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Abstract 

An engine that automatically reconstructs a large variety of polyhedral, origami and 

wire-frame objects from single-view sketched drawings generated in a calligraphic 

interface is presented. The engine has two stages. An innovative optimisation-based 

line-drawing beautifier stage is introduced to convert rough sketches into tidied-up line 

drawings. Optimisation-based 3D reconstruction follows. Solutions are provided with 

which to overcome the problems associated with earlier approaches to optimisation-

based 3D reconstruction. Suitable adjustments in the optimisation algorithms are 

proposed; simple and efficient tentative models are introduced, and current regularities 

are categorised in order to allow the objective function to be simplified. All three 

actions help to prevent local optima and improve the computational efficiency of 

optimisation-based 3D reconstruction. They all proved to be effective techniques to 

reduce the typical failure rate of optimisation approaches. A discussion of results that 

validate the engine is also provided. 
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1. Introduction 

The automatic reconstruction of line drawings has been an active research area since the 

pioneering works by Roberts [1] and Johnson [2], and good references exist that offer 

an introduction to the earlier advances made in this subject [3], [4], [5]. The search for 

robust sketch-based geometric modellers has emerged over the last decade [6], [7], [8], 

[9] and the field of calligraphic interfaces is also growing (see Computers & Graphics 

24, 2000, for the special issue “Calligraphic Interfaces: towards a new generation of 

interactive systems”). Nowadays, very intuitive and easy-to-use sketch-based modelling 

applications can be developed by combining 3D reconstruction “engines” and 

calligraphic interfaces. The term “engine” is used to mean that 3D reconstruction must 

act like a “black box”, i.e. it produces an output every time it receives an input and the 

user is not required to have any knowledge whatsoever of its internal configuration. 

Only a few reconstruction algorithms are able to act as engines in this modelling by 

sketch approach aimed at aiding conceptual design by single-view sketches, because 

they must be tolerant to faults in the drawing and work incrementally [10]. Optimisation 

approaches have been successfully used in this context [11] [12] because models can be 

updated whenever the input sketch is modified and the reconstruction process is tolerant 

to imperfections. 

Reconstruction by optimisation is supposed to be straightforward and the resulting 

model is assumed to fit the desired shape. However, some important problems appear 

and in this paper appropriate solutions are provided to overcome them: 

 Line drawing beautification is performed in order to tidy up (i.e. repair and 

finish) rough sketches so as to produce clean line drawings. This process is 

necessary since designers tend to generate vague and imperfect sketches, while 

geometrically complete and consistent line drawings are needed to feed the 3D 

reconstruction stage. In this paper a new optimisation-based batch beautifier is 

proposed to deal with this problem. 

 Optimisation-based 3D reconstruction is very sensitive to small variations in 

optimisation parameters [13]. This means that reconstruction can result in local 

minima, even when a complete and consistent line drawing is provided. 
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Appropriate adjustments can be made to reconstruction by optimising algorithm 

parameters, which is the approach we suggest to improve the success rate of 

optimisation-based reconstruction. 

 Mathematical formulation of perceptual cues (also called “regularities”, or 

“artefacts”) has been studied by a small group of researchers within the 

reconstruction community ([10], [14], [15] and [16]) and has led to a poorly 

defined objective function, thus making a global minimum very difficult to find. 

A global minimum is required because, in general, just one solution is 

“psychologically plausible”. Psychological plausibility is itself a complex 

subject (see [17] for a full and updated review of the state of the art). 

Nevertheless, for our purposes, the psychologically plausible model is simply 

the one that the vast majority of humans should perceive from a drawing (human 

observers rarely hesitate in choosing the solution that best fits visual cues). 

Hence, ambiguous shapes and pathological drawings (which can hardly be 

considered to be images of actual 3D shapes) are outside the scope of our work 

here. For common shapes, whether a simple efficient objective function based 

on a categorisation of regularities is a condition to solve the problem or not is 

still an open question that we will consider below. 

 The importance of tentative models to reduce calculation times and improve 

success rates is also an open question. Two tentative model approaches are 

described and we will argue that even the simplest optimisation algorithm with a 

poorly defined objective function should find the global optimum provided it 

starts out with a good tentative model. 

In short, we describe a 3D reconstruction engine developed for use in a modelling-by-

sketching approach obtained by linking our reconstruction engine with a calligraphic 

interface. The reconstruction engine joins two consecutive stages, i.e. drawing 

beautification followed by 3D model reconstruction. It is able to cope with non-perfect 

2D geometries (by way of an innovative optimisation-based beautification stage) and 

then converts line drawings into 3D models (via a 3D reconstruction by optimisation 

stage). In this way, typical failure rates for 3D reconstruction by optimisation 

approaches (due to local minima) are reduced. We shall see that undesirable models, 
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with valid topology but wrong dimensions, are easily prevented by normalising the 

optimisation parameters. Finally, wrong topologies derived from local minima are 

avoided by careful choice of the regularities and/or by employing a good strategy to 

determine initial tentative models. 

Our scope is limited to single-view reconstruction because 3D reconstruction from 

multiple orthographic views requires a radically different approach. The nature of 

shapes that can be reconstructed is limited too, since optimisation-based reconstruction 

can only deal with polyhedral blocks (manifold), origami objects and wire frame models 

(non-manifold). Additionally, in some implementations, it may be generalised to cope 

with curved surface models such as those that usually appear in sketches done during 

conceptual design. However, many complex shapes fall into these simple and useful 

categories. An example is shown in Figure 1, where the axonometric drawing of an 

industrial building structure (Figure 1a) is presented side-by-side with the three 

orthographic views (front, upper and side views) of its final 3D model (Figure 1b). 

Sketches of many skeletons (or “control structures”) used to model complex mechanical 

parts in 3D CAD modelling systems (see Figure 2) and many sketches of architectural 

buildings [18] belong to the “block world” subset. All of them are easily reconstructed 

by our application. 

Insert Figure 1 about here.  

Insert Figure 2 about here.  

The paper is organised as follows. Section 2 includes a review of related work, where 

sketch-based modelling, optimisation-based 3D reconstruction and tentative models for 

reconstruction purposes are covered in detail. In section 3 there is a detailed explanation 

of the solutions provided in our engine to solve the four main problems of optimisation-

based 3D reconstruction described above (i.e. the optimisation-based beautification of 

line drawings, the adjustment of optimisation algorithms, the categorisation of 

regularities and the generation of tentative models approach). In the examples and 

discussion section, beautification and 3D reconstruction stages are covered separately. 

Finally, some conclusions are outlined. 
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2. Related work 

While the old-fashioned design-by-drawing methodology is being replaced by design-

by-digital-prototypes, the ideal engineering design support system is still an academic 

challenge (see Computer-Aided Design 32, 2000, for the special issue “Conceptual 

design: issues and challenges”). According to Ullman [9], the first requisite for such 

conceptual engineering-oriented CAD tools should be 2D sketching capability, to allow 

fast and easy exploration of new ideas and serve as a short-term memory. In other 

words, sketch-based conceptual design incorporates ideas from computer graphics, user 

interface design and computer vision in order to facilitate the speedy creation of detailed 

3D designs, usually from elementary 2D sketches, and to improve support for the 

flexible generation of alternative ideas at the early stages of design [19]. For details of a 

number of academic or prototype systems, see [20], [21], [22], [23] and [24]. A 

summary of the state-of-the-art in modelling by sketching, optimisation and tentative 

modelling follows below. 

2.1 Sketch-based modelling 
Although the first CAD system used the light pen as a data input device [25], the WIMP 

paradigm (Windows, Icon, Menu, Pointing device) is the only one available today for 

commercial CAD packages. However, a research area has emerged that focuses on 

using freehand drawings and sketches as a way to obtain 3D geometric models via input 

devices, like pens on graphic tablets, LCD tablets or tablet PCs. We can distinguish two 

main approaches to 3D modelling by sketching: gesture and reconstruction based 

methods. 

