a connected sub-graph 𝐺(𝑉, 𝐸), the number of intersection vertices 

(𝑣1, 𝑣2, . . . , 𝑣𝑘 , . ..) between the boundary curve and the isolines is always even and the degrees of these 

vertices are all 3, while the degrees of other vertices are either 2 or 4. To avoid excessive tool 

retractions, the sub-graph can be transformed into an Eulerian graph by properly trimming the 

boundary curve. As shown in Figure 14 (b), the boundary edges between the intersection vertex 𝑣𝑘 
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and 𝑣𝑘+1 (k = 2, 4, 6, …) are deleted, so that the degrees of all the vertices become even and the new 

graph must contain an Eulerian tour. In this paper, the well-known Fleury’s algorithm is used to find 

an Eulerian tour in a connected graph. However, to avoid crossovers on the printing path, the printing 

path will turn at any vertex whenever its degree is 4, i.e., at the intersection vertices between the 𝛼-

isolines and the 𝛽-isolines, as shown in Figure 15. To provide supports at places where the boundary 

edges are deleted, a support perimeter around the trimmed graph is added, which though is jagged at 

these places, as shown in Figure 14 (c) and (d). The offset distance between the boundary curve and 

the support perimeter is set to be the path width w, and the tooth length l can be adjusted to a proper 

value, e.g., l = 2w. The nozzle orientation at each vertex is set to be coincident with the layer surface 

normal vector of the corresponding 𝛾-IGDS. Because IGDSs are always perpendicular to the geodesics, 

the gradient vector of the geodesic field at the vertex can be directly used as the nozzle orientation.  

 

Figure 14  Printing path for a lattice infill pattern: (a) lattice infill pattern; (b) trimmed pattern that contains an 

Eulerian tour; (c) printing path for the lattice infill pattern; (d) generation of the support perimeter. 
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Figure 15  Avoidance of crossovers 

Due to the nature of curved layer slicing, the layer thickness h will no longer be a constant along 

the printing path. Refer to Figure 16, the intersection of the extruded filament is simplified to be a 

rectangle of h×w, where w is the path width; then, the following mass conservation equation should be 

satisfied during the printing process:  

𝜋𝑟𝑚
2𝑓𝑚 = 𝜇𝑤ℎ𝑓𝑝                                                                       (14) 

where rm is the radius of the original filament, fm is the feed rate of the filament, fp is the feed rate of 

the nozzle, and𝜇 is a correction coefficient which is smaller than 1 and can be determined by 

experiments. The layer thickness ℎ𝑘 at vertex 𝑣𝑘 of the ith sub-graph 𝐺𝑖(𝑉𝑖, 𝐸𝑖) can be calculated by 

finding the shortest distance of this vertex to the previous (i-1)th sub-graph 𝐺𝑖−1(𝑉𝑖−1, 𝐸𝑖−1): 

{
ℎ𝑘 = 𝐹𝑖𝑛𝑑𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑘 , 𝐺𝑖−1(𝑉𝑖−1, 𝐸𝑖−1))

𝑖𝑓 ℎ𝑘 ≥ 𝜆𝜙𝑖 , ℎ𝑘 = 𝜆𝜙𝑖
                                        (15) 

wherein function 𝐹𝑖𝑛𝑑𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑘, 𝐺𝑖−1(𝑉𝑖−1, 𝐸𝑖−1))  traverses all the edges of 

𝐺𝑖−1(𝑉𝑖−1, 𝐸𝑖−1) to find the shortest distance. To avoid a too large layer thickness, ℎ𝑘  should not 

exceed a threshold𝜆𝜙𝑖, where 𝜙𝑖  is the 𝛾-geodesic interval between 𝐺𝑖(𝑉𝑖, 𝐸𝑖) and 𝐺𝑖−1(𝑉𝑖−1, 𝐸𝑖−1), 

and𝜆is a coefficient which is larger than 1 (1.5 in our tests). Additionally, at the first layer, ℎ𝑘  can be 

set as the z-coordinate 𝑧𝑘 of vertex 𝑣𝑘. For the Y model, Figure 17 (a) shows the distribution of layer 

thickness deviation e at different layers when the geodesic distance interval 𝜙𝑖 is 1mm (e = (ℎ𝑘- 𝜙𝑖) 

/𝜙𝑖), with a maximum percentage deviation of 35%, and Figure 17 (b) shows the statistical results. 

