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Abstract:

To relieve the computational costof design evaluations using expensive finite element (FE) simulations, surrogate
models have been widely applied in computer-aided engineering design. Machine learning algorithms (MLAs) have
been implementedas surrogate models due to their capability of learningthe complex interrelations betweenthe
design variables and the response from big datasets. Typically,an MLA regression model contains model
parameters and hyperparameters. The model parameters are obtained by fitting the training data. Hyperparameters,
which govern the model structuresandthe training processes, are assigned by users before training. There isa lack
of systematic studies on theeffect of hyperparameters onthe accuracy and robustness of the surrogate model. In this
work, we proposed toestablish a hyperparameter optimization framework to deepenour understanding of the effect.
Based onthe sequential model-based optimization method, the Pareto frontis generated by running the optimal
acquisitionand updatingthesurrogate model iteratively. The optimum acquisitionworks by repeating a design
space shrinking process. Using the acquired optimum, the surrogate model is updated, which describes the
relationship betweenthe hyperparameter combinations (inputs) generated by Latin hypercube sampling from the
design space and structural response (outputs) to evaluate themodelingaccuracy. The updated model will then be
used forthe next iteration of optimal acquisition until the termination criterionis met. Four frequently used MLAs,
namely Gaussian Process Regression (GPR), SupportVector Machine (SVM), Random Forest Regression (RFR),

and Artificial Neural Network (ANN), are tested on four benchmark examples of structure design optimization. For
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each MLA model, the modelaccuracy and robustness before and after the hyperparameters optimization (HOpt) are
compared. The results showthat HOptcan generally improve the performance of the MLA models in general with
dependency on model complexity. HOptleads to unstable improvements in the MLAs accuracy and robustness for
complex problems, which are featured by high-dimensional mixed-variable design space. We also investigated the
additional computational costs incurred by HOpt. The training cost is closely related to the MLA architecture. After
HOpt, the training cost of ANN and RFR isincreased more than thatof the GPR and SVM. In summary, this study
benefits the selection of HOpt method for different types of design problems based ontheir complexity (i.e. design
domain continuity and the number of design variables, etc.).

Keywords: Structuredesign; Surrogate models; Machine learning; Hyperparameters optimization; Gaussian process
regression; Support vector machine; Random forest regression; Artificial neural network

1. Introduction

In the development of complexstructures, suchasavehicle oraircraft, a large number of full-scale numerical
simulations are oftenneeded. As the supplement and partial substitute of these expensive simulations, surrogate
models have been widely used in engineering design and optimization to reduce the computational cost [1-3]. A
surrogate model is established from the design or simulation datasets through regression, to approximate thereal
model. It provides anefficientway of predicting the responses of new design alternatives without running additional
simulations [4]. Surrogate-based methods have been applied successfully in engineering practices, forexample,
vehicle crashworthiness design [5], crane bridge optimization [6], transportation facility design [7]and so on. To be
adaptedto various engineering problems, which are characterized by a different number of design variables, degree
of nonlinearities, and loading rates and so on, several surrogate models have been proposed, suchas polynomial
response surface model, radial basis functionand Krigingmodel [5]. However, it is impossible to use one surrogate
modeling methodto provide accurate predictions for all types of problems [8]. Therefore, much effort was madeon
the selection ofa suitable algorithm fora specific engineering problem [8-10], and the ensemble and aggregation of
multiple surrogatemodels [11, 12] fora higher modelingaccuracy.

To comply with therequirement of surrogate modeling with higheraccuracy, MLAs have been applied to
implement surrogate models fora wide range of problems dueto their powerful learning ability and high flexibility

[8, 10,13-18]. The traditional surrogate methods contain only model parameters that can be fitted by data. For



example, the constants of the linear regression canbe determined by the leastsquare error method; polynomial
response surface parameters can be determined by gradient-based methods. Unlike the traditional surrogate
modelingapproaches, a typical MLA contains notonly model parameters butalso hyperparameters [19-21], which
have to beassigned before model trainingto controlthe training process and model structures [22]. They havea
greatimpacton model flexibility, accuracy, and robustness [20, 21, 23, 24].

Up to date, no systematic studies have been conducted regarding the effect of hyperparameters on the MLA-
based surrogate modeling in engineering design. Mostof theexisting studies [25], which applyingMLAs as
surrogate models, eitherdirectly use thedefault values provided by the MLA package [26], or determinetheir
values based onexperience [27] or trial-and-error [28]. Although these surrogate models were trained with good
accuracy under pre-determined loss function(s), the potential of the MLAs has notbeen fully exploitedand the way
that hyperparameters affect the surrogate modeling performance has notbeen clarified. To analyzethe influence of
hyperparameters on the prediction performance, several studies have been performed by parametric analysis in
variousareas, including the biomechanical analysis [29], material design [30]and mineral exploration [31]. In these
studies, however, only asmall portion of hyperparameters were tuned from a specific dataset, and the final values of
hyperparameters were determined subjectively. Also, the effect of MLA hyperparameters has notbeen investigated
in the area of structural design. Lackingthis knowledge, it would be very difficult to fully understand andimprove
the surrogate modeling of MLAs in the structural design practice. Furthermore, the potential of MLAs cannot be
fully exploited solely by traditional parametric studies [32]. The HOpt in structural design is therefore needed.
HOpt, which adapts the optimization methods in hyperparameters tuning by takingthe hyperparameters as design
variables, hasbeen considered as an effective technique to search optimal values of selected hyperparameters. With
the help of HOpt, the greatimprovement of MLAs prediction accuracy has been confirmed based on many public
datasets[21,23, 24, 33]. However, no studies have beenreported onHOptin structure engineering.

In thiswork, by developinga multi-objective HOpt framework, the effortis made to analyze the surrogate
modeling performances of four frequently used MLAs, namely, Gaussian Process Regression (GPR), Support
Vector Machine (SVM), Random Forest Regression (RFR), and Artificial Neural Network (ANN). These MLAs are
selected asthey are widely applied in structural engineering problems, as summarized in Table 1 [11,27,28, 31, 34-
56]. Aftera discussion of theiraccuracy, training cost, and model robustness beforeand after the HOpt, the

hyperparameters tuning of two superior MLAs are also discussed. The method developed in this study canbe used



to determine the hyperparameters for general structural design problems. The results can help better understanding
the effect of HOpton machinelearningmodels and then be readily extended to solve more complexstructural
design problems.

The remaining parts of this work are organized as follows. The HOpt framework is described in detail in
Section 2 andthen it isused to formulate the HOptfor thefour MLAs in Section 3. Four engineering benchmark
structures are selectedand introduced in Section 4, where the simulation datasets are generated. The optimization
processes arecompleted, andtheresults arepresented and analyzed in Section 5 to investigate the hyperparameters
effect onmodelingaccuracy andtraining cost. A further discussionin Section 6 reveals the effectof HOpt on the
surrogate model accuracy and robustness. Besides, parametric studies on the hyperparameters of two superior

MLAs, GPR and ANN, are conducted andtheresults are summarized and documented in the supplement file.