Gestural modelling systems provide predefined gesture alphabets that encode some 

geometric modelling operations. For instance, in SKETCH [26], which is aimed at 

architectural shapes, a block-type primitive is defined by three segments starting from 

the same point and the positive volumes are built upwards, whereas the negative 

volumes are built downwards. In a similar way, SKETCH-N-MAKE [27] facilitates 

numerical control in the process of machining simple parts by using a gestural interface 

to model them. Quick-Sketch [21] is a mechanical design-oriented computer tool that 

consists of a 2D drawing environment based on constraints, although it also allows 3D 

geometry to be generated by interpreting a number of modelling gestures. Qin et al. [24] 
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presented a system that recognises form features by inferring knowledge from sketched 

gestures, but only very elemental features (like prisms, cylinders, etc.) are recognised in 

the first version. GIDeS [28] allows data input from a single-view projection or from 

several orthographic views. The system supplies a gesture alphabet to identify a basic 

set of modelling primitives such as a prism, a pyramid, extrusion and revolution, among 

others. In addition, the dynamic recognition of these modelling gestures provides the 

user with a number of contextual icons with which to solve ambiguities. Some sketch-

based modelling applications are oriented to freeform surface modelling, such as Teddy 

[29], where the system automatically generates one surface using a polygonal mesh that 

matches the silhouette drawn by the user. 

Reconstructional modelling is the alternative to gestural modelling, where geometric 

reconstruction techniques are applied to build the object’s geometry from a sketch that 

represents some projection of the object. We can classify these reconstruction engines 

as being either projective or perceptual. Projective reconstruction is, roughly speaking, 

the inverse of the projection process. Projection invariants are extensively used to 

recover as much information about the object as possible. On the other hand, the 

perception approach focuses on the way humans create very rich three-dimensional 

scenes from retinal images and uses as many perceptual rules, or cues, as are 

achievable. Both categories usually coexist in reconstructional modelling systems. For 

example, Oh and Kim [30] use perceptual reasoning just to overcome the geometric 

uncertainty of inverse projection, and they abandon perceptual reasoning as soon as a 

projection matrix is determined. 

In reconstructional modelling, a preliminary stage may exist where batch (off-line) [31] 

or interactive (on-line) beautification is performed [32] [33]. Interactive beautification 

provides the user with immediate feedback because it operates as the user draws the 

sketch and it offers better integration with a calligraphic interface. Batch beautification 

allows some analysis to be implemented, for example symmetry detection, which is 

better carried out over the whole sketch. 

Some examples of reconstructional systems that implement a batch beautification stage 

include “Digital Clay” [18], which is oriented towards architectural design and supports 

polyhedral objects. This application provides sketch input, with batch beautification, 
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which feeds a reconstruction browser that uses Huffman-Clowes algorithms [34] [35] to 

reconstruct the object geometry. Stilton [36] is also oriented towards the field of 

architecture. Its reconstruction process uses the optimisation approach based on genetic 

algorithms. Oh and Kim [30] assume that edges defining the same face are drawn in 

consecutive order and, furthermore, they assume that the “main” faces are drawn first, 

following a “normal” drawing sequence. 

An example of the interactive beautification approach is Cigro [37], which provides a 

calligraphic interface that implements an interactive beautifier and feeds a 

reconstruction engine operating on an axonometric projection. The system supports 

rectangular polyhedral objects and provides dynamic viewpoints that make it easy to 

implement an incremental modelling strategy.  

To sum up, there are good reasons to pursue freehand sketching and system detection of 

designer intents. However, there are two alternative methods to capture those designer 

intents: automatic (reconstruction-based) and interactive (gesture-based). Important 

differences also appear in the beautification process. Those design intents that have a 

“local” impact (i.e. they affect the geometry only in the neighbourhood of some 

element) are primarily carried out at the same time as the sketching (interactively). 

Beautification that affects those design intents that require global alterations of current 

geometry, however, are better done after sketching (in batch mode). Corners that do not 

meet are good examples of local beautifications, while symmetry requires a more global 

consideration. 

2.2 Optimisation-based 3D reconstruction 
In the optimisation-based 3D reconstruction approach, a Cartesian coordinate system 

whose XY coordinate plane fits in the drawing plane is defined (the so-called inflation 

reference system). This ensures that (xi, yi) coordinates of every junction in the drawing 

will be equal to (xi, yi) coordinates of the corresponding vertex in the reconstructed 

model. Hence, the 3D model is simply defined by the set of z coordinates of all model 

vertices: z= (z1, z2,...,zn). The infinite sets of coordinates constitute the orthographic 

extension [38]. Almost all the potential models are “tangles”, i.e. models that contain 

“obvoluted” faces [13], or, in general, psychologically non-plausible models (Figure 3). 

Inflation is the process of choosing a set of coordinates that represent the 
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psychologically plausible 3D model. Inflation could be said to be the inverse of 

projection. 

Insert Figure 3 about here.  

Inflation is performed by optimising a figure of merit, or objective function, defined as a 

weighted sum of perceptual cues: 

 F(z)=  j Rj(z) (1) 

where j is the j-th weighting coefficient, and Rj(z) is the j-th cue, or regularity, 

expressed in terms of the independent variables z. Regularities must be formulated so as 

to be equal to zero when complete compliance of the condition is achieved, and very 

different from zero for clear non-compliance. Regularities range from Minimum 

Standard Deviation of Angles (MSDA) [38] and face planarity [14] to the extensive set 

of twelve regularities detailed in [15]. In fact, equation (1) determines a multi-criteria 

optimisation, where the j coefficients serve to normalise the sensitivity of different 

regularities. This normalisation is necessary since the different regularities belong to 

very different ranges. It may also serve to increase the objective function sensitivity 

with respect to one or more of the regularities, thus converting those regularities into 

“de facto”, or “soft”, constraints. 

The first authors to use mathematical minimisation employed the hill-climbing search 

because it is robust and easy to implement [38]. In addition, its repeatability allows 

results to be compared. Briefly, for an n-dimensional variable z = (z1,z2,…zn), an 

arbitrary step-size s1 is defined and the 2n values obtained by sequentially adding and 

subtracting the step-size to every coordinate are checked: z1 = (z1+ s1, z2,…zn), z2 = (z1- 

s1, z2,…zn),… z2n = (z1, z2,…,zn– s1). Then, the variable zi, corresponding to the smallest 

objective function is selected as the new current z. The process is repeated in a loop 

until a balance is achieved (when variations in any variable improve the current value of 

the objective function by less than a threshold value), or when the predefined number of 

searches has been reached. A new loop then begins, with a smaller step-size s2. 

Typically, three to ten loops are performed with decreasing steps (s1>s2>…). The 

approach is simple, but its computational efficiency can be improved through, for 

example, a gradient descent algorithm, which is a more faithful interpretation of hill 
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climbing, while running much faster. However, the analytical formulations of the partial 

derivatives of every regularity with respect to every z coordinate are required [39], [40]. 

It is notable that Marill used a fixed set of three step-sizes (s1= 1, s2= 0.5, s3= 0.1). This 

only worked because all their line drawings lie within the range x= 7.79 and y= 8.16, 

which means that the initial step is about 12% of max ( x, y). Leclerc and Fischler 

[14] used five steps, decreasing z by a factor of two (s1= 0.125, s2= 0.0625, 

s3= 0.03125, s4= 0.015, s5= 0.007). This option increases the calculation time while 

leading to more precise solutions. Again, their examples were in a narrow range 

( x= 4.78, y= 3.50). Consequently, the z they propose is about 2% of max ( x, y). 

Unless they argued that larger steps force the algorithm out of the valley of attraction of 

the current local minimum, they did not define a true normalisation strategy. Similarly, 

Lipson and Shpitalni [15] skipped the question by limiting the sketch dimensions to half 

of the screen width (limiting in this way the use of scales, zooms and other similar 

transformations that are very helpful during sketch creation). 

We can also highlight Brown and Wang’s approach by assuming that “undoubtedly 

standard methods for minimising local minima difficulties could be employed with 

typical amounts of success… (included but not limited to the family of simulated 

annealing algorithms)” [13]. Nevertheless, our results were discouraging because we 

introduced a Simulated Annealing algorithm, which was supposed to be able to find the 

global minimum, and found that its failure rate is similar to those of local optimisation 

algorithms. This happens for both algorithms when the input is a “bad” tentative model 

(a model that tends to drive optimisation to a local optimum), and when poor or 

ill-defined regularities are used to generate an objective function that is unnecessarily 

complex and plagued with local minima [41]. 