Although the overhang angle at the boundary of the part is considerably reduced, the layer thickness 

is nonuniform due to the intrinsic nonuniform distribution of geodesics.  
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Figure 16  Illustration of the printing parameters  

  

Figure 17  Illustration of layer thickness of the lattice infill patterns: (a) distribution of layer thickness 

deviation at different layers; (b) statistical chart of layer thickness deviation at different layers. 

To avoid possible collisions when the nozzle moves from one connected sub-graph to another, in 

this paper, we make use of the safe box method (as reported in our recent works [40,41]).  As 

schematically shown in Figure 18, under the safe box paradigm, the nozzle first air-moves from the 

current sub-graph to one of the safe planes (which are outside the current in-process workpiece), then 

moves on this safe plane, crosses the obstacle (i.e., the in-process workpiece), and finally approaches 

another sub-graph. 
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Figure 18 Safe box of the in-process workpiece and planning of the collision-free air-move of the nozzle 

4. Experiments and discussion  

We have implemented the proposed methodology of automatically generating the lattice infill 

structures and printing path for multi-axis support-free printing of an arbitrary freeform part in C++ 

and run the computer program on a laptop with an Intel i7 CPU. In addition, for the purpose of physical 

validation, as shown in Figure 19, we have built a simple multi-axis FDM printer, which is composed 

of a 6DOF robot arm (UR5) and a three-axis filament feed system. The robot enables the in-process 

workpiece to realize any desirable posture with respect to the nozzle, while at the same time the robot 

and the filament feed rates are synchronously controlled to ensure that Eq. (14) is always satisfied 

during the printing process. Five freeform parts with complicated structures such as with overhangs 

and of non-zero genus numbers were chosen for the test and were also physically printed. In this section 

we report the experimental results of both computer simulation and physical printing, and together 

with our discussion.   

 

Figure 19  Homebuilt multi-axis robot printing system 



25 
 

4.1 Printing of the freeform parts 

Figure 20 depicts the tetrahedral models of the five freeform parts that are printed by using the 

proposed lattice infilling method, i.e., the Y model, the spiral model, the bunny, the kitten, and the 

propeller. Table 1 lists the printing parameters of the five parts. The 𝛾-geodesic distance interval for 

the curved layer slicing is set to be 0.6 mm. The lattice width for the first four parts are set to be 4 mm, 

6 mm, 6mm, and 6 mm respectively, while the propeller is printed in two steps – in the first step, the 

cylinder is printed with the lattice width set to be 8 mm, and in the second step the three blades are 

printed with the lattice width set to be 3 mm. Figure 21 and Figure 22 show the actual and simulated 

printing processes of the five parts, respectively, and Figure 23 shows some cross-sections of three 

printed parts. All the five freeform parts are successfully printed without any supports, for both the 

part boundary surface and the interior infills. Due to the intrinsic nature of geodesic distance field, the 

overhang angle at the part boundary surface is considerably reduced, making it possible to print a part 

without any exterior supports. As already described, the lattice infill structures are formed by the 

intersections between the three clusters of orthogonal IGDSs (i.e., the 𝛾- IGDSs, the 𝛼-IGDSs and the 

𝛽-IGDSs.), which guarantees that the generated infill structures are self-supporting.  

In terms of the computational cost, as our volume decomposition method is a combination of 

several computational processes, Table 2 lists the time complexities of these processes and the actual 

amounts of running time of the first four tests. The calculation of the geodesic distance field involves 

solving a linear system, so the time complexity is only O(n), where n is the number of mesh vertices. 

The time complexity of the lattice infill structures’ generation is O(n*m), where n and m are 

respectively the numbers of sliced layers and mesh vertices, as the time complexity of Algorithm 1 is 

O(m), and Algorithm 1 will be executed n times to generate the lattice infill for each layer. After the 

trimming of the lattice infill in each layer, the well-known Fleury’s algorithm is used to find an 

Eulerian tour, whose time complexity is O(n2), where n is the number of vertices in the sub-graph. The 

time complexity of layer thickness calculation (Eq. (15)) is O(n*m), where n is the number of vertices 

of the current sub-graph, and m is the number of edges of the previous sub-graph. By using a kd-tree, 

the time complexity can be reduced to O(n*logm). 

