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Abstract
We propose a new dynamic and efficient bounding volume hierarchy forbreakable objects undergoing structured
and/or unstructured motion. Our object-space method is based on different ways to incrementally update the hier-
archy during simulation by exploiting temporal coherence and lazy evaluation techniques. This leads to significant
advantages in terms of execution speed. Furthermore, we also show how our method lends itself naturally for an
adaptive low memory cost implementation, which may be of critical importance in some applications. Finally, we
propose two different techniques for detecting self-intersections, one using our hierarchical data structure, and
the other is an improved sorting-based method.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Deformable objects occur frequently in animation, visual-
ization, and simulation. As the complexity of such simula-
tions increases, e.g. to include cutting, tearing, or fracture,
improved collision detection (CD) algorithms, in terms of
generality, execution speed, and memory cost, are required.

A great deal of effort has already been spent on
solving the CD problem for various types of geome-
try and scenarios. We refer the reader to available sur-
veys [LM04, JTT01, LG98, TKH∗05] for a broader view of
this research area. Here we will mainly focus on hierarchical
CD methods suitable for deformable body simulation.

Because of their efficiency, bounding volume hi-
erarchies (BVHs) have been widely adopted in the
area of rigid body collision detection, e.g. BVHs
of spheres [Qui94, PG95, Hub96], axis-aligned bounding
boxes (AABBs) [WG92, vdB97, HdBG02], oriented bound-
ing boxes (OBBs) [GLM96, RKC02], discrete orienta-
tion polytopes (k-DOPs) [KHM∗98, Zac98]), and convex
pieces [EL01]. Interestingly, BVHs have also proven to be

the preferred object-space acceleration technique for de-
formable body simulation [TKH∗05]. Several factors, how-
ever, make efficient deformable CD more complicated. Pre-
processed data structures must be updated on-the-fly, which
may require both hierarchy restructuring and bounding vol-
ume refitting. Also, contact areas tend to involve more col-
lisions points. Still interactive performance is a fundamental
requirement in many applications.

Deformable polygon meshes can be supported by differ-
ent schemes for refitting the BVs in pre-processed hierar-
chies [LAM01, BSBL01, MKE03, SWL04]. However, since
these methods depend exclusively on preprocessed hierar-
chy structures that are refitted each frame, their performance
break down when the accumulated deformation causes sig-
nificant increases in the overlap among children bounding
volumes (BVs), and they do not address breakable objects.

For specific bounded types of deformation, methods can
be designed to achieve output-sensitive collision detec-
tion [LAM03, JP04]. Deforming necklaces [AGN∗04] is an-
other example of a type of deformable object for which ef-
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ficient collision detection can be performed. These meth-
ods rely on clever usage of specific knowledge of the defor-
mation type, but this also limits their usefulness to a much
smaller subset of applications.

Only a few general object-space methods that support
highly deformable polygon soups undergoing unstructured
motion are described in the literature. Smith et al. [SKTK95]
present a method in which an octree is constructed lazily for
all primitives in overlap regions each frame. This method,
however, does not exploit temporal coherence, since the oc-
tree is always reconstructed top-down from scratch. Ganov-
elli et al. [GDO00] use a full octree data structure, and rein-
sert all primitives in the leaves each frame. The stiff nature of
the octree, however, makes this solution poorly adaptive to a
non-uniform distribution of the primitives over the leaves.

Furthermore, uniform grids [Tur89] and spatial hash-
ing [THM∗03] have been utilized for CD. Spatial hashing is
used to lower the otherwise costly memory requirement of
three-dimensional arrays. However, spatial hashing is sensi-
tive to the choice of the cell size, table size, and hash func-
tion. Also, uniform grids, like octrees, may suffer severely
from clustering problems as well as the so calledteapot in
the stadiumproblem [Hai88]. In trying to overcome these
problems, hierarchical hashing has been suggested as a more
efficient alternative [Ove92, Mir98].

Recently, dynamic BSP-trees, updated by using a schedul-
ing algorithm to alter the cutting planes in unbalanced
regions, has been presented for broad-phase CD scenar-
ios [LCF05]. Also, deformable spanners have been proposed
as an interesting graph data structure for CD of deforming
point sets [GGN04], which may turn out to be useful for in-
teractive CD of deformable polyhedral models.

CD of massive models has also been addressed. By using
an overlap graph, the search space can be pruned to reduce
the memory requirements. Dynamic models are treated as
floating nodes in the graph, and for these models, bounding
volumes hierarchies are constructed lazily as the collision
queries progress [WLML99].