2.3 Tentative models 
Unfortunately, the input line drawing is a bad initial solution for the optimisation 

approach described above, since it is a local minimum where some regularities are 

trivially satisfied (face planarity, for instance). The strategies developed to avoid this 

trivial optimum lead to “tentative” initial models, and all of them fall into one of two 

categories: iterative inflation and direct generation. 
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Iterative Inflation techniques are based on “false regularities”. Marill’s MSDA was the 

first Iterative Inflation method [38]. MSDA is a false regularity because it does not 

reflect any property of the line drawing that must correspond to some properties in the 

searched model. In other words, it is not linked to any perceptual cue of the image. It is 

a heuristic rule, based on the fact that almost regular and convex polyhedra have a 

tendency to accept this assumption and, consequently, it seems easy to guess that this 

approach is acceptable only for almost regular and convex polyhedra. See [13] for an 

extensive analysis of the limitations of MSDA. 

Leclerc and Fischler [14] presented an objective function with an “inflation” part (FI) 

that included false regularities and an “optimisation” part (FO) that contained those 

regularities that are trivially satisfied in the initial solution. A variable parameter  was 

introduced with an initial value below or equal to one, which decreases towards zero as 

the optimisation advances. This allowed us to escape from trivial solutions (since the 

weight was initially put on those conditions that were not accomplished in the trivial 

solution), while guaranteeing that the final solution depends only on true regularities 

(since the weight was transferred to them during the process). We did generalise the 

approach by adding FA, which includes those regularities that are true regularities and 

can always be applied since they are not trivially satisfied in the initial solution 

(symmetry is a good example): 

 F(z) = FA(z) +  FI(z) + (1- ) FO(z) (2) 

In this approach, undesirable oscillations can happen, causing optimisation algorithms 

to work badly. In addition, small changes in optimisation parameters can mean falling 

into local minima during inflation. In other words, introducing false regularities 

generates a far more complex objective function, which contains more local minima. 

Hence, the algorithm escapes from the initial solution (z =0), but with a high risk of 

creating more local minima. 

In the direct generation category, the simplest strategy to obtain a tentative 3D model is 

random inflation, first suggested by Brown and Wang [13]. Surprisingly, our tests show 

that, provided the shapes are not too complex, optimisation from a randomly chosen 

tentative model (where all zi lie in the normalised interval max ( x, y)) gives 

topologically valid solutions with a low failure rate of one per fifteen attempts, and, in 
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case of failure (if the final values of the objective functions clearly differ from zero), 

subsequent random models will give the right topological result. Since the probability of 

four consecutive failures is so low that it never happened to us during tests, we believe 

this approach is an alternative in cases where other tentative model approaches fail. 

Preliminary reconstruction [11] belongs to the direct-generation category for obtaining 

tentative 3D models. Its clearest antecedents were the approaches by Kanatani [42] and 

Lamb and Bandopadhay [43]. The process begins by obtaining the prevailing angles 

from the angular distribution graph of lines, and hence the main directions. A model is 

then built by assigning a coordinate zi=0 to an arbitrary node (this action fixes the 

position of the model regarding the plane of the image, but does not entail loss of 

generality in the 3D reconstruction). The process advances by assigning coordinates zi 

to nodes connected to those already known. If the shape has an angular distribution with 

exactly three main directions, the assignment of coordinates can spread to all the nodes, 

giving rise to a good tentative model. 

3. Description of our reconstruction engine 

In our reconstruction engine, called REFER, C++ is used to implement the calculations 

and management of data. Graphical User Interaction is achieved by a calligraphic 

interface implemented on the Wintab API (http://www.pointing.com/FTP.HTM), under 

the Windows 2000 operating system, and 3D visualisation is implemented in OpenGL. 

The process begins with an interactive session where the designer draws 2D sketches on 

the tablet and REFER generates rough interactive graph-like drawings that are 

converted first into beautified line drawings and then into 3D shapes (Figure 4). The 

output is in DXF format containing a wireframe, surface or solid model according to the 

sketched geometry. 

Insert Figure 4 about here.  

A detailed description of our calligraphic interface is not necessary here, since similar 

systems are described in the literature (see, for instance, the “editor block” in [32]). Its 

main tasks are the dynamic conversion of strokes into straight segments (every stroke in 

the sketch of Figure 4 is converted into the corresponding line segment in the line-

drawing beautification), searching for connectivity relations (endpoint snapping), 
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trimming, breaking or joining lines when intermediate vertices are added, and deleting 

wrong lines. 

Below, we explain the solutions provided in our engine to solve the optimisation-based 

beautification of line drawings, the adjustment of optimisation algorithms, the 

categorisation of regularities, and the generation of tentative models approach. Both the 

categorisation of regularities and the generation of tentative models benefit from prior 

automatic detection of the classification of models. This subject is briefly considered in 

section 3.4. The generation of tentative models is separated into two subsections: 

section 3.5 outlines the axonometric inflation approach, while section 3.6 considers a 

second approach called level inflation. 

3.1. Line-drawing beautification 
Inflation approaches give good results in 3D reconstruction whenever the input drawing 

is “geometrically correct”, i.e. it effectively fits an orthogonal projection of a real shape. 

However, if the input drawing is a rough sketch, with imprecise coordinates, the 

inflation will give distorted or even tangled shapes. Adding more conditions to the 

objective function during 3D reconstruction can prevent those tangled shapes, but only 

with difficulty, while feeding correct line drawings is the best alternative. Calligraphic 

interfaces are typically configured to manage an interactive conversion of sketched lines 

into straight segments, to join segments whose ends are close to each other, to ensure 

parallelism, and so on (see the “analyser block” in [32]). This interactive beautification 

is efficient in some cases. However, if too many restrictions are active, sketching 

becomes a difficult task and so free sketching followed by a batch beautification phase 

becomes an interesting alternative. Additionally, interactive beautification can only just 

deal with global regularities. In summary, interactive capabilities can be complemented 

by batch beautification to tidy up the complete sketch after the user finishes the 

drawing, thus providing a more detailed analysis of the user’s sketch and discovering 

those design intents that are difficult to detect interactively. 

An optimisation-based batch beautification process was implemented in REFER to 

repair the drawing and capture some designer intents in the geometric characteristics of 

the line drawings produced by the calligraphic interface. First, a refinement is carried 

out to correct some errors that occurred during interactive beautification. Zero length 
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lines are removed and missing junctions are properly connected. The final beautified 

drawing is then obtained by optimising one objective function defined as a weighted 

sum of perceptual cues. A hill-climbing algorithm is used, where the optimisation 

variables are the coordinates of all the n vertices x= (x1, x2,...,xn) and y= (y1, y2,...,yn). 

 F(x,y)=  j Rj(x,y) (3) 

At present, our batch beautification searches for parallelism among the sketched lines 

that represent “intended” parallel edges. A penalty that is inversely proportional to the 

convergence angle between each pair of lines is added to the objective function, in order 

to measure this intention. The weight is: 

 ij = 0º,10º(cos-1(ui’ . uj’)) (4) 

where u’i(x,y) and u’j(x,y) are the unit vectors of i-th and j-th edges, respectively, in the 

input line drawing, and the practical formulation of the compliance factor is [15]: 

a,b(x) =  max [0, 1.1 e                - 0.1] -((x-a)/b)2

 
(5)

where “a” is the target value and “b” is the maximum deviation allowable. Hence, a null 

weight (i.e. an angle greater than b) means that this pair of lines is not to be parallelised. 

The analytical formulation to evaluate parallelism is: 

RPARALLELISM =          ij . [cos-1(ui . uj)]2

i=1 

m

j=i+1

m

 
(6)

where m is the number of edges in the input line drawing; ui(x,y) and uj(x,y) are the unit 

vectors of the current i-th and j-th edges, respectively. 

Figure 5 shows a typical sketch and its corrected line drawing. Since the errors cannot 

be estimated in the drawing, we will highlight the fact that, for example, the initial angle 

between lines d1 and d2 is 3.7º, and the angle between e1 and e2 is 2.2º. After running 

parallelisation-based 2D reconstruction, the greatest divergence between any pair of 

supposed parallel lines becomes less than 0.01º. The precision of the final model is also 

below this threshold. 