Table 1 Printing parameters of the five parts 

Part Number of 

tetrahedrons 

Time for 

printing path 

generation (s) 

Path 

length 

(mm) 

Actual 

printing 

time (min) 

Number of 

layers 

Width of 

the lattice 

(mm) 

Y 17148 33 49765 130 145 4 

Spiral  31152 74 71139 171 401 6 

Bunny 66467 203 194260 400 206 6 
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Kitten 58146 120 88338 232 161 6 

Propeller 
83314 

145 125425 327 
Cylinder: 183 

Blade: 83 

Cylinder: 8 

Blade: 3 

 

Table 2 Time complexities of the algorithms and the running time of the three tests 

Process Algorithm Time complexity Running time (s) 

Geodesic distance 

field generation 
Sec. 2.1 O(n) Y: 6; Spiral: 23; Bunny: 48; Kitten: 39 

Lattice infill 

generation 
Algorithm 1 O(n*m) Y: 5; Spiral: 17; Bunny: 26; Kitten: 16  

Finding a Eulerian 

tour   

Fleury’s 

algorithm 
O(n2) Y: 14; Spiral: 23; Bunny: 77; Kitten: 39 

Layer thickness 

calculation  
Eq. (15) O(n*m) Y: 4; Spiral: 6; Bunny: 36; Kitten:  15 

 
Figure 20  Five freeform parts to print: (a) Y model; (b) spiral model; (c) bunny; (d) kitten; (e) propeller.   

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 21  Multi-axis support-free printing with lattice infill structures: (a) Y model; (b) spiral model; (c) 

bunny; (d) kitten; (e) propeller.  

  

(a) 
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 (b) 

  

(c) 

  

(d) 

 

(e) 

Figure 22  Simulation of the printing processes: (a) Y model; (b) spiral model; (c) bunny; (d) kitten; (e) 

propeller. 
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     (a)                                                                         (b) 

 

(c) 

Figure 23  Cross-sections of the printed parts: (a) Y model; (b) bunny; (c) kitten. 

The lattice width (i.e., geodesic intervals for 𝛼-GDF and 𝛽-GDF) can be set to be a constant, 

which will result in even lattices (see in Figure 21 and Figure 24 (a)). However, to print a part with 

graded material properties (e.g., variable Young’s modulus), the lattice width can also be adjusted 

adpatively, namely, by increasing the density of infill lattices at certain places, as shown in Figure 24 

(b).  For example, the “roof” region of a printed part is typically the weakest, as the overhang angle 𝜃 

there is very small. Figure 25 shows the distribution of the overhang angle 𝜃 of the bunny model, 

where the blue regions identify the “roofs” that are susceptible to material collapse and the density of 

the lattices in these places should be increased.  

    

(a)                                                                                     (b) 

Figure 24  Even and non-even lattices   
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Figure 25  Distribution of the angle between the surface normal vector and the printing orientation   

4.2 Printing sequence optimization  

Next, we report the experimental results of three different printing sequence traversal algorithms, 

i.e., the benchmarking LPT and DPT, and our Algorithm 4 (A4), on a tree-structured part with three 

branches. As shown in Figure 26, the part is automatically decomposed into 151 infilling layers by our 

Algorithm 1 with the geodesic distance interval set at 0.6 mm, and the total number of the connected 

sub-graphs of the infilling layers is 311. Table 3 and Figure 27 show the simulation results of different 

cases. When the nozzle angle (which is denoted by NA that measures the size of the nozzle) is 75°, the 

printing sequence generated by the LPT is collision-free, which requires 162 retractions and the total 

air-move path length is 2382 mm. However, the DPT fails to generate a collision-free printing 

sequence, although the number of retractions (only 2) and the total air-move path length (only 101 mm) 

would be ideal. The proposed Algorithm 4 successfully plans a collision-free printing sequence with 

fewer retractions (24) and a shorter path length (654 mm) as compared with those of LPT. As expected, 

the number of nozzle retractions and the air-move path length are inversely related with the size of the 

nozzle (see Figure 27). Because the calculation of PCGs for each sub-graph involves collision check, 

the time complexity of A4 is the largest, i.e., O(k2*m), where k and m are the number of sub-graphs 

and the average number of vertices of each sub-graph, respectively. Figure 28 shows some snapshots 

of the actual printing processes of the A4 and LPT printing paths when the nozzle angle is 45°. (Note 

that we did not compare with the DPT path since it failed to print due to the unresolvable collisions.) 