Table 1 Literatureon themachine learningalgorithms applied as surrogate models in structural engineering

Hyperparameters
Literature Algorithm Application .
assignment
. . Experience and trail-
Mukherjee, A. etal (1995) [34] | ANN RC beam design
and-error
Kapania, R. K. et al (1998) [35] | ANN An aerospace continuum beam design Trail-and-error
Nagendra, S. etal (2004) [36] ANN A turbine disk performance prediction Trail-and-error
] ] Experience and
Lee, J. et al (2007) [37] ANN A suspension design L
optimization
The robust design of sheet metal forming .
Tang, Y. C. etal (2009) [38] SVM Experience
process
Guo, Z. et al(2009) [39] SVM Reliability analysis for huge space station Not mentioned
B-pillar weight minimization using tailor- .
Pan, F. etal (2010) [27] SVM Experience
welded blank (TWB) structure u
. The response prediction of a cylinder and whole ]
Wang, H. et al (2010) [40] LS-SVM™ . Not mentioned
vehicle crash
Huang, Z. etal (2011) [41] GPR™ Optimal design of aero-engine turbine disc Experience
Design of vehicle structures for lightweight and ]
Zhu, P. etal (2012) [28] SVM . Trail-and-error
crashworthiness
Crashworthiness optimization of a foam-filled .
Zhang, Y. etal (2012) [42] GPR . Experience
bitubal square column
Haleem, K. et al (2013) [43] RFR To predict the severity of traffic accident Experience
RSM™, GPR, A foam-filled tapered thin-walled structure
Song, X. et al (2013) [44] . o Experience
SVM, and RBF™ response prediction
] RSM, RBF, GPR, ] ] ]
Yin, H. et al (2014) [45] A foam-filled thin-walled structure Experience
and SVM




Lukaszewicz, D. et al (2014) Prediction of structure impact performance

RFR . o Not mentioned
[46] and (2015) [47] under manufacturing variation
Rodriguez-Galiano, V. et al ANN, DT, RFR, [ Used to map the statistical distribution of Trail-and
rail-and-error
(2014) [48] and (2015) [31] and SVM & RFR | mineral prospectivity based on images
To explore the multi-objective design of foam-
Fang, J. et al (2014) [49] GPR . . . Trail-and-error
filled bitubal structures under uncertainty
] RSM, GPR, . .
Ferreira, W. G. et al (2015) . Analytical and real-world vehicle .
RBNN™, and ] . Experience
[11] crashworthiness analysis
SVM
Fang, J. et al (2015) [50] GPR For the multi-cell tubes optimization Not mentioned

Response prediction of train sets crash with

Tang, Z. etal (2016) [51] RFR Experience

respect to different parameters

Demonstrated by a thin-walled box beam and a

Liu, X. et al (2016) [52] GPR Not mentioned

long cylinder pressure vessel example

] Used to find important variables explaining ]
Raihan, M. et al (2018) [54] RFR ) ) Not mentioned
clustered traffic accident data

Multi-objectives optimization of a new vehicle

Duan, L. etal (2018) [55] SVM o Experience
longitudinal beam

Palar, P. S. etal (2018) [56] GPR The airfoil models design Optimization
Predicting the international roughness index of .

Gong, H. R. et al (2018) [57] RFR Trail-and-error

asphalt pavements

. Predicting aeronautics loads of a derivative o
Fournier, E. et al (2018) [58] RFR ircraft Optimization
aircra

Note: " LS-SVM: Least Square-SVM; ™ GPR is also known as the Kriging method with almost the same basic function. " RSM: Response
Surface Method; ™ RBF: Radial Basis Function; " DT: Decision tree; " RBNN: Radial Basis Neural Network;

2. The framework of multi-objective hyperparameters optimization

Four MLAs, i.e. the GPR, SVM, RFR, and ANN, are selected, where the detailed algorithmsand model
architectures canreferto [59, 60]. They are implemented and trained using the R language package: mlr [61]and
mxnet [62].

The framework with HOpt was established to achieve two basic goals: (1) demonstrate the effect of
hyperparameters optimization onthe accuracy and robustness of thesurrogate models as applied in structural design;
and (2) studytheeffect of each individual hyperparameter on the overallmodel response. In addition to these
functional elements, the framework also realizes a seamless process of structural geometric design, finite element
analysis, surrogate modelingand hyperparameter tuning by integrating multiple engineering software.

There are several tools available for HOpt, forexample, Hyperopt, Optuna, Tune, scikit-learn, scikit-optimize,
SMAC, Autotune, etc. [63, 64] A quantitative comparison with the computational results from these software is

essentially a comparison of different optimizationalgorithms. This has been done in [65, 66]and is not the purpose
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of the presentstudy. Thesesoftware toolsarefocused on MLA performance butnotdesignedanddirectly used for

surrogate modelingin the structural design.
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Figure 1 The framework forthe multiobjective HOpt based onthe sequential model-based method andthe detailed
workflow of the optimum acquisition

The sequential model-based optimization (SMBO) [19, 67] was used as the basic method as it canreach the
optimum efficiently. Fora specific MLA, the HOpt problem was formulated first to determine the objective(s) (i.e.
searchingcriteria), tuned hyperparameters, and ranges. The design of experiments (DoE), i.e. multiple combinations
of hyperparameters, aregenerated by Latin hypercube sampling (LHS) functionin Ihs package [68] and evaluated
by trainingthe corresponding MLA. The model accuracy quantified by the predefined measures of accuracy is
consideredastheresponse of each DoE. Based on this hyperparameters dataset, a surrogate modelis trained to
represent therelation betweenthe hyperparameters and accuracy measures. In this study, RFR isused as the
surrogate model to fit measure values with respect to hyperparameters since it could deal with the categorical
featuresdirectly, forexample, the selection of GPR and SVM kernelsand ANN activation functions. The other
surrogate methods are less flexible and deal with categorical data by converting to numerical values.

Using the constructed RFR surrogate model, the optimal hyperparameters are predicted and evaluated by

trainingtheir MLA. The tuning process is terminated when the termination criterion, e.g., the maximum number of



iterations (Nv), is reached. Otherwise, this optimal design will be addedto the hyperparameters datasetand then
updatethe RFR surrogate model for the next HOptiteration. Finally, a Pareto front can be generated.

In Figure 1, the core partis the optimum acquisition, and its details are introduced as follows. Based on the
accuracy measure responses, a number of effective search criteria can be generated as objectives toachieve the
trade-offbetween the explorationand exploitation, for example, the individual or combination of expected
improvement (EIl), GP upper confidence bound, the maximum possibility of improvement, minimum conditional
entropyandthe lower confidencebound (LCB) [23, 24, 69]. In this study, the LCBisused, and it is defined as,

LCB(x)p @) = a(x3p) — S (xpp), )

where x, is the vectorof hyperparametersandthe j(x,,) and §(x,,) are theposteriormeanand standard deviation
of accuracy measures, respectively, fromthefive cross-validations. ¢ isa constant to count the weight of §(x,.) ,

where ¢=1is used for MLA with allnumerical hyperparameters and ¢ equals 2 if at leastone hyperparameter is

categorical. This counts the possible larger variation caused by categorical hyperparameter(s). z(x,,) will be
estimated by the RFR surrogate output directly, but §(x,,) should be approximated by multi-responses generated by

baggingtechnique in RFR. This criterion demonstrates the lower bound of the accuracy measures reflects theerror

induced by RFR prediction (§(x,,) )-

Using LCBsas objectives, the multi-objective HOpt will be implemented by usinga design space shrinking
procedure recursively. The design space shrinking refines the design space iteratively for reaching the final optimum
or satisfyingdesign. Khanet al (2019) proposed an interactive generative design system for yacht hull by including
the design space shrinking, space-filling sampling [70], and human evaluator [71]. The genetic algorithm was also
implementedto enhance optimal searching [72]. However, the intensive involvement of manual evaluation by a
human may increase thedegree of uncertainty. Thus, the surrogate models were developedto replace the evaluator
and realize a semi-auto process using ML tools, e.g., the ANN [73]. In the present work, the RFR method is adapted
asthe surrogate model for the response of design alternatives to enable anautomatic process to seek the optimum.
Comparedwith other regression methods, RFR can handle the categorical parameters more efficiently with a
relatively lower computational cost. Inaddition, the space shrinking process was repeated multiple times with

differentinitial designsto increase the probability of reachingthetrue optimum.



In the framework, within a single iteration, a group of designs (hyperparameters combinations) will be sampled
in the design space ofthisiterationby Latin Hypercube Sampling (LHS), which aimsto spread a group of samples
almostuniformly overthedesign space [74]. The response of design alternatives is predicted by the RFR surrogate
model. The bestalternativewill be selected and a smaller subspace will be generatedaroundthis point. The
constructionofthe new subspace needs to consider bothexplorationand exploitation. A small subspace improves

convergencespeed but may lose the optimum. Similarly, a larger subspace may seize the optimum but causes a low

convergencespeed. In thisstudy, the (i+1)th subspace is definedas th_i N X;,U irp-‘xhpj‘ ,Where th_i and

‘th_i ‘ represent the hyperparameters space of the ith iteration and its sizesand X7 isthe optimum of ith
iteration. Nand r arethe intersection operation of two subspacesand a proportionto definethe expanded space
size centered on the bestdesign of the current iteration. In this smaller subspace, a newround of samplingand

evaluationprocess will be implemented until the termination criterion isreached. Thetotal number of the space

shrinking iterationis limited to n,, . Afterthe iterations are terminated, an optimum design can be obtained.