Insert Figure 5 about here.  
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The second regularity introduced in our beautification stage is collinearity, which is 

formulated in the following terms: 

RCOLLINEARITY =          ij . [(cos-1(ui . uj))2 +
i=1 

m 

j=i+1 

m 

max [(cos-1(ui . vi1j1))2 , (cos-1(ui . vi1j2))2 , 

(cos-1(ui . vi2j1)) 2 , (cos-1(ui . vi2j2))2]]  

(7)

where: 

 m is the number of edges in the input line drawing. 

 ui(x,y) and uj(x,y) are the unit vectors of the current i-th and j-th edges, 

respectively. 

 vi1 is the current position of the initial vertex of the i-th edge, vj1 is the current 

position of the initial vertex of the j-th edge, and vi1j1 is the unit vector from vi1 

to vj1. 

 The weight ij is: 

ij = 0º,10º   [(cos-1(u’
i . u’

j))2 + 

max [(cos-1(u’
i . v’

i1j1))2 , (cos-1(u’
i . v’

i1j2)) 2 

(cos-1(u’
i . v’

i2j1)) 2 , (cos-1(u’
i . v’

i2j2)) 2]]  

(8)

where u’i(x,y) and u’j(x,y) are the unit vectors of the i-th and j-th edges, 

respectively, in the input line drawing; v’i1 is the initial position of the initial 

vertex of the i-th edge, v’j1 is the initial position of the initial vertex of the j-th 

edge, and v’i1j1 is the unit vector from v’i1 to v’j1. 

The modules for 3D reconstruction are covered in detail below. 

3.2. Adjustment of optimisation algorithms 
Reconstruction is highly sensitive to the optimisation parameters. It can easily be 

verified that when the initial step s1 of the unidirectional search of the optimisation 

algorithm is too large, the solutions do not satisfy the psychological assumption of 

proportionality (Figure 6). Of course, “exact” dimensions cannot be induced from rough 

sketches or from tidied line drawings. However, the perceptual requisite of keeping 

proportions is affordable and convenient, since human observers assume that the object 
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represented in the line drawing must have regular dimensions in all directions [17] [44]. 

This is because they deem it has been represented by choosing a “general” point of view 

that clearly enhances the actual proportions. 

Insert Figure 6 about here.  

We solved the problem by normalising step s1 with respect to max ( x, y). This makes 

optimisation completely independent of the dimensions in the input line drawing. We 

suggest the range 10-30% because this is an indirect way of imposing the psychological 

assumption of proportionality (s1= p. max ( x, y) / p [0.1, 0.3]). In addition, we 

concluded that between five (to get high speed and low precision) and ten (to get low 

speed and high precision) iteration loops is a good range to obtain good solutions in a 

reasonable amount of time. In previous works, the decrement in si was constant [14], but 

in our experience this leads to no significant improvement in computational efficiency 

because the stopping criterion in the algorithm cuts off those levels where no significant 

improvement is achieved. Nevertheless, avoiding large differences in consecutive steps 

is a guarantee against failures in the algorithm and, after testing, the best behaviour in 

the objective function seems to be obtained when decrements fit exponential rather than 

linear curves: for instance, if the next step is 30-40% of the current step (si+1= d   si / 

d [0.3, 0.4]). However, a slower decrement (60-80%) is better, since this improves the 

probability of escaping from local optima that becomes vital if the tentative model is 

tangled. Finally, the value adopted by the smallest si is clearly related to the final 

precision, and we recommend it be made directly proportional to the greatest deviation 

we will accept in order to accomplish the regularities. 

3.3. Classification of models 
It is widely accepted that there is no general strategy that is always valid to reconstruct 

all objects and that the more general the approaches are, the less successful they will be. 

Two alternative ways to increase the success rates involve using specific approaches or 

improving the adjustments of general approaches. Both methods can be applied only 

after detecting the “nature” of the object to be reconstructed (“identifying the special 

cases”, in the terminology of Varley and Martin [16]), and then selecting the best fitting 

particular approach or automatically adjusting the reconstruction configuration. The 

purpose of detecting the nature of the object is to find the taxonomy of shapes by 



19 

grouping the ones with similar perceptual cues. The main difficulty comes from the fact 

that only two-dimensional information contained in the input line drawing can be used 

since detection must be done before reconstruction. 

At present, our detection system is useful for our purpose, but is not as sophisticated as 

the categorisation proposed by Varley and Martin [16]. It is based on some simple 

perceptual rules and, hence, we established a model classification for polyhedral 

objects, distinguishing between pyramidal and prismatic polyhedral objects, and 

“normalons”. (Here we define a “normalon” as a 3D extension of Dori’s definition [45] 

of a normalon, i.e. “a polygon having the property that the angle between any two of its 

adjacent sides is 90 .” In other words, normalons are what Kanatani [42] identified as 

rectangular trihedral polyhedra. We use the term “normalons” for brevity, since such 

polyhedra play a fundamental role in our approach.) 

We adopted angular distribution graphs [11] to detect normalons and similar criteria 

were developed to detect prisms and pyramids. In short, a figure is considered to 

represent a prism whenever one single direction is dominant, i.e. when the number of 

edges parallel to one direction is at least 10% greater than the number of edges parallel 

to any other direction. A figure is considered to represent a pyramid whenever one 

single vertex is dominant. In other words, when the number of edges connected to one 

vertex is more than 10% greater than the number of edges connected to any other 

vertex. 

3.4. Categorisation of regularities 
Regularities currently in use in optimisation approaches were extensively described and 

formulated in [15], but determining a categorisation of regularities aimed at avoiding 

ill-conditioned objective functions is still an open problem (some ideas can be found in 

[16]). Such categorisation is desirable since our goal is to reduce the complexity of the 

objective function in order to improve the success rate of optimisation-based 

reconstruction. To this end, the distinction between true and false regularities, already 

mentioned above, is pertinent. False regularities do not reflect any perceptual cue of the 

image, while true regularities reflect some property of the image that is likely to 

correspond to some properties in the searched model. In other words, a false regularity 

is an artefact for obtaining models with some special features that we consider to be 
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desirable characteristics in the 3D model while they are not tied to any cue identified in 

the two-dimensional drawing. Conversely, a true regularity is a feature detected in the 

2D drawing and is very likely to correspond to some feature in the 3D model. 

We will also distinguish between direct and indirect regularities. Regularities are direct 

when they are related to cues that are similar in nature. For instance, two lines being 

parallel to each other in a 2D drawing are supposed to correspond to two parallel edges 

in the 3D model (because of the parallelism invariance of axonometric projections). 

Indirect regularities, however, are linked to a property that is different in nature to the 

property perceived in the image. For instance, two lines perceived as being parallel to 

two main directions in the 2D drawing are likely to represent perpendicular edges in the 

3D model (since main directions are supposed to be orthogonal to each other). The 

difference is meaningful since indirect cues can barely be detected while sketching. 

Regularities are also indirect when they work as elements of a set of cues that provide 

information about a complex feature (i.e. when a set of symmetry lines determines a 

symmetry plane). In this sense, the benefits of indirect cues have not yet been fully 

exploited in the problem of line drawing reconstruction. 

The advisability of reducing the number of regularities included in the objective 

function becomes apparent if the actual relations among them are observed. For 

instance, some irregularities appear in the upper face of the parallelepiped represented 

in Figure 7: 1) A face (a,b,c,d), or “flatness” condition; 2) Two parallelism conditions 

(a//c and b//d); 3) Two perpendicularity conditions (a b and a d) detectable by line 

orthogonality; 4) Four skewed symmetries (with axis e1, e2, e3 and e4); and 5) Four 

orthogonal corners (ab, bc, cd, da) detectable by line orthogonality. Several 

dependences among those regularities are obvious: 1) if a and c are parallel, then a and c 

are coplanar, and 2) if a is parallel to c and if a is perpendicular to b, then b and c are 

perpendicular. 

Insert Figure 7 about here.  

We will now go on to analyse the regularities detailed in [15] except “prismatic face”, 

which is not considered because it is only useful in the detection of a particular kind of 

curved surfaces (ruled ones) and, hence, falls outside the scope of this paper. New 

formulations are presented that we consider better describe the cues. 
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Face planarity. This is a true regularity for polyhedral shapes and probably the most 

important one, since it virtually eliminates tangles, as predicted by Brown and Wang 

[13]. Its main drawback is that it becomes a direct regularity only after faces have been 

detected in the line drawing, and this is a complex task when hidden edges are drawn 

(see [46], [47], [48] and [49]). The alternative of sketching only frontal geometry 

(without hidden edges) and inferring hidden parts later, when 3D geometry has been 

given a preliminary interpretation, was explored by [10] and [16]. 