The comparison results clearly confirm that, when compared to the LPT path, the filament drag 

problem is mitigated considerably by our A4 path owing to its significantly reduced nozzle retractions, 

thus leading to a much higher printing quality.   
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          (a)                                               (b)             

Figure 26  A three-branch model and its IGDSs: (a) model; (b) IGDSs. 

Table 3 Simulation results of the three traversal algorithms 

Algorithm Number of 

retractions 

Air-move path 

length (mm) 

Is collision-free 

or not 

Running 

time (s) 

LPT, NA: 75° 162 2382 Yes 0 

DPT, NA: 75° 2 101 No 0 

A4, NA: 75° 24 654 Yes 271 

A4, NA: 60° 17 371 Yes 177 

A4, NA: 45° 7 227 Yes 277 

A4, NA: 30° 5 146 Yes 154 

A4, NA: 15° 4 125 Yes 155 

A4, NA: 1° 3 108 Yes 242 

 

 

                                             (a)                                                 (b)                                                 (c) 
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                                               (d)                                                (e)                                              (f) 

Figure 27  Printing sequences generated by A4 under different nozzle angles: (a) 75°; (b) 60°; (c) 45°; (d) 

30°; (e) 15°; (f) 1°. 

 
(a) 

 
(b) 
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Figure 28  Actual printing processes when the nozzle angle is 45°: (a) A4, printing path length is 39946 mm, 

printing time is150 min; (b) LPT, printing path length is 42101 mm, printing time is 155 min. 

5. Conclusion  

This paper is motivated by the need of an automatic infill structure generation method for an 

arbitrary freeform solid part, that will ensure that both the generated infills and the given part boundary 

can be printed without any support under the continuous multi-axis printing configuration. Towards 

this objective, three mutually orthogonal geodesic distance fields embedded in the volume of the part 

are established. The iso-geodesic distance surfaces (IGDSs) of these three fields naturally form the 

curved layers of the part and the lattice infill structure, which, by aligning the nozzle orientation with 

the surface normal of the curve layers, guarantee that the overhang angles at both the part surface 

boundary and the infills are within the self-support range and thus eliminate the need of extra support. 

To avoid excessive nozzle retractions when printing the infills, the lattice infill pattern in each layer is 

first trimmed to an Eulerian graph and then a continuous printing path is constructed by using Fleury’s 

algorithm. In addition, we present a printing sequence optimization algorithm for establishing a total 

ordering of the connected lattice infills which, while respecting the collision-free requirement, tries to 

minimize the air-move path length of the nozzle. The results of both computer simulation and physical 

printing experiments have given a positive confirmation of the proposed methods.  

Regarding the limitations and future research, the sub-graphs of the generated infills by our 

method cannot always maintain the convexity if the part has a complicated topology, which may cause 

local collisions when the nozzle angle is large. It is conceivable that, even under the most conservative 

LPT, there can be cases when the collision simply cannot be avoided on a skeleton tree. One solution 

to this problem is using a slender nozzle to reduce the potential of local collision. On the other hand, 

as there are many ways to decompose a solid and generate curved slicing layers (e.g., [17] and [18]), 

a solid that fails our 3D geodesics-based curved-layer slicing and printing sequencing algorithm might 

well be printable without collisions under other strategies of slicing and printing sequencing. One 

plausible solution is that, rather than given a base, we freely select a base (including both its location 

and the size) on the boundary of the solid to define the γ-geodesic distance field and the corresponding 

lattice infill patterns so that their corresponding skeleton tree will be printable at least under LPT. 

Alternatively, for a given solid we could combine the proposed 3D geodesics-based volume 

decomposition with other types of decomposition and come up with a different set of curved slicing 

layers and their printing sequence that are better in dealing with the collision. All these will be our 

future research topics. 
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