To fully explore the design spaceand improverobustness, this optimization process will be repeated n,, times.
Then, a group ofdesigns is generated by taking the Pareto front from each ofthe n, optimization processes, where
each processisimplementedwith n, iterations forspaceshrinkingas describedabove. The overall Pareto front will

be obtained from this group of designs and usedto determinethe hyperparameter values of corresponding MLA

models.

3. Implementation of hyperparameters optimization
Based onavailable datasets, the hyperparameters can be optimized by the above framework. Before this, the

hyperparameters domain, measures, and formulationshould be implemented.

3.1 Design synthesis and post-processing

The datasetused for MLA training can often be generated by the design of experiment (DoE). Many algorithms
are available to create DoE, e.g. Pseudo-Monte Carlo Sampling (PMCS), Latin Hypercube Sampling (LHS),and
Orthogonal Array Sampling (OAS) [75]. In thisstudy, the LHS isalso used since it could fill the design space

uniformly to wellexplore the design space.



The size of the training dataset mustbe sufficiently large to ensure convergenceand modelingaccuracy. Yang
etal(2005) [76]and Shietal (2012) [10] determined the 3Vyis the minimum sample size to train a good surrogate
model, where Vy isthe number of design variables. Furthermore, Xu etal (2016) [77] developeda polynomial
coefficient metric to evaluate the adequacy of sample size considering thedifferent degrees of the nonlinearity of
design problems. Based on these theories, 1,000 data points are considered enough in the presentcase.

Itis also notedthatdesign variables may have different orders of magnitudes. This would outweigh features
with a larger value over these with smaller value [78]. Therefore, the min-max normalizationis used to scale the

values of design variables into the samerange [0, 1] by

szw, 2)

Vinax ~ Vimin

where fora specific variable, the NV isthe normalized value, v is the variable value; v__ and v _, arethe

n

maximum and minimum value of this variable, respectively.

3.2 Hyperparameters domains
Foreach MLA, hyperparameters are identified for optimization considering their significant impact on model
accuracy. Theirinitialvalues and ranges aredetermined based on theexperience and previous studies as presented

in Table 2. For GPR, the kernels and related parameters are tunedas the bold parameters in Equation (3),

rbfdot (radial basis): k(x, x") = exp(-a|x—x ")

Kernels: polydot (polynomial): k(x, x") = (scale <x, x'> + offset )™
tanhdot (hyperbolic tangent): k(x, x') = tanh(scale <x, x'> + offset) ' @)
laplacedot (Laplacian): k(x,x") = exp(-o||jx—x|)

where, Ix—x| is the Euclidean distance of vector x and x *; scale and offset are usedto scale theresult of <x,x'>

and addan offset, respectively. deg defines the degree of the polynomial kernel. o is the weight of newnodesto the
training nodes. The kernel function determines theability to model the complexity and nonlinearity of the structural
problem.

Besides kernel parameters, the control parameters for model complexity and accuracy are tuned for SVM. SVM

maps design variables toa new space with higher (h) dimensions for a linear regression as expressed by,

f(x) =@ u(x)+b, @)

10



where £ (x)is the mappingfunction: x — x(x) e R". Thetraining objective compromises model complexity and

accuracy by Equation (5). The complexity is controlled by the first term, namely, %wTa) [79,80]. The secondterm

manages theerror by the Vapnik’s ¢ - intensive costfunctionto penalize the data points outside . -bands [81] under

the constraints in Equation (6).

min %wTaHCZL(&f*) ()
subject to:
yi—(@ u(x)+b)<e+¢ ®6)
(wTﬂ(Xi)+b)_yi 5‘9""5:,
& & =20

where C is the weight of error penalization. £, and & are two slackvariables, introduced by Cortes and Vapnik et

al.[81],to take pointsout ofthe ¢-bounds backto constraints. The Lagrange method is used by introducing
constraints into theobjectivethrough Lagrange multiplier « and & [79, 81] andsolvinga dual problem by the
quadratic programming procedure.

By tunningtheC and ¢,the SVM training canreach a trade-off between the model complexity andaccuracy. A
smaller ewill add more items to the latter term in Equation (5) and larger C will overweight errorterms, which may
cause the highly complex objective function. Thesemay reach a highly accurate SVM model buttakethe risk of
overfitting since the relative underweighting of theformer termin Equation (5) may cause atoocomplex modeland
so versa. The HOptaimsto gain the trade-off between model complexity andaccuracy.

In RFR, the number of regressiontreesisa key factor foraccuracy, but it isalso critical to the computational
cost. With more trees included, a higher computational cost will be caused. Meanwhile, the tree-related parameters
are also optimized, i.e., the number of randomly selected features for each split (NF), minimum terminal node size
(Min TS) and maximum numbers of terminalnodes (Max TN).

In the structural design, it is quite often thatmore layers of ANN will significantly increasethe computational
time but not necessarily improve themodeling performance [82]. Based onour preliminary studies shownin Table
1, a wide range of structures with 5~15 design variables canalways be wellmodeled using one-layer ANN. This

findingis consistent with Kolmogorov theorem [83-85], that any continuous real-valued functions f (x,, x5, -+, x,,)
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defined on [0, 1] can be represented with ANN with one hidden layer. More layers did notincreasethe accuracy but
tendedto causeoverfittingas shownin the supplement material. A deep network would be more suited tomodel the
systems with deep features, e.g., vibrationsignal processing [86], natural language processingand image processing

[87], butnot a typical structural design problem. Thus, the ANN structure with single hidden layer is selected.

Table 2 Hyperparameters of four MLAs with their initial values for the benchmark models and tuning spacefor

optimization
MLA Items Hyperparameters
Kernels c Degree scale offset

GPR | Initial value rbfdot 0.5 - -- --

Range <rbfdot, polydot, tanhdot, laplacedot> [010]™ [ 1:10™ |[[010] | [-1010]

C € Kernels c Degree scale offset
Initial value 1 0.1 rbfdot 0.5 -- -- --
SVM
<rbfdot, polydot,
Range [010] [01] . [010] 1:10 [010] [ [-1010]
tanhdot, laplacedot>"¢
Trees NF Min TS Max TN

RFR | Initial value 500 3 5 Null™

Range 1:1,000 1:100 1:50 1:1,000

Hidden o o Batch .
Activation Optimizer ) Learningrate [ Momentum
neurons size
ANN [ Initial value 10 tanhdot sgd 120 0.1 0.0
<tanhdot, relu, <sgd, rmsprop, adam,
Range 1:100 ) ) 50:200 [0.011.0] [0.50.99]
sigmoid, softrelu> adagrad>

Note: ™ [1 10] means the continuous variables with a range from 1 to 10; ™ 1: 10 means the integer variable with values from 1to 10; ™ < rbfdot,
polydot, tanhdot, laplacedot> represents a categorical variable with four options available in the curly braces. " Null means there is no limitation

for this hyperparameter and depends on the requirements of other hyperparameters.

The ANN structure and training related parameters are selected for optimization, that is, the number of hidden
neurons, mini-batch sizes, activation functions, optimizers, learning rate, and momentum, where the momentum is
only applicable to the sgd optimizer. ANN trainingaimsto optimize weights for a predefined architecture. To
increase this number may improve theaccuracy but take therisk of overfitting. The mini-batch method trains ANN
with a randomly selected portion of training dataset, which divides thetraining datasetinto several subsets, and each

will be used to trainthe ANN in sequence within a single epoch. This speeds up the convergence ofthe stochastic

12



convexoptimization but increases the training costof a single epoch. Optimizers determinethe strategies to move
towards the optimum. The sgd (stochastic gradientdescent) updates weights in the form of

W, =W, —¢-Vw, +&-Aw,_,, @)
where w, and vw, arethe weight matric andgradientof the current epoch, respectively,and aw, , isthe step size
of lastepoch. ¢and ¢ arethelearningrate and momentum, respectively. A large learningrateaccelerates the

convergencespeed but may lose the optimum while the toosmall value causes the high convergence cost. For other
optimizers, adaptive learning rates are also usedto speed up thelearning process [87]. In this study, ANN training

epochswere limited to 2,000, which is provento be enough for training convergence by anadditional test.