Skewed facial symmetry. This is a true and interesting regularity, which was 

extensively explored by Varley and Martin [16]. Nevertheless, we believe that facial 

symmetries are better considered as indirect cues of a more general model symmetry. 

More work is needed in this area, although some interesting advances may be found in 

[50], [51], [52], [53] and [54]. 

Line parallelism. This is a true and very powerful regularity. Its main disadvantage is 

that parallelism is invariant only in pictorial (non-perspective) views. Hence, it is a 

direct cue in pictorial views, and an indirect one in perspective images (see [55]). A 

more difficult problem is its unacceptable computational cost (for instance, if all the 

possible parallel lines of a shape like the one in Figure 1 are considered). The use of 

bundles and thresholds was proposed for such situations [16]. 

Line collinearity. This is a particular case of line parallelism, unless it is invariant in 

perspective views too, and may serve to detect alignment constraints among edges and 

faces. In other words, it is a cue of a true and direct model constraint: alignment. Further 

improvements in its formulation are required. In the formulation that we consider to be 

correct (similar to the one described in the beautification section) the computational cost 

is very high. 

Line orthogonality. This is not a projective invariant and, hence, it is indirectly related 

to a parallelism cue: two edges must be orthogonal if their images are parallel to two 

directions perceived as being orthogonal to each other. Consequently, it is linked to 

detection of the main orthogonal directions and some limitations about perspective 

projections appear as for line parallelism. 

In our implementation, lines are considered as being intended to be perpendicular if they 

are parallel to the main directions. Those main directions are determined by following 
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the isometric directions criteria (automatically assigned when more than 60% of the 

edges are parallel to three lines running 120º±5º to each other). A more sophisticated 

criterion is also implemented, which considers the rule of projective consistency for 

trihedral orthogonal corners, topological constraint (three directions cannot be main 

directions if they are not simultaneously present in at least one vertex), and so on [56]. 

In order to impose such parallelism among edges and main directions in the 3D shape, 

the reconstruction of the axonometric system (see OMXMYMZM in Figure 8) must be 

performed before optimisation. The axonometric inflation described below is used for 

this purpose. 

Skewed facial orthogonality. This is a particular case of line orthogonality extended to 

all edges of the same face. It is true for the faces of normalons (rectangular polyhedra). 

Line verticality. This is a true regularity. However, it is more concerned with the 

position of the model than with its shape. In our implementation, we considered that 

edges that are vertical in the input drawing (parallel to the vertical axis) are “pitched” in 

the final model. In fact, the inflation coordinate system (see OIXIYIZI in Figure 8) is 

used to reconstruct, while line verticality of the model would have to be referred to the 

axonometric system (see OMXMYMZM in Figure 8), and would be vertical lines in the 

sense of being parallel to the three dimensional vertical axis of the axonometric system. 

Insert Figure 8 about here. 

Isometry. This is a variant of the “standard deviation of segment lengths” [13]. Of 

course, it may be a true regularity, since a human observer assumes that the object 

represented in the line drawing must have regular dimensions in all directions, but 

according to projective laws, this isometry cannot usually be measured directly in the 

drawing. Hence, it is a false, or at best indirect, cue. In addition, mathematical 

formulation of this regularity would have to be limited to lines that run parallel to the 

main directions. Finally, normalisation carried out in the regulation of optimisation 

parameters guarantees a high degree of isometry, making it unnecessary to introduce it 

explicitly. 
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Minimum standard deviation of angles (MSDA). This was used very successfully by 

Marill to introduce an optimisation approach, but it is a false regularity (unless applied 

to regular polyhedra). 

Corner orthogonality. This is a particular case of MSDA, where all angles defined by 

connected edges are equal to 90 . Consequently, it is a false regularity unless applied to 

rectangular polyhedra. 

Face perpendicularity. In manifolds, this is a particular case of corner orthogonality. 

Its interest is limited to normalons, where it is a true regularity. 

In summary, in the fields of polyhedral blocks, origami objects and wire frame models, 

face planarity, symmetry and line parallelism are the best regularities, despite the 

difficulty involved in detecting faces and symmetry in the line drawing. The geometry 

of the resulting shape may be improved by reinforcing parallelism with line collinearity, 

line orthogonality and skewed facial orthogonality, unless those regularities make it 

more difficult to deal with perspective-like and/or sketched line drawings. 

Line verticality, isometry, MSDA, corner orthogonality and face perpendicularity can 

be ignored, since their effects on the model are highly redundant compared to the one 

provided by planarity, symmetry and parallelism and, in addition, the constraints they 

add are better introduced indirectly during beautification and tentative model 

generation. Skewed facial orthogonality, corner orthogonality and face perpendicularity 

are true in normalons but, in such cases, better strategies for direct reconstruction exist 

that make them unnecessary. 

3.5. Tentative models by axonometric inflation 
We adopted the preliminary reconstruction of the direct generation approach described 

in section 2.3 and improved it by developing an algorithm and expanding the number of 

types of models to which it applies. Our own version of this approach is called 

“Axonometric Inflation”. 

Normalons (rectangular trihedral polyhedra, whose corners consist of three mutually 

perpendicular edges) benefit from a rectangularity constraint that greatly simplifies the 

3D reconstruction process [42]. A detailed study of axonometric inflation can be found 
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in [56]. Below, we will summarise it and highlight the strategy proposed to extend the 

approach to a more general class of “quasi-normalon” shapes. 

Let us suppose an orthogonal projection of an orthogonal corner such as A’B’C’D’ in 

Figure 9. Let us define vertex D (the one connected to all three edges in the corner) as 

the central vertex and let us define the rest of the vertices as lateral vertices. To 

reconstruct the model (i.e. to determine the x, y and z coordinates of vertices A, B, C 

and D) the Cartesian coordinate system associated to inflation is used to trivially obtain 

the x and y coordinates of all four vertices (xA= xA’, yA= yA’, …). 

Insert Figure 9 about here.  

The Z coordinate of the central vertex D can be arbitrarily fixed without loss of 

generality. Axonometric inflation thus benefits from formulations that determine the 

angle between each edge (CD) and its own line-segment (C’D’) when three orthogonal 

edges are connected to the same central vertex (D). Relative z coordinates of the lateral 

vertices (A, B, C) are then obtained from the z coordinate of the central vertex (D) in 

the following way: 

zC = zD ± LC’D’ . tan(asin( cotg( ) 
.
 cotg( )))  (9)

where LC’D’ is the length of line segment C’D’ (CD edge projection) and zC and zD are 

the respective z coordinates of the lateral and the central vertex that determine the 

reconstructed edge. 

To determine the z coordinates of all the vertices in a normalon polyhedron, a specific 

spanning tree is required that converts already-determined lateral vertices into new 

central vertices, and in this way does not miss the relative position among vertices and 

constructs a topologically consistent 3D model. We use a specific version of the 

Kruskal algorithm [57] to obtain a spanning tree made up of all the edges that connect 

the successive central vertices. The lateral vertex connected through the longest edge is 

defined as the central vertex for the new corner, because it is assumed that longer edges 

are less prone to error than shorter edges (i.e. the dimensional relative errors are smaller, 

and long lines are more accurately drawn in hand drawing). The process is repeated 

until all the vertices in the model have been determined. Should converting any of the 

present lateral vertices into central ones generate a circuit (i.e. if all lateral vertices have 
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already been visited), the branch is abandoned and the longest as yet unexplored lateral 

edge is used to begin a new branch. Moreover, particular cases must be studied to 

prevent numerical inconsistencies during the process (for instance, those that may arise 

due to trigonometric operations). 

The algorithm requires the concurrence of three orthogonal edges in every central 

vertex. Nevertheless, information about faces is not required and the restriction applies 

to central vertices only. The valence (the number of edges concurring at a vertex) of 

lateral vertices is irrelevant. Consequently, the approach will work if a spanning tree can 

be obtained where all central vertices have a valence of three and, thus, all vertices of 

other valences can be determined as laterals. In other words, Axonometric Inflation can 

be applied to the “extended” class of polyhedra whose spanning tree is a normalon. In 

those quasi-normalon models (like the one in Figure 10), the temporary elimination of 

all line-segments that are non-parallel to any of the three main directions determines an 

equivalent normalon if: a) no vertex disappears during the conversion, and b) the graph 

is still connected. In Figure 10, the spanning tree begins at vertex 10 and the coordinates 

of vertices 5, 7 and 9 can be determined. The next central vertex should be 9 and this 

will therefore allow 8 and 11 to be calculated. When continuing the process, however, 

neither 11 nor 8 can be central since their valences are two. Evaluation continues by 

opening the branch connecting 10 to 5, which allows vertices 3 and 6 to be obtained. 