Clothes are highly deformable objects which require the
detection of complex collisions between the wearer and
the clothes, self-intersections, and possibly tearing. None
of the proposed methods, however, seem to have been de-
signed to handle highly dynamic breakable objects effi-
ciently [BFA02, MTCV∗04, VT94, Pro97].

Furthermore, the tremendous graphics hardware improve-
ments over the past years have made hardware-accelerated
image-based CD algorithms for breakable objects possi-
ble [GLM05, TKH∗05]. These methods seem to pose an in-
teresting alternative to object-space methods. However, dis-
cretization errors can cause such algorithms report an in-
correct subset of all collisions. For contemporary graphics
hardware, this is due to the lack of rasterization algorithms
that areconservative, i.e., rasterization that visits all pixels

that are at least partially overlapped by a triangle. Increasing
the framebuffer resolution may decrease these problems but
can never fully avoid them. A notable exception to this is
the extension of CULLIDE [GRLM03] presented by Govin-
daraju et al. [GLM04], where a Minkowski sum of the trian-
gle is used to “grow” each triangle enough to avoid the prob-
lems. Even so, many applications, e.g. games, cannot afford
to use the graphics hardware for anything than rendering the
scene for visual purposes. Furthermore, not all systems are
equipped with capable graphics hardware.

To address these limitations, we propose dynamic bound-
ing volume hierarchies (DBVHs) that generalizes the BVH
approach to work efficiently for CD of deformable and
breakable meshes undergoing structured as well as unstruc-
tured motion. The major contributions are as follows: I) A
new efficient object-space CD algorithm for objects consist-
ing of independently moving geometric primitives. No limi-
tations are imposed on the relative motion of the primitives.
II) A method for efficient balancing of lower level update
work that amortizes the structural changes of our DBVHs
over time. This makes feasible the interactive simulation of
breakable objects with tens of thousands geometric primi-
tives. Furthermore, the memory requirements for the BVHs
adapts to the current complexity of the collision queries. III)
Demonstration of our algorithm in challenging scenarios.
Experiments suggest that our method is significantly faster
than the competing object-space algorithms for breakable
objects. IV) Retained compatibility with previously sug-
gested BVH-based methods for more specific types of de-
formation, and even for rigid bodies. This makes efficient
CD of mixed types of objects much simpler. V) Minimal pre-
processing, which e.g. makes interactive on-the-fly introduc-
tion of new dynamic objects in a simulated scene possible.
VI) A comparison of our DBVHs with an improved sorting
based method for the case of finding self-intersections.

2. Dynamic Hierarchies

Without loss of generality, we consider DBVHs of axis-
aligned bounding boxes (AABBs) constructed on polygonal
meshes (see Section 2.6). Initially, at the start of a simula-
tion, only a root node exists per dynamic object. Then, the
trees are rebuilt incrementally as the current change of the
spatial configuration of the objects requires. An overview
of our algorithm is given in Figure 1, which shows the two
main phases that cooperate to achieve fast generalized CD:
(1) anupdate phase, in which each partly constructed hierar-
chy from the previous frame is updated and reused if possi-
ble, and, (2) aCD query phase, in which pairs of BVHs are
traversed in parallel to sort out potentially colliding primi-
tives.

The update phase involvesrefitting the currently active
boxes, and deleting older or degenerate subtrees, a procedure
we call node invalidation. In the subsequent query phase,
invalidated nodes are rebuilt lazily in a top-down fashion
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Figure 1: Overview of the new CD algorithm using DBVHs.

(callednode splittinghereafter) as they are encountered dur-
ing the recursive traversal. Note that we refer to a non-leaf
node asinvalid if it has a set of geometry associated with it,
but has no appropriate subtree yet. Next, we describe these
two main phases of our algorithm in more detail.

2.1. The Update Phase

All nodes visited during the CD query phase (see Sec-
tion 2.2) in the previous frame, have been marked asactive,
and it is expected that they give a relatively good picture of
which nodes will be visited during the next query. There-
fore, the update phase starts at the deepest active nodes in
each hierarchy and constructs minimal BVs directly from the
geometry they cover. This is callednode refitting. Then the
nodes in the branches above them are refitted by merging the
child boxes’ extents iteratively upwards until the root node
is reached. In Figure 2, this efficient update scheme is illus-
trated. Note that this partial lazy update is highly adaptive to
the current situation, which makes it much more efficient
than a full bottom-up hierarchy update [vdB97]. In many
cases, it is expected to outperform other more selective up-
date strategies as well (e.g. [BSBL01, LAM01]), since our
update scheme is highly adaptive to the current situation by
the utilization of temporal coherence.