3.3 Measures of accuracy

During the surrogate modeling, a number of statistical indices, such as the root mean square error (RMSE),
maximum absolute error (MXAE), mean absoluteerror, correlation, and decision coefficient, are frequently used as
measures ofaccuracy [17,88, 89]. Although there is no physical meaning, they are calculated based on the
quantities obtained in the simulations/experiments with physical meaning, such as force, stress, deformation, and
energy absorption, etc. These quantities are often design objectives and may vary in each particular design problem.
To keep consistent in all of the structural design scenarios in the presentwork and with the studies by other
researchers, In this study, the RMSE (Equation (8)) and MXAE (Equation (9)) are usedas two HOptobjective

measures [88] asthe globalandlocalaccuracy measures, respectively, to estimate themodelingaccuracy.

S (F() - F(x))
RMSE = {[-= N , 8)

MXAE = Max(|f (x)- f (<)), ©)

where f (XI) - f (XI) is the error of the predicted response relative to its real value ofthe ithdesign (x'); N is the
dataset size. Also, the training computational time (T) of MLAs is evaluated. This helps understand the effect of

HOpt on the costand make a decision on the selection ofa suitable MLA in terms of computational cost.

3.4 Optimizationformulation
Based onthe hyperparameters and measures, the optimization problem is formulatedin Equation (10). RMSE

and MXAE aretaken as the objectives of the HOpt. Foreach HOpt task of MLA, 30 initial designs are generatedto

13



construct theinitial surrogatemodel. Another 70 evaluations (i.e., iterations, N, =100) areusedto optimize the

hyperparameters. N.=100is verified to be sufficient to ensure the convergence of Paretofrontby a separate
parametric analysis with a reasonable computational cost as shown in Appendix A. The 5-folds cross-validationis
used to train themodel, which divides the training dataset into five subsets to train the model in iterations. Each
subset isused for validation and therest are used to train a new model with five validation errors generated. The
average of the validationerrors from the 5-folds is used as the final validation error. The cross-validation approach
is widely used and could reduce the bias more effectively compared to the traditional single train/validation split
method. Since bias is considered as the cause of overfitting, the cross-validationapproach tends to reduce overfitting
[87,90,91].

Find:

Minimize: RMSE and MXAE

Xop 1 € min(xth ): max(xhpi,) (10)

Subjectto: ¢ min(x,, ) <X, ¢ <max(x,, ¢)

X XZ NCa

1
e<X hp_Ca? ’”th_Ca

hp_Ca? >

hp_Ca

where x_ are the integral, continuous and categorical variables, respectively. Their domains, possible

thfc thica
values orranges, havebeendefined in Table 2. The datasets generated by DoE areused for MLAs training since the

finalaim isto constructsurrogate models that predict the structural response(s) accurately.

4. Benchmark problems for the study of MLAs

In this study, four representative engineering structures aretaken as examples to demonstrate the effect of
hyperparameters by the HOpt. In these four problems, the variation of geometry (bar, sheet, and block), loading
(static vs. dynamic) and boundary conditions (fully constrained and contact), as well as deformationmodes (small
vs. large deformation) are all considered. Hence, the methods and results associated with these case studies can be

easily extended toa wide range of structures.

4.1 Structures subject to static loading
Underthe static loading condition, two typical structures, i.e. a ten-bar planertruss (TbPT) [32] and a torque
arm (TgA) [92-95], are introduced in Figure 2, since they are frequently takenas examples to verify structural

design algorithms. In the TOPT model, the circular cross-section areas are taken as design variables with the range
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from 0.6 to 225.8cm?andtheothersizesare listed in Figure 2(a). Two loads with the same magnitude (444.8 kN)
areapplied on joints T and S. The vertical displacement (d) of joint Sis taken as the response of this system, which
is constrained within 60 cm in case thefailure risk caused by the too-small cross-section areas.

To design the TgA structure, geometric constraints must be considered. The constant thickness of this structure
is 3 mm and the distance between two circle centers is 420 mm. The design variables and their ranges are listed in
Table 3. The left circle is fully constrained and loads are added to the right circle as shownin Figure 2(b). To avoid

structure failure, the stressis limited under 800 MPa andthe total mass is used as theobjective.

() P 914.4cm Q 914.4cm

. : R
— =

wd v'¥16

F,=444.8 kN

(®) Y Thickness=3
A y. ICKNess=s mm
54.2 mm - L2 & Ya Y5 ;
- X
F2=2789 N
Yo Y7 Ys Yo Y10 | F1=5066 N
e >
: 420 mm '
Figure 2 Two structures under static loading: (@) ToPT and (b) TQA
Table 3 Design variables andtheir ranges for the TqA structure
Design variable Initial value /mm Range/mm Design variable Initial value /mm Range/mm
A 52 (30, 62) Ve 48 (22, 58)
Y, 50 (26, 60) Yo 46 (18, 56)
Ys 48 (22,58) Yio 44 (14, 54)
Y, 46 (18, 56) X, 120 (60, 200)
A 44 (14, 54) X, 270 (110, 395)
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Ve 52 (30, 62) r 10 (10, 40)

y, 50 (26, 60) r, 10 (5, 40)

4.2 Structures subject to dynamic loading

Underthe dynamic loading conditions, two vehicular components are studied, i.e. the thin-walled S-shaped
beam (ShB) discussed in our previous studies [96] and thin-walled octagonal multi-cell tube (OMcT) reported in Bai
etal[97]. Their geometry parameterizationand FE models areillustrated in Figure 3. As critical energy-absorbing
parts on the passenger car, these structures can sustain large plastic deformationand dissipatea large amount of
kinetic energy dueto impact.

In Figure 3(a), the shape of ShB is fully described by 7 design variablesand its total length is 1,000 mm. Figure
3(a)also showsthe FE model of ShB, which is subjectedto thefrontalimpact at10 m/s. The specific energy

absorption (SEA) is set as the design objective in Equation (11),

[ F(x)ox (11)
SEA= "
M

where M is the structuralmass; F(x) and d are the impact force-displacement history and total deflection,

respectively.

(a) . (b)
Parameterization 1400 mm

le »

Parameterization .

CL
&

FE li .

FE modeling Infinite fully modeling Rigid wall N
trained ricid wall Mass block
S-beam constrained rigid wa
Mass block:
500 ki ~ |
g /
/ V=10 m/s
I Simplified ==X
bumper V=50 km/h

Figure 3 Two structures under dynamic loading: (a) the vehicle frontal S-shaped side beam (ShB) and (b) the
octagonal multi-celltube (OMcT), together with design variables and FE models

Inthe OMcT model, the cross-section is composed of the innerand outer octagons with ribs. The edge sizes of

innerand outer octagons are 30and 60 mm, respectively. The total length of OMcT is 310 mm. Different colorsin
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Figure 3(b) represent different thicknesses. Each thickness is considered as onedesign variable and therefore, there
are 9 design variables in total. The OMcT FE modelimpactsa fully constrained rigid wall (velocity: 30 km/h) with
the rearend attached to amass block (600kg) to represent the vehicle inertia effect. The coefficient force efficiency
(CFE)is calculated as the response to assess theenergy-absorbing efficiency in Equation (12),

[7F 12)
dxF,, ’

CFE =

where j: F (x)dx/d is the averaged crushingforce and F___ isthe peak crushing force. The detailed material

parameters, loading, and boundary conditions can be seenin [96]. These two models were validated in thesestudies
and the details are not repeated here. In the currentstudy, theimpactspeed of OMcT isincreased to 50 km/h to
represent theloading condition defined in NCAP standard (National Highway Traffic Safety Ad ministration:

https://www.nhtsa.gov/laws-regulations). The four models were simulated by the FE simulation usingimplicit

(TbPT and TgA) andexplicit (ShB and OMcT) solvers, that is, the ANSYS Workbench (Ansys, Inc., Workbench,
Canonshurg, PA)and LS-DYNA (Ansys, Inc., LSTC, Livermore, CA), respectively. Foreach structure, 1000 design
casesare generated for MLA learning. This same datasetwill be used as the training dataset forall of the four

MLAES.
5. Results

5.1 Pareto frontof hyperparameters

The Pareto fronts are generated through the SMBO asshown the supplementfile. Although the optimal
hyperparameters may vary for differentdatasets, the values of hyperparameters in Pareto front would be close for
the datasets with similar sample sizes and design space dimensions [23, 98]. In other words, the optimal
hyperparameter values obtained from this study canbe applied to the other similar design problems without
significant change or used as the basis for optimization [21].