We then move to central vertex 6 to determine vertex 4. A new move to 4 allows the 

calculation of 2. Finally, the evaluation of vertex 1 is carried out through vertex 3, 

concluding the definition of the model. 

Insert Figure 10 about here.  

Sometimes, in spite of achieving an equivalent normalon, axonometric inflation cannot 

be applied if certain vertices are not accessible through some valid spanning tree. This is 

the case when some junctions are only connected to other junctions of valence below 

three. For instance, in Figure 11, vertex 3 is only connected to vertex 4, which cannot be 

central because its valence is two. The same happens to vertices 6 and 7. 

Insert Figure 11 about here.  
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When the valence of a central vertex is less than three, equation (9) cannot be used. 

Nevertheless, the assumption that the model is a normalon has already been made. 

Hence, adding fictitious line-segments is consistent with the assumption and solves the 

problem. These fictitious line-segments are defined to be of unit length and oriented in 

accordance with the main directions not yet present in the vertex. In Figure 12, fictitious 

edges 4-F1, 12-F2 and 6-F3 allow vertices 3, 6 and 7 to be determined. 

Insert Figure 12 about here.  

When vertices of a valence greater than three appear, the approach will still work if a 

“valid” spanning tree can be obtained, i.e. a tree where those vertices are not central. 

When this is not possible, we have confined ourselves to obtaining one of the potential 

models by randomly choosing three of the edges that converge at the vertex. 

3.6. Tentative models by level inflation 
Reconstruction by level inflation of vertices is a new perceptual method of direct 

(non-iterative) inflation, where z coordinates are determined depending on the shapes of 

the junctions. The shapes of the junctions have been extensively used in labelling 

approaches to validate the figures to reconstruct [58], [34], [35], [59], [60], [61]. Our 

goal is very different, since labelling requires a complete line drawing, while in 

modelling-by-sketches incomplete drawings must be processed. The shapes of the 

junctions are not the key of the proposed method, which instead consists in accepting 

the fact that there is a high degree of correspondence among the shape of each junction 

and the z coordinate of its corresponding vertex in the model. Therefore, it is supposed 

that the shapes of the junctions can be ordered in increasing “levels”, which are matched 

to growing z coordinates. The correspondence between shapes and levels can be 

intuitively justified by examining Figure 13, where the input image (contained in the 

XY plane) and the psychologically valid model of a cube are shown. It can be seen how 

the six levels have been labelled from 0 up to 5. 

Insert Figure 13 about here. 

The assignment of z coordinates to levels is sensitive to the “pitch” angle of the model 

(clearly visible in the lateral view YZ in Figure 14), because edges that are parallel to 

the vertical axis in the input image are inclined in the final model. As the pitch angle 
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varies, different projections of the same object are obtained. Bowing the object in 

Figure 13 a little more (increasing its pitch) would make the z coordinates of vertices 

labelled 3 greater than the z coordinates of level 4 vertices, although their shapes (their 

appearance in the image) will remain the same until a very large change in pitch occurs. 

The “yaw” and “roll” parameters modify the views of an object in the same way pitch 

does. The yaw angle is measured from the Z axis to the horizontal projection of line 

BD. We observe that the “symmetric” vertices (for instance, C and E) have different z 

coordinates when this angle clearly differs from zero. 

Our psychologically rooted assumption was that the observer tends to make the smallest 

pitch and yaw movements as a compromise to get a general point of view while 

maintaining symmetry. In addition, roll is left at zero to maintain model verticality. The 

six defined shapes of junctions that are obtained as a result of these assumptions are 

shown in Figure 14 in ascending order of z values. 

Insert Figure 14 about here.  

One additional consideration is that both positive and negative pitch angles give 

psychologically plausible solutions, known as Necker reversals. We opted for a positive 

pitch (i.e. the upper face is visible) without loss of generality in the reconstruction, 

because the reversal is obtained by changing all z coordinates from positive to negative 

(Figure 15). 

Insert Figure 15 about here.  

We assume that, as long as the designer deliberately chooses the appropriate point of 

view to show the real object proportions, the range of depth ( z = Zmax – Zmin) must be 

similar to width ( x = Xmax – Xmin) and height ( y= Ymax – Ymin). Moreover, uniform 

gradation is the simplest strategy to assign z coordinates to intermediate levels: 

 zi = i * ( z/n) = i * (max ( x, y) / n) (10) 

where n is the number of level jumps (total number of levels minus one), the value of 

which is 5 according to the classification in Figure 14. 
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Clearly distorted models appear in cases where the same shapes (i.e. an inverted Y) 

appear in two or more vertices with obviously different depths (like A, D and E in 

Figure 16). This was solved by a new incremental level inflation approach where z 

coordinates of intermediate levels do not only depend on their absolute level, but on the 

relative one (the difference of levels between the calculated vertex and another vertex 

connected to it), and the distance to the vertices to which it is connected. This proposal 

is again justified assuming the psychological tendency to proportion. 

Insert Figure 16 about here.  

Consequently, the ZB coordinate of a vertex B is obtained incrementally, relative to the 

z coordinate of another vertex A, to which B is connected by an edge: 

 ZB = ZA + AB * (LevelB –LevelA )* max ( x, y) / n (11) 

where AB is the length of the projection of the edge connecting A to B. LevelB-LevelA 

is the increment (number of jumps) from one level to the other. 

The incremental level inflation formulated in (11) can be easily extended to determine 

all vertices by successively calculating as many vertices as necessary. A spanning tree is 

used both to go from general (big) to particular (small) details and to ensure 

repeatability in the tentative inflation. We use a specific version of the Kruskal 

algorithm, starting out from the most central level 0 vertex (the one closest to the 

barycentre of the figure) and continuing to the vertex connected with the current one by 

the longest as yet unvisited edge. 

A detailed study of level inflation can be found in [62]. We will conclude this section by 

simply underlining their main extensions. 

Predominant edges. The classification of levels shown in Figure 14 includes the 

corners of many drawings, when their predominant orientation is vertical. To cope with 

other orientations, our algorithm detects the predominant direction of every input 

drawing and performs the vertex matching after the rotation, i.e. the angle measured 

from this predominant direction with respect to the vertical has been neutralised. The 

most frequent direction is selected as the predominant one. Should two or more 

orientations appear with the same frequency, the one closest to 90º (which corresponds 

to lines drawn vertically and bottom-up) or 270º (lines drawn vertically and top-down) 
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acts as the predominant edge. The term “vertical” refers to the input drawing, and 

depends on the calligraphic interface, but it is normally configured to match the vertical 

direction on the screen where the sketch is made. In Figure 17a, both dA and dB appear 

three times. However, dB is closer to the vertical and is therefore selected as the 

predominant edge. 

Insert Figure 17 about here.  

Vertices with more than three edges. 

When vertices of a valence above three appear, the approach will still work if a “valid” 

spanning tree can be obtained, i.e. a tree where all central vertices have a valence of 3. 

When this is not possible, we have confined our approach to obtaining one of the 

potential models by randomly choosing three of the edges that converge at the vertex. In 

fact, the choice is not random but heuristic. When four or more edges meet at a vertex, 

the two edges encompassing the rest are selected (edges 1 and 5 in Figure 18) and the 

third edge will be the one closest to the bisecting line of the angle determined by the 

two edges chosen in the previous step (edge 2 in Figure 18). 

Insert Figure 18 about here.  

Vertices with two edges. When vertices occur in which two edges meet, we implement 

a particular version of the creation of 3-edge vertices strategy [10]. The level is then 

determined according to the shape of the “extended” junction and the tentative model is 

obtained. In our approach, however, only two-dimensional information about vertices 

and edges is available. Hence, our criterion is to assume that the third edge is occluded 

by a face determined by the two visible edges, but the face itself is not determined 

unless it becomes necessary. Initially, the third edge is simply assumed to be coincident 

with the bisector of the angle defined by the two edges (see vertices V1, V2 and V3 in 

Figure 19). Bisecting the smallest angle between the two lines is a simple but not 

always valid rule. A more sophisticated rule determines when the two-dimensional 

vertex belongs to the apparent contour (see vertex V1 in Figure 20). In this case, the 

third edge is the bisector that goes inside the apparent contour. The faces must be 

determined only if vertices with two edges do not belong to the apparent contour. 
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Selection of the bisector that goes inside the face the other two edges belong to then 

takes place. 