From the Pareto front of multi-objective optimization, a solution, representing a set of hyperparameter values,
should be determined as the final optimum considering the articulation ofthe user’s preference [99]. In this study,
the posteriorimethod [100] is used to evaluateeach pointon the Pareto front after it is generated. By excludingthe
alternatives with relatively high RMSE or MAXE loss, we select a solutionrandomly from the remained solutions

due to theirsimilar performance. This random selection is used to ensure data generality. A comparison is then made
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between the models trained by theinitial values and selected solutions. For each Pareto front, one hyperparameters
group is selected as summarizedin Table 4, where corresponding mean loss values of five cross-validations are also
included. It needs tobe notedthatin practical selection fora highly accurate ML model, the training cost and model

complexity should be considered.

Table 4 Selected optimal hyperparameters for ML models with respect to the four structural datasets

MLA | Models Hyperparameters Loss
Kernels c Degree scale offset RMSE | MXAE
TbhPT polydot NA 3 7.22 -2.24 0.0603 | 0.3786
GPR [ TgA polydot NA 2 1.73 1.07 0.0517 | 0.4594
ShB polydot NA 3 2.30 1.08 0.0413 | 0.2341
OMcT polydot NA 3 7.67 9.30 0.0551 | 0.2191
C € Kernels o Degree scale | offset| RMSE | MXAE
TbhPT 0.81 0.07 polydot NA 7 2.73 | 5.87 | 0.0626 | 0.3777
SVM| TgA 2.81 0.41 polydot NA 1 4.03 | -2.09| 0.0545 | 0.4953
ShB 9.77 0.13 laplacedot 0.37 NA NA NA | 0.0466 | 0.3238
OMcT 9.20 0.05 polydot NA 2 9.25 | 2.96 | 0.0730 | 0.2576
Trees NF Min TS Max TN RMSE | MXAE
ThPT 773 10 1 304 0.0463 | 0.4169
RFR | TgA 569 9 1 682 0.0953 | 0.4414
ShB 718 7 1 1,000 0.0454 [ 0.2975
OMcT 879 9 1 493 0.0795 | 0.3768
Hidden Activ- Batch Learning
neurons ation | Optimizer size rate Momentum RMSE | MXAE
ANN ThPT 26 relu sgd 199 0.77 0.83 0.0473 | 0.2945
TgA 19 relu adagrad 108 0.57 NA 0.0506 | 0.4503
ShB 8 tanhdot | adagrad 85 0.30 NA 0.0405 | 0.2571
OMcT 36 tanhdot sgd 98 0.97 0.92 0.0421 | 0.1585

5.2 Effect of hyperparameters optimization

By usingthe valuesin Table 4, sixteen models aretrained with 5-folds cross-validation. The distributions of
RMSE and MXAE among 5-folds cross-validation are presented by boxplots in Figure 4 and Figure 5, respectively.
The results before (trained using initial values in Table 2) andafterthe HOptare compared. The median is

represented by the blackline in the boxes. A lower median valueindicates a higher median predictionaccuracy. The

18



upperand lower bounds of the box representthe interquartile range with the 25th percentile lowerand 75th

percentile upper limits. The distance between the upper and lower bounds measures the robustness of the model.

Smallerdistance indicates higher robustness. For points outside the range of theupper and lower bounds of whiskers

are outliers. To further validate theinitial and final models, a new dataset is generated by LHS, which includes 180

new designsthatare not in the original cross-validation dataset. The distributions of the new test datasetsare

comparedwith the corresponding CV datasets in Appendix B to show their consistency. The test errors usingthe

newly generated, unseen data are calculated by themodel trained by all originaltraining data in one shot and plotted

asthe diamond points in Figure 4 and Figure 5. The errorvalues in all three scenarios are listed in Table 5.
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Figure 4 Comparison of the RMSEaccuracy of the four MLAs trained by the four structural datasets before and
afterHOpt, thatis, (8) TbPT, (b) TgA, (c) ShB,and (d) OMcT (Note: CV: cross validation)

As shown in Figure 4 and Figure 5, HOpt reduces the median of the RMSE and M XAE values, which indicates

the improvementof the predictionaccuracy in most case studies with original cross validation (CV) datasets. This is

also verified by thenew data validationerrors. The results of the new dataset show different degrees of performance
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improvement for various design problems with the same intial hyperparametric values. HOptbrings moreevident
improvement onthe accuracy of TgAand OMcT when GPR and SVM algroithms are used. The errors of TbPT and
ShB models canalso be reduced, butless siginificantly, comparedto the other cases. In general, HOpt improves the
model performance but the degree of improvement depends on specific problems with various complexity.
Similartrends canbe observed in model robustness. HOptcan improve the robustness ofthe MLA models in
most cases. However, exceptions canbe observedin TgAand OMcT, where the robustness of GPR, SVM, and RFR
deteriorates after HOpt. In summary, theinitial values of the hyperparameters in mostof the machine learningtools
are usually determined based on prior knowledge or trial-and-error as summarized in Table 1. The comparisons
shown in Figure 4 and Figure 5 indicate that through HOpt, the accuracy and robustness of the ML models canbe

improved in the mostly used surrogate models in structural design.
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Figure 5 Comparison of the MXAE accuracy of the four MLAs trained by thefour structure datasets before and after
HOpt, thatis, (a) TbPT, (b) TgA, (c) ShB,and (d) OMcT (Note: CV: cross validation)

Besides, in Figure 4 (a)and (c) (also Figure 5 (a) and (c)), the discrepancy betweenthe CV errors of HOpt and

new dataset testerrors is believed to be caused by differenttraining processes, although the originaland new
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datasets havesimilar distributions. In the HOpt process, 5-fold CV was usedto determinethe hyperparameters. In
the later training with the new datasetto test the effect of hyperparameters values, no CV is conducted. Allthe 1,000
data points in the original dataset are applied to conduct a “one-shot”training so the model canuse alltraining data
in onetime to fit the design problem better. Then, this better-trained model is tested by the 180 new designs and thus
the erroris reduced in these particular design problems.

In Figure 4 and Figure 5, the results indicate that the performances of some particular ML algorithms (e.g., GPR
and SVM)are not stable for specific design problems without a HOpt. Whentested using new data, theerrors may
be increased before HOpt. The degreeof instability may vary for different algorithms, hyperparameters, and design
problems.

Inaddition, it is not unusual thatthe optimization of ML algorithms does notalways improve their performance,
e.g., the ANN in Figure 4(b), since the results rely on many factors such as datasetsize, nonlinearity, and randomity,
etc. Here, we do not intendto optimize a specific algorithm fora particular design problem. Instead, we would like
to analyze the influence of HOpt ondifferentstructural design problems. The results in Table 5 indicate that HOpt

can improvethe model performance in general.

Table 5 The validation error of MLAs models using the new dataset with error reduction (%) after HOpt

Measur GPR SVM RFR ANN

Cases e Before | After |Reducti| Before | After |Reducti | Before | After |Reducti| Before | After |Reducti
HOpt | HOpt | on (%) | HOpt | HOpt |on (%) | HOpt | HOpt | on (%) | HOpt | HOpt | on (%)

p— RMSE [ 0.0327 | 0.0345 0.029110.0234 | -19.8 |0.0188 | 0.0148 | -21.0 (0.0391 [0.0179 | -54.2
MXAE0.1020 ( 0.1015 -0.5 [0.0925[0.1265 0.1172]0.0919 | -21.6 |0.1551|0.0759 | -51.0

TqA RMSE [ 0.1568 | 0.0306 | -80.5 |0.1537 | 0.0395 | -74.3 | 0.0979 | 0.0896 [ -8.5 0.0SSIM
MXAE [ 0.5370 [ 0.2383 [ -55.6 [0.5343|0.2600 | -51.3 | 0.33030.2975| -9.9 |[0.2748 (0.2872

ShB RMSE | 0.0303 | 0.0290 [ -4.2 (0.0280|0.0258 | -8.1 |0.0292 0.0317.@0.0290 -34.0
MXAE|[0.1670 (0.1339 [ -19.8 [0.1789|0.1340 | -25.1 |0.1783]0.1885 0.1901 [ 0.1619 | -14.8

RMSE (0.1411 | 0.0506 | -64.1 |0.1351)0.0691 | -48.8 | 0.0797 [ 0.0712 [ -10.7 [0.0888 [ 0.0430 | -51.6

MXAE | 0.5424 (0.1777 | -67.2 [0.5346 |0.3173 | -40.6 |0.34480.3112| -9.7 |0.3554 (0.1166 | -67.2

OMcT

5.3 Computational time evaluation

By comparingthe time of a single training before and after the HOpt, theimpactof HOpt on computational cost
is evaluated. The computational power is as follows: Dell Precision Tower 5810 with Intel Xeon CPU E5-2690 v3:
2.6 GHzturboupto3.5 GHzand 32 GB RAM. Figure 6 shows the computational time of the four MLAs trained by

the fourstructural datasets beforeand after HOpt. The results indicate that there is almost notime cost change for
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GPR trainingsince its hyperparameters have no influence onthe model size and then, training task scale. According
to Figure 6(d), however, the SVM training time is increased greatly forthe OMcT. Regardingthismodel in Table 4,
the large error penalization C (i.e., 9.2) gives a large weight to the errorterm in Equation (5). Meanwhile, the low
value (i.e.,0.05) of &-bounds causes more samples falling out of e-bounds. Then, their error with respect to the &-
bounds are added intothe errorterm, which increases the complexity of objective function and thedifficulty to
minimize errors. These lead toa high training cost.

Thetrainingtime of RFR is the time usedto evaluate thesplittingnodes of all trees. In thisway, the timeof
RFR trainingis closely related to the number of trees (Trees) and NF. Min TSand Max TN canalso affectthe
number of non-leaf nodes since they are related to the single tree scale and thenthe RFR model size. However, the
degree of their influenceson the final training time is less compared with the Treesand NF. A larger number of trees

and more NF can improve prediction accuracy while they increase the model scale andthenthetrainingtime.
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Figure 6 Trainingtime comparisonof the 16 models before and after HOpt, that is, (a) TbPT, (b) TgA, (¢) ShB,and
(d) OMcT
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ANN trainingtime is related to the combined effect of the mini-batch size, learningrate, and optimizerand so
on. As indicated in Table 4 and Figure 6, after HOpt, the ANN trained by TbPT is reduced slightly, which is caused
by the larger learning rate, which accelerates thetraining convergence. however, the other structural cases presented
lower convergence speed althoughthey have larger learning rates, which are caused by the smaller mini-batch sizes.
This increases the number of batch training within a single epoch, which rises the training time of a single epoch but
lowers the number of epochs for convergence. These suggestthat the mini-batch size takes the primary effect onthe
trainingtime and is followed by the learning rate undera fixed trainingepoch. The other hyperparameters are more
related to modelaccuracy than the training cost.

In summary, compared with GPR and SVM, thetrainingtime of ANN and RFRis more sensitive to
hyperparameter values. HOpt improved the ANN performance most significantly, which is followed by the GPR.
Therefore, it is recommendedto conduct HOptfor ANN if enough computational sources are available. Otherwise,
the GPR is recommended forapplyingthe HOpt. Besides, in the HOptfor SVM, small e-bounds or large error
penalization C should be avoided, because they will cause atoo complex training objective functionand then

unexpectedsingularitiesand a high convergence cost.

6. Discussion

Inthissection, ananalysis is carried out on the relationship between the performance of HOptmethod to
improve the MLA modeling performance and characteristics of thedesign problems, as summarized in Table 6. The
characteristics include the structure type, the types and number of design variables, load type, and the design domain
continuity, which performances are mainly RMSE, M XAE and computational time. Previous studies have
demonstrated that the dimensionality and nonlinearity of design problems, which partially depends on the structure
and load types, havea strongimpacton thesurrogate model accuracy and robustness [16, 101]. In addition to
structure and load types, the dimensionality of the design space, continuity ofthe feasible domain, and the design
variable type alsoinfluence the complexity of the problem. Due to the design constraints, the feasible domains of
TbPT and TqA are brokeninto discontinuous subdomains. The nonlinear boundaries of discontinuous feasible
domains pose anadditional level of challenge to MLA model training. Furthermore, mixed-variable problems are
more challenging for MLA models.

In Table 6, the improvement in accuracy (mean) and robustness (SD) of each MLA model after HOpt are listed

foreach benchmark problem. The improvement is presented as the percentage of reduction in the values of mean
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and SDvalues, where the minus values indicate the reduction of measures andimprovement and so versa. The
reductionin trainingtime is provided as well. The detailed values of each measure before and after HOpt are listed
in the supplement file. In Table 6, the cases with no improvementare denoted with red and the increased training
time is denoted with blue. With allthe information on problem complexity and MLA performances, we discuss the
effect of HOpt in the following three aspects.

o EffectofHOpton MLAmodelaccuracy

HOpt may not always improvethe model accuracy, which depends on specific problems with various
complexity. ANN performance for TgA iseven deteriorated slightly after HOptas indicated by CV errorsand
verified by the new data validation. These were caused by the mixed-variable design space, and we also notice that
this case study has the highestdimensionality in all cases. Therefore, the HOpt canimprove the MLA-based

surrogate model performancein general, but may exhibit unstable performance for high complex problems (e.g.,

TqA).

Table 6 The characteristics and HOpt performance of the four design benchmark structures

Category Item Structure

TbPT TgA ShB OMcT

Complexity Structure type Truss Block Thin-wall Thin-wall
matrix No. of variables 10 14 7 9
Variables type™ Single Mixed Mixed Single

Load type Static Static Impact Impact

Design domain™ Discontinuous Discontinuous Continuous Continuous

MLA Measure Reduction by % after HOpt (‘- indicates measure reduction or improvement)
GPR RMSE | Mean -18.8 0.0 -10.9 -19.2
SD -30.8 111 -75.0 -33.3
MXAE | Mean -25.6 7.1 -29.2 -23.9
SD -12.3 2.7 -70.3 -34.8
Time/s | Mean -19.5 -21.2 -15.8 17.0
SVM RMSE | Mean -16.3 18.6 -20.4 0.0
SD -37.5 -18.2 -20.0 -16.7
MXAE | Mean -17.5 4.0 -41.9 -20.5
SD -16.7 -12.2 -5.3 -20.3

Time/s | Mean -37.0 233.3 -8.0 143931.3
RFR RMSE | Mean -14.0 =512 -14.8 -5.8
SD -57.1 111 -36.4 -40.0

MXAE | Mean -9.4 -4.9 -32.5 -10.1
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SD -50.3 -13.6 -39.6 -2.8

Time/s | Mean 299.8 222.8 398.7 491.8

ANN RMSE | Mean -45.2 2.0 -45.8 -44.2
SD -46.7 -38.1 -54.5 0.0

MXAE | Mean -44.1 -6.2 -53.5 -42.7

SD -36.8 -44.5 -57.5 -29.4

Time/s | Mean -9.5 55.4 98.5 53.2

Note: " Type of variables:” Single” indicates that only one type of design variables is contained, for example, the nine thickness
variables of OMcT. “Mixed” indicates that multiple types of design variables are contained, for example, the radius, length, and

node location variables of TqA. ™ Design domain (continuity): continuous or discontinuous.
e EffectofHOpton MLA model robustness

HOpt improves the robustness of MLA models in the design problems with anintermediate complexity (TbPT
and ShB). Forthe simplest problem (OMcT), HOptisalso helpful, but theimprovement is less significant because
MLA models already achieve good robustness without HOpt. It should be noted that HOpt may reduce model
robustness in a relatively complex design problem (e.g., TqA). This issue can be partially avoided by simplifyinga
complex problem through dimension reductionand eliminating mixed variables [59, 102].

e EffectofHOpton MLAtraining cost

No cleartrend canbe observedin the relation between HOptand the training cost. As discussedin Section 5.3,
thetrainingtime is independent of the features of the design problem but related to the MLA modelarchitecture.
The knowledge of MLA model architecture could help estimate and reducethe trainingtime of MLA and the
associated HOpt.