Insert Figure 19 about here.  

Insert Figure 20 about here.  

4. Examples and Discussion 

During tests, our modelling-by-sketch system proved to be user-friendly and useful for 

practical purposes. The system is able to reconstruct a large variety of shapes in an 

almost automatic manner (see Figures 1 to 6). Nevertheless, the user’s decisions are 

sometimes required and, under extreme situations, the system fails and the user must 

delete the part of the sketch that caused the failure before the system can find the 

appropriate solution. For instance, in Figure 21, edge A has a clearly distorted 

parallelism relative to the intended parallel edge B and, in addition, it is unlikely to be 

parallel to edge C; the system was unable to solve this conflict (the intended solution, in 

Figure 21e was so tangled that OpenGL was unable to draw the front face!). By simply 

deleting edge A and sketching it again, the correct shape was obtained (Figure 21f). 

Insert Figure 21 about here.  

To prevent erroneous cue detections and, hence, ill-functioning such as that described in 

Figure 21, the “bundling method” proposed by Varley and Martin [16] seems an 

interesting alternative to the weighting approach we used. 

One limitation that was clearly apparent during tests was the absence of global 

symmetry regularity. It is more or less masked in complex shapes, where the redundant 

effect of indirect cues imposes some degree of symmetry, but it becomes apparent when 

such indirect cues are not present. Figure 22 illustrates how both interactive and batch 

beautification reinforce connectivity, parallelism and collinearity, while 3D 

reconstruction is concerned with face planarity. The output model is not good, however, 

since the clearly perceivable cue of symmetry was never present during reconstruction. 

Insert Figure 22 about here.  
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The system works in real time and our tests show that users feel quite comfortable 

during sketching and direct reconstruction. However, optimisation processes are 

bottlenecks because the user must wait (typically from some seconds up to a few 

minutes, e.g. on a Pentium III based personal computer fifteen seconds were required 

for parallelism and collinearity tidying in the example in Figure 21). Implementation of 

efficient optimisation algorithms and elimination of screen updates to monitor the 

process would significantly decrease these times. However, direct reconstruction of 

particular typologies through specific approaches, like axonometric inflation, seems 

more promising. In fact, axonometric inflation gives final models when the inputs are 

geometrically valid line drawings. A subsequent optimisation process is only required to 

“refine” imperfect models obtained when the input drawing is an imperfect sketch 

which could not be completely tidied during beautification. In short, optimisation-based 

beautification is our present bottleneck, since calculation times are clearly unacceptable 

for an interactive session. However, optimisation-based 3D reconstruction performance 

is not a difficult problem, since it is only required in a small set of complex shapes. 

Nevertheless, discussions on beautification and 3D reconstruction performances are 

detailed separately below. 

4.1. Testing and evaluation of the beautification phase 
Typically, during sketching, interactive beautification allows lines to be trimmed and 

rotated if it is necessary to get appropriate junctions, and almost parallel lines can be 

interactively parallelised (Figures 23a and 23b). However, interactive beautification 

only propagates in a “local” way. For instance, Figure 23b shows that the pairs of 

neighbouring edges (E1 – E3, E3 – E5, E6 – E7,…) have been parallelised, but the pair 

E3 – E5 was not made parallel to the pair E6 – E7, since connectivity was the dominant 

constraint, and both connectivity and parallelism were only achievable through a global 

change in the geometry. In contrast, batch beautification outputs a globally corrected 

line drawing, where perceived cues are accomplished in a geometrically consistent way 

(i.e. a global parallelisation is achieved in Figure 23c). Moreover, this parallelisation is 

achieved even if interactive parallelisation was not performed previously (Figure 23f). 

Additionally, interactive beautification sometimes forces a different final model. If 

parallelism detection is done in both an interactive and a batch system, the final models 



32 

(Figures 23c and 23f) will differ. As shown in Figure 23a, if lines are drawn in the 

sequence E1, E2, E3, E4,…, the interactive approach will force E3 to be parallel to E1 as it 

is being drawn (this implies a dynamic correction of vertex A). Subsequently, when the 

sketching continues and line E4 is drawn, its position is determined by the already-

moved vertex A. In other words, the designer’s gesture has been dynamically modified. 

The result is a final narrow upper step (Figure 23c), which is different from the one 

intended by the designer although easily obtained through a similar sketching session 

where interactive beautification of parallel lines was disabled and finally batch 

parallelisation was performed (Figures 23d, 22e and 23f). 

Insert Figure 23 about here. 

We conclude that interactive beautification with small thresholds, followed by batch 

beautification, outputs line drawings geometrically correct while allowing more 

freedom during sketching than interactive beautification modules do when used alone. 

Shapes where parallelism is dominant can be reconstructed in two dimensions so as to 

obtain well-conditioned input line drawings. The main advantage is that a corrected 

drawing, where parallelism is present, may be easily converted into good tentative 

models that guarantee parallelism by axonometric inflation. 

As a final consideration, it must be pointed that, due to the regularities (i.e. collinearity 

and parallelism), perceptual cues are limited in optimisation-based beautification: they 

are just probable properties of the final model. Accidental points of view can cause 

erroneous detections of false parallelisms if two non-parallel edges are accidentally 

projected as parallel lines in the drawing. Figure 24 shows an example where edge 5-6 

would be considered parallel to edges 1-4, 2-3 and 7-8, although it should really be 

interpreted as a crossing edge. 

Insert Figure 24 about here. 

Reinforcing such false parallelism during beautification was a mistaken goal, but caused 

no further problems since the output line drawing was perfectly processed during the 

subsequent 3D reconstruction (i.e. appropriate checks were applied to detect such 

singularities during axonometric inflation). In the actual case of Figure 24, vertex 2 has 
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an equivalent valence of 2 and is avoided in the spanning tree. Thus, the “correct” 

reconstruction is obtained. 

4.2. 3D reconstruction test and evaluation 
Normalisation of optimisation parameters is effective. A large set of more than one 

hundred and fifty examples with dimensional ranges ( x, y) varying from (1.17, 1.12) 

to (418.85, 435.29) were successfully solved. 

Optimisation is very sensitive to step size and the number of steps. Adjusting these 

parameters to the general values proposed in section 3 results in a reasonably robust 

optimisation process. Nevertheless, “erratic” behaviours have sometimes been detected. 

For instance, in model J by Leclerc and Fischler (see Figure 3) a step s1 in the ranges 

20-37 % and 65-100 % leads to a model with the “right” geometrical form (that is, a 

hexagonal prism), while different ranges convey up to three different “tangled” models 

corresponding to different local minima. Another example (example A by Marill) is 

presented in Figure 25 (their input drawing was shown in Figure 6a). 

Insert Figure 25 about here.  

Figure 26 shows the influence exerted by perturbations of the z coordinate of vertex 4 

(lower rear central corner in Figure 25) on the objective function (where only face 

planarity applies), as evaluated in the neighbourhood of the optimum shape. Figure 26 

shows how close two local optima and the global optimum are and how a slight 

distortion of one single variable drives the solution to local optima. This suggests that, 

unless adjusting the parameters that control the behaviour of the algorithm is really 

necessary, it is not sufficient to prevent the solution from falling into local minima. In 

our opinion, good tentative models are required to prevent this difficulty. 

Insert Figure 26 about here.  

The tentative models obtained by the axonometric inflation algorithm have proved to be 

valid for all normalons of valence 3 and almost every type of quasi-normalons; some 

representative examples are shown in Figure 27. The automatic trimming of lines is also 

apparent in Figure 27a1. The gesture made to delete a line is visible in Figure 27b1 and 

the effects of the batch beautification of vertices and line collinearity are marked in the 

tentative model in Figure 27c3. 
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Insert Figure 27 about here.  

Strictly speaking, axonometric inflation is only valid when the image corresponds to an 

orthogonal axonometric projection. Nevertheless, for certain oblique axonometric views 

where the projection does not deviate excessively from the orthogonal, the proposed 

method does succeed in reconstructing approximate models. 