To summarize based onthe results of presentstudy, HOptmay be unstable when handling design problems with
relatively high complexity, butit can improve the modeling performance with less design variables. However,
further reduction of thedimension will eliminate theneed of HOpt. We recommend GPR as a good start for
complex problems due to its lowtraining cost and relatively high accuracy. It isalso noticed that HOpt leads to

insignificant improvementin simple design problems.

Conclusions
In this study, theeffects of hyperparameters on MLA surrogate models, namely GPR, SVM, RFR,and ANN are

analyzed in detail. A HOpt framework is proposed for optimizing the hyperparameter values to improve model
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accuracy and robustness. By applying the surrogate modeling and HOpt methods to four benchmark examples, we
investigated the impact of HOpt onthe accuracy, robustness, and computational costs of the surrogate models.

In general, the HOpt canimprove MLA-based surrogate models with lower error. The improvementmade by
the HOpt depends on the specific problems with various complexity. The performance of HOpt may not be stable
when handling complex problems with mixed variables and relative higher-dimensional design space. In addition,
GPR is recommended with HOpt dueto its lowtraining cost and relatively high accuracy.

The training costs before and after hyperparameters tuning are also evaluated through a single training process.
Followed by the RFR, the training time of ANN exhibits the highest sensitivity tothe HOpt. ANN training costis
closely related to the learning rate and mini-batch size. The mini-batch size could speed up the convergence and
reduce the iteration cost. The RFRtraining cost is linearly related to the scale of forest (i.e. the number of treesand
each tree’snodes). GPR and SVM are insensitive to the hyperparameters tuning. A high computational cost for
SVM may occur under the condition of the narrow ¢ -bounds and the high weight (C) of the error term, which
should be avoided.

A parametric study conducted on the hyperparameters' influence on RMSE and MXAE is discussedin the
supplement file. The results indicate that the polynomialand Laplacian kernels are recommended forthe GPR fora
high modelingaccuracy. The lowdegree (2 or 3) of the polynomial kerneland low sigma of Laplaciankernelare the
good choices forthe SVM-based surrogate modeling. Meanwhile, The ANN trained with the tanhorrelu activation
functions using sgd oradagrad optimizers shows a good performance.

In the future work, the codes can be integrated as software with a graphic user interface, and open source will be

anoption.

Code repository

A working repository ofthis study is available at: https://github.com/Seager1989/HOpt4SMSD.qit.
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Appendix A: Convergence histories of HOpt processes for all 16 models

As Figure A.1 shows, allthe models have acheived the convergence before thetermination criterion (100

evaluations) is reached.
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Figure A.1 Convergencehistories ofthe HOpt processes for all the model with 100 evaluations to ensure a
convergence
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Appendix B: Response distributions of datasets

As shown in Figure B. 1, the four newly generated test datasets have almost the same distribution as the original

training dataset.
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Figure B. 1 Distributions of the trainingand test datasets of the four structural design cases
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Supplemental Material Section A:

Table A.1 All Pareto fronts obtained from the multi-objective HOpt and the frequencies of categorical
hyperparameters, together with the average and S.D. of numerical hyperparameters for four structures

Kernel c Degree Scale Offset RMSE MXAE

THPT polydot NA 3 7.22 -2.24 0.0603 0.3786

polydot NA 3 3.71 -2.24 0.0603 0.3786

polydot NA 2 1.73 1.07 0.0517 0.4594

laplacedot 0.46 NA NA NA 0.0664 0.4189

laplacedot 0.34 NA NA NA 0.0597 0.4208

GPR TqA laplacedot 0.44 NA NA NA 0.0650 0.4193

polydot NA 2 7.93 0.37 0.0517 0.4595

polydot NA 1 1.72 5.20 0.0537 0.4411

polydot NA 1 1.08 -5.24 0.0785 | 0.2932

polydot NA 3 2.30 1.08 0.0413 0.2341

S8 polydot NA 3 1.20 4.15 0.0413 0.2342

OMcT polydot NA 3 7.67 9.30 0.0551 0.2191

Stafistics Avg. | polydot: 9 0.41 2.33 3.84 1.27 0.0571 | 0.3630

S.D. laplacedot:3 0.05 0.82 2.76 4.17 0.0100 0.0883

C € Kernel c Degree Scale | Offset RMSE MXAE

ThPT 0.81 0.07 polydot NA 7 2.73 5.87 0.0626 0.3777

2.81 0.41 polydot NA 1 4.03 -2.09 0.0545 0.4953

2.81 0.51 polydot NA 1 4.77 -3.81 0.0580 0.4925

TgA 3.53 0.28 polydot NA 1 5.60 0.08 0.0541 0.5057

3.71 0.12 polydot NA 1 5.67 0.69 0.0534 0.5062

3.14 0.72 rbfdot 0.05 NA NA NA 0.0754 0.4358

SVM 9.77 0.13 laplacedot | 0.37 NA NA NA 0.0466 0.3238

7.56 0.85 polydot NA 4 1.11 6.61 0.0600 0.2558

ShB 3.26 0.86 polydot NA 4 2.57 5.81 0.0600 0.2748

9.32 0.43 polydot NA 5 1.34 2.64 0.0586 0.2856

9.81 0.05 laplacedot | 0.46 NA NA NA 0.0465 0.3295

9.20 0.05 polydot NA 2 9.25 2.96 0.0730 0.2576

OMeT 7.34 0.69 polydot NA 2 9.27 2.64 0.0808 0.2231

| Ave 5.62 0.40 polydot: 10 0.29 2.8 463 | 2.14 | 0.0603 | 0.3664
Statistics laplacedot:2

S.D. 3.12 0.30 | rbfdot:1 018 | 199 | 276 | 3.29 | 0.0101 | 0.1034

RFR Trees NF Min TS Max TN RMSE MXAE
| | |




ThPT 773 10 1 304 0.0463 0.4169
569 9 1 682 0.0953 0.4414
844 1 1 982 0.1152 0.4327
496 14 26 346 0.1122 0.4383
TgA 161 14 1 1,000 0.0955 0.4402
532 1 7 974 0.1176 0.4274
80 14 3 920 0.0957 0.4383
457 14 1 1,000 0.0947 0.4438
718 7 1 1,000 0.0454 0.2975
S8 415 7 1 475 0.0457 0.2963
879 9 1 493 0.0795 0.3768
OMcT 153 9 1 590 0.0795 0.3752
463 9 1 564 0.0795 0.3756
Stafistics Avg. 503.1 9.1 3.5 717.7 0.0848 0.4000
S.D. 249.9 4.3 6.7 259.5 0.0246 0.0506

Hidden Batch | Learning
Activation | Optimizer . Momentum RMSE MXAE

neurons size rate

26 relu sgd 199 0.77 0.83 0.0473 0.2945
TOPT 45 relu sgd 199 0.77 0.73 0.0423 0.3186
19 relu adagrad 108 0.57 NA 0.0506 0.4503
97 relu adagrad 146 0.43 NA 0.0514 0.4183
ANN TaA 65 relu adagrad 166 0.55 NA 0.0803 0.3799
26 relu adagrad 196 0.13 NA 0.0490 0.4699
8 tanhdot adagrad 85 0.30 NA 0.0405 0.2571
ShB 7 tanhdot adagrad 86 0.30 NA 0.0394 0.2682
14 tanhdot adagrad 184 0.38 NA 0.0395 0.2626
OMcT 36 tanhdot sgd 98 0.97 0.92 0.0421 0.1585
S Avg. 34.3 relu: 6 sgd: 3 146.7 0.52 0.83 0.0482 0.3278
S.D. 26.9 tanhdot: 4 | adagrad: 7 | 45.9 0.25 0.08 0.0115 0.0942




Supplemental Material Section B:

B.1 Hyperparameters effect on GPR

The only hyperparameters in GPR are kernel-related parameters, thatis, the four kernel functions in Equation
16. The GPR performance with different Sigma (o) is plotted in Figure B.1 (a) and (b) for radial basisand Laplacian
kernel, respectively. The low o (< 2) level takes a critical effect. The best GPR performance oare 1 and O for radial
basisand laplacian kernels, respectively.
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Figure B.1 Effects of kernel hyperparameter sigma onthe GPR performancefor (a) radial basis dot and (b)
Laplaciankernels
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Figure B.2 The effect of polynomial degree on GPR performance with the errorto account theinfluence ofthe scale
and offset: (@) thewhole range of degreeand (b) the enlarged view on thelow degree level

Regardingthe polynomial kernel, different degrees influence modelaccuracy significantly. Table 4 shows that
the optimal degrees wouldbe 2 or 3, so low degree levels in Figure B.2(a) isamplified to see the details in Figure



B.2(b). The 2nd or 3rd order polynomial also presenteda high modelaccuracy. The influence of scale and offset was
increasedwith the degree, which is indicated by the larger standarderrors.

Furthermore, for scaleand offset, theirabsolute values should be larger than 1 since this will significantly
reduce the RMSE error as shown in Figure B.3. If theirabsolute values are largerthan 1, it generally works well to
generateanaccurate GPR. The hyperbolic tangent kernelalso contains the parameters of scale and offset. Figure B.4
shows theirinfluence on GPR performance, which indicatesa similartrendin four cases. The scale and offsetare
suggested to be around 1 and 10, respectively, foran accurate GPR.
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Figure B.3 GPR performancewith different scale and offset under the degrees of (a) ShB with degree 3; (b) OMcT
with degree 3; (c) TbPT with degree 2; (d) TqA with degree 2
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Figure B.4 GPR performancewith the change of the hyperbolic tangent kernel function’s scale and offsetfor (a)

ShB; (b) OMcT; (c) TbPT; (d) TQA

In summary, the RMSE accuracy of sixteen models trained with the best kernel hyperparameters values is
presentedin Figure B.5. The polynomial kernel shows the best performance on GPR accuracy. Meanwhile, the
radial basis kernel demonstrates a large scatter and less unstable performance.
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Figure B.5 Comparisionon themodeling performances of the four kernel functions in the GPR algorithm




B.2 Hyperparameters effect on ANN

To explore the hyperparameters effect of ANN, a basic one-hidden-layer ANN is constructed with the following
hyperparameter values based on the optimization: batchsize=100, learning rate=0.1, hidden neurons=20,
optimizer=sgd, activation function =tanh, momentum=0.9. Also, only the ShB datasetis used considering the high
computational cost of ANN trainingand thesimilar trend of hyperparameters effect for each dataset. Allmodels in
this partare trained with 10,000 epochs.

The influenceof batchsize and the learning rate is studied and plotted with logscale contourin FigureB.6.
Larger learningratesandsmaller batch sizes speed upthe convergence, but toolarge learning rates could leadto
unstable trainingand may lose the optimum. However, too small mini-batch size could increase the communication
cost, i.e. the computational cost to synchronize the shared variables (gradient or model parameters, etc.) between
differentmini-batches, although it could increase the convergence speed [1]. Baseon Figure B.6, a learningrate of
0.1is determined asthe optimum. Under this condition, the larger mini-batch size is preferred only if the same
accuracy canbe achievedto reduce communication costs [1]. Therefore, themini-batch size is set as 100 forthe

current datasetsize.
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Figure B.6 Mutualinfluence of the learning rateand mini-batch size on ANN loss (RMSE) in log-scale

The influences of other hyperparameters, i.e. the hidden neuron, optimizer, activation function, and layer
structures, onthe convergence processare illustrated in Figure B.7. Figure B.7(a) shows that morehidden neurons,
indicating more weight factors to be optimized, would slow downthe training convergence. Considering the training
dataset size (i.e. 1,000) in this part, 20 hidden neurons are usedsince it results in slightly betteraccuracy than the5.
In Figure B.7(b),among four optimizers, adagrad results in the highest accuracy, stability, and convergence speed.
Although the sgdshows a similaraccuracy, it is limited by the low convergence speed caused by its complicated

training process [2]. Hence, adagrad would be a good choice.



In Figure B.7(c), relu shows low RMSE accuracy due toits linear behavior in Figure 2. After the transmission
through onehidden layerwith the linear activation function, the output of ANN will be still linear, which is not
suitable forthe problems with a non-linear response, suchas ShB. Exceptfor relu, the other three activation
functionsare allnonlinearand generated similar accuracy levels. The tanh reaches a quick and stable convergence
duetoits large value variation in the range of [0 1]. Therefore, tanh is used for the nonlinear response prediction.

As discussed, a multi-layered ANN possesses a higherability to learnhigh nonlinear responses. To explorethe
multi-layers effect on ANNtraining, another four multi-layered models are built with optimal hyperparameters
identified earlier. As shown in Figure B.7(d), 7-20-1 presents the best performance. The model 7-10-5-1 suggests a
good but slightly lower accuracy since its number of weights (i.e. 125) isalso less thana quarter of the training
dataset size. The otherthree ANN structures greatly increase the number of weightsand leadto unstable
convergence process and deteriorated accuracy, which indicates insufficient training. This means compared with
increasingthe number of layers, the number of weights ismore important to fully train an accurate ANN.
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Figure B.7 Loss convergence histories in ANN models with respectto the (a) hidden neurons; (b) optimizers; (c)
activation functionsand (d) hidden layer structures, where 7-20-1 denotes 7 input features, 20 hidden layer neurons,
and 1 output. The other ANN models are denoted in a similar manner.
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Table C.1 The meanandstandard deviation of thevalues of the measures of the sixteen ML models before and after
the HOpt

Category | Items TbPT TgA ShB OMcT
MLA Measure Before|aftter HOpt | Beforelaftter HOpt | Beforelaftter HOpt | Beforelaftter HOpt
GPR RMSE | Mean | 0.085 | 0.069 | 0.048 | 0.048 | 0.046 | 0.041 | 0.073 | 0.059
SD 0.013 | 0.009 | 0.018 | 0.020 | 0.008 | 0.002 | 0.006 | 0.004
MXAE | Mean | 0539 | 0401 | 0.421 | 0451 | 0.349 | 0.247 | 0.335 | 0.255
SD 0.163 | 0.143 | 0.333 | 0.342 | 0.101 | 0.030 | 0.069 | 0.045
Time/s | Mean | 0532 | 0.428 | 0528 | 0.416 | 0530 | 0.446 | 0.506 | 0.592
SVM RMSE | Mean | 0.086 | 0.072 | 0.043 | 0.051 | 0.054 | 0.043 | 0.072 | 0.072
SD 0.016 | 0.010 | 0.022 | 0.018 | 0.015 | 0.012 | 0.006 | 0.005
MXAE | Mean | 0583 | 0481 | 0.430 | 0447 | 0501 | 0.291 | 0.352 | 0.280
SD 0.162 | 0.135 | 0.360 | 0.316 | 0.151 | 0.143 | 0.064 | 0.051
Time/s | Mean | 0.054 | 0.034 | 0.042 | 0.140 | 0.050 | 0.046 | 0.064 | 92.18
RFR RMSE | Mean | 0.057 | 0.049 | 0.097 | 0.092 | 0.054 | 0.046 | 0.086 | 0.081
SD 0.014 | 0.006 | 0.009 | 0.010 | 0.011 | 0.007 | 0.010 | 0.006
MXAE | Mean | 0413 | 0374 | 0.425 | 0404 | 0421 | 0.284 | 0.398 | 0.358
SD 0.165 | 0.082 | 0.214 | 0.185 | 0.144 | 0.087 | 0.072 | 0.070
Time/s | Mean | 1.102 | 4.406 | 1.158 | 3.738 | 0.786 | 3.920 | 0.904 | 5.350
ANN RMSE | Mean | 0.093 | 0.051 | 0.050 | 0.051 | 0.072 | 0.039 | 0.077 | 0.043
SD 0.015 | 0.008 | 0.021 | 0.013 | 0.011 | 0.005 | 0.003 | 0.003
MXAE | Mean | 0.619 | 0.346 | 0.482 | 0452 | 0564 | 0.262 | 0.309 | 0.177
SD 0.144 | 0.091 | 0.373 | 0.207 | 0.212 | 0.090 | 0.034 | 0.024
Time/s | Mean | 2156 | 1951 | 21.76 | 33.81 | 21.44 | 4255 | 2092 | 32.05
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