In Cavalier’s axonometric views (Figure 27d1), Axonometric Inflation is unable to 

obtain a model. Nevertheless, an artifice consisting in arbitrarily adding a threshold to 

conflicting angles is employed. The values proposed are 91º instead of 90º and 134º 

instead of 135º. This is a good compromise, because a threshold below 1º would enlarge 

oblique faces, i.e. the L/H proportion in Figure 27d3 is clearly greater than the 

perceived proportions in the Cavalier drawing. Furthermore, a greater threshold would 

rapidly increase local distortions (such as the one observed in vertex A in Figure 27d3). 

In short, Axonometric Inflation gives exact results when applied to normalon models 

that are projected according to orthogonal and parallel projections. Under such 

conditions, “perfect” models are obtained and further 3D reconstruction is not required. 

In this context, “perfect” refers to a 3D model that is perceived to be equivalent to the 

input drawing. Its geometry must be the same as the majority of observers would 

perceive from the input drawing, and the dimensions and other metric properties that 

can be perceived in an approximate fashion (such as parallelism and proportion) must 

be achieved qualitatively. Prior face detection is not required, and an extended class of 

“quasi-normalons” can also be successfully reconstructed. 

Fixed level inflation gives good results for convex polyhedra with a high degree of 

regularity, particularly in prismatic and pyramidal shapes, which are succesfully 

detected by our rudimentary classification system. However, results of the incremental 

level inflation are better when more complex shapes appear. For instance, the 

incremental inflation of the sheet metal part in Figure 28a1 (shown in Figure 28a3) is 

clearly less distorted than in the fixed inflation of Figure 28a2. Typically, level inflation 

reduces the iterative optimisation loop by an order of magnitude. Nevertheless, the final 

models suffer the same problems as before, i.e. complex and indirect regularities (like 

global symmetry) are clearly absent (Figure 28a4). The model in Figure 28b1 was 

reconstructed through incremental level inflation (Figure 28b2) followed by 
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optimisation, where parallelism, planarity, collinearity and line orthogonality were 

active regularities. Figure 28b3 also illustrates the effect of a lack of both local and 

global symmetry regularities. 

Insert Figure 28 about here.  

The use of two consecutive optimisation processes is another alternative, where the first 

optimisation involves only regularities that are not trivially accomplished in the input 

drawing and outputs a tentative model. For instance, corner orthogonality was employed 

to reconstruct the sketch in Figure 28c1. The tentative model obtained in this way 

(Figure 28c2) was then improved by including a number of other regularities (line 

parallelism, collinearity and face planarity in the case of Figure 28c3). This approach is 

an alternative to the balanced optimisation function described in (2), which does not 

include false regularities (with their associated local minima) and prevents undesirable 

oscillations in the numerical calculations, since the objective function remains the same 

throughout each optimisation process. This alternative gives good results when the 

model has some main directions (see comparison between direct optimisation in Figure 

28d3) and an initial optimisation that includes line orthogonality (Figures 28d2), 

followed by an optimisation of face planarity and line orthogonality (Figure 28d4). In 

fact, it is a sort of “handmade” multicriteria optimisation. Perhaps a more formal 

multicriteria optimisation approach should be considered. Nevertheless, our early 

(though incomplete) attempts to formalise a multicriterion algorithm were discouraging 

[63]. 

5. Conclusions 

Optimisation is a good approach, but still too academic to be used as an engine for a 

sketch-based modelling system, since it is too sensitive to the imperfections inherent in 

sketches. Improvements are required to take the method towards full automation 

(diminishing the need for user interaction) and greater robustness (increasing the 

success rate). An adjustment of the optimisation parameters improves the efficiency 

even for very simple numerical methods. We used a simple descent algorithm to 

demonstrate the benefits of correct adjustment and good tentative models even with 

simple algorithms. Better optimisation algorithms exist and they improve computational 
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efficiency but, to the contrary to what is claimed in some previous works, they cannot 

solve the main problem on their own; they are faster than simple descent algorithms, but 

they get the same tangled shapes. 

We apply two complementary adjustment strategies: normalisation of all optimisation 

parameters according to the range of the dimensions of the line drawing, and definition 

of sets of optimisation parameters that better fit the “nature” of models detected by our 

own automatic procedure. 

A reduced set of the best regularities, in conjunction with some tentative inflation 

methods, have been proposed in order to avoid the classical problems of local minima in 

reconstruction by optimisation. This solves a difficult problem, because the original line 

drawing is a trivial local minimum for many regularities (such as face planarity) and 

many local minima are present in the feasible region, since objective functions are ill-

conditioned. What we achieve with tentative inflations is to escape from trivial optima, 

whilst working with a better objective function, thus increasing the success rate and 

reducing calculation time. 

The efficiency of direct inflation approaches clearly depends on the model topology but, 

in our experience, automatic detection of the more generic typologies is easy to 

implement and tentative models improve the optimisation process with simple descent 

algorithms. 

To sum up, tentative inflation approaches allow an initial model to be defined by 

applying some simple rules. These approaches proved to be efficient for a wide range of 

polyhedral models and are quite easy to implement and run fast, even for complex 

models. 

The strategies we employed to obtain tentative models were presented. They were 

implemented and tested and, according to our experience, axonometric inflation gives 

excellent results for normalon and quasi-normalon models, and level inflation seems to 

be a good approach for obtaining tentative models from prismatic models. Hence, good 

quality final models can be obtained at a reduced cost for such typologies. 

Future work must start out from the fact that optimisation processes are bottlenecks and 

thus there is a need to explore alternative strategies, for instance, parallel processing of 

3D optimisation in the background during the sketching session. Another approach to be 
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explored should be the substitution of numerical optimisation algorithms by an 

“algebraic constraint manager”, configured to solve the set of “soft” constraints 

embedded in the regularities derived from image cues (i.e. 2D and 3D DCM from 

D-Cubed, see http://www.d-cubed.co.uk/index.htm). 
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FIGURE CAPTIONS 
 

Figure 1. Wire-frame building structure. 

Figure 2. Polyhedral skeleton of a plotter support. 

Figure 3. Inflation process. Some intermediate “tangled” models, together with the 

good one, are shown in this exploded view of example J by Leclerc and Fischler. 

Figure 4. Four stages during a modelling-by-sketch session: input sketch, intermediate 

interactive generated line drawing, batch-beautified line drawing and 3D model. 

Figure 5. Input sketch with intermediate, interactively generated line drawing, batch 

beautified line drawing showing parallelised lines and 3D model. 

Figure 6. Big steps in Hill-Climbing lead to non-proportional models. (a) the original 

line drawing, (b) psychologically plausible model (obtained with s1= 0.2.max ( x, y)), 

and (c) non-proportional model (obtained with s1= 2.0.max ( x, y)). 

Figure 7. Regularities in the line drawing of a parallelepiped. 

Figure 8. Inflation versus model reference systems. 

Figure 9. Axonometric Inflation of an orthogonal corner. 

Figure 10. Transformation from (a) quasi-normalon to (b) equivalent normalon, by 

deleting dotted lines, and defining a spanning tree such that all central vertices have a 

valence of 3. 

Figure 11. First transformation from (a) quasi-normalon to (b) non-solvable normalon. 

Figure 12. Solvable equivalent normalon. 

Figure 13. Basic Model for the definition of the shapes of junctions. 
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Figure 14. Classification of levels of vertices. 

Figure 15. Two Necker-reverse inflated modes. 

Figure 16. Polyhedron with fissure. 

Figure 17. Detection of dominant edge in an indefinite object: a) Original orientation, 

b) Rotation to see the effect of neutralisation. 

Figure 18. Edges selected to determine the shape of a junction. 

Figure 19. Inflation of vertices determined by two edges. 

Figure 20. Inflation of vertices determined by two edges. 

Figure 21. Limitations in the automatic detection of perceptual cues. 

Figure 22. Limitations in the detection of symmetry. 

Figure 23. Two alternative reconstructions showing three stages: Input sketch, 

intermediate interactive line drawing and batch-beautified line drawing. 

Figure 24. (a) Line drawing with false edge parallelism; (b) most plausible perceptual 

solution. 

Figure 25. Global minimum and tangled local minimum. 

Figure 26. Two local minima in the neighbourhood of the global minimum in the 

design sub-space z1-z4. 

Figure 27. Some normalons and quasi-normalons reconstructed by REFER. 

Figure 28. Some polyhedral shapes reconstructed by REFER. 
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