Due to too much unstructured motion, however, a sub-
tree of a node may have become severely inefficient for CD.

Figure 2: Efficient BVH update scheme. The refitting starts
with the boxes in the deepest active nodes, shown in dark
grey, and then the boxes above them, shown in light grey, are
refitted by merging their child boxes.

Therefore, those nodes are marked asinvalid as follows.
During the refitting of the BVs in the currently active nodes,
the volume of the parent’s bounding box,Vp, is compared
to the sum of the child boxes’ volumes, denotedVi . If the
following inequality is true,

r =
Vp

∑k
i=0Vi

< R, (1)

the parent/children relationship is considered as degenerate
and the parent node is marked as invalid, which means the
node will be re-split if it is encountered in the CD query
phase. The measurer can be seen as an extremely cost-
efficient way to estimate the amount of overlap among the
children volumes. In Figure 3, some examples of differentr-
values are shown. Empirically, we have found that choosing
R= 0.9 in Equation 1 yields good results.

However, we note that there are geometric cases when
Equation 1 signals re-split unnecessarily, since when the re-
split is executed it will not improve much on the overlap of
the children boxes, and if this keeps happening frame after
frame, re-split will always occur. For example, a single “gi-
ant polygon”, might cause a significant overlap among chil-
dren nodes causing the parent node to be invalidated every
frame. Nevertheless, the low computational cost of our sim-
ple formula and the good experimental results it gives for
common scenarios show the usefulness of our strategy.

A possible solution to avoid unnecessary re-splits of the
same node frame after frame, which forces re-splits also
in reached sub-branches, thereby potentially destroying our
goal of utilizing temporal coherence, would be to keep track
of nodes which do not improve their parent/children volume
relationship enough to satisfy Equation 1 after a re-split, and
keep them as they are during a few frames and then try re-
split again. This would require some additional data to be
stored in the nodes, as well as some extra calculations. Fur-
thermore, this strategy seems more worthwhile for higher
level nodes, with many primitives and a high re-split cost,
than for deep level nodes, with few primitives. As an alterna-
tive solution, a more advanced node invalidation criteria can
be designed, perhaps explicitly utilizing current node param-
eters such as depth, number of children, number of triangles,
and volume ratio at rest state. Yet another solution would be
to detect and subdivide too large polygons as they arise.

Any remaining nodes, not marked as active by the latest
CD query phase are considered as too old and they are also
invalidated. For example, in Figure 2, the sub-trees below the
dark grey nodes are considered too old. Any such subtrees
are traversed while the primitives are collected from their
leaves and moved upwards to the closest active (dark grey)
nodes. Note that this work is done together with the already
described methods for BV refitting and node invalidation in
a single traversal pass per BVH.
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2.2. The CD Query Phase

Since the currently existing nodes in the hierarchies already
have been updated, pairwise BVH overlap testing can pro-
ceed in the same way as done for rigid bodies until a node is
reached that is invalid and thus need to be split.

To split a node, we simply classify the midpoint of all
involved geometric primitives in relation to the midpoint of
the parent box. After partitioning of the primitives, all empty
sub-volumes are removed. Thus, a node’s number of chil-
dren,k, varies so that 2≤ k ≤ 8. We also let the children
take over the responsibility of recording where the primitives
lie, i.e., we always store the primitive pointers at the deepest
nodes in the existing branches. This simple split heuristic is
chosen for its low computational cost per primitive, while at
the same time, it rarely produces unacceptable splits. For ro-
bustness, however, we still catch too unbalanced splits, i.e.,
cases where more than 80% of the primitives goes into the
same sub-volume, by escaping to specialized code that redo
the split by first finding more appropriate split planes (cf.
Gottschalk et al. [GLM96]).

After that, a minimal BV is constructed around each
newly created non-empty node, and the pairwise traversal
continues. In this way, the hierarchies are only split incre-
mentally as the current situation requires, whereas previ-
ously constructed valid subtrees can be reused. Thus, tem-
poral coherence is used to our advantage, since it is expected
that the majority of the visited nodes will already have up-
dated BVs (from the update phase), and that only a small
fraction of the non-constructed hierarchy need to be tra-
versed using node splitting. Invalid nodes that are not visited
during traversal are not split, which further improves perfor-
mance and memory usage.

Finally, note that during the CD traversal phase, all visited
nodes whose BVs were found to overlap with another node’s
BV are marked as active. This information guides the node
refitting to be done in the next frame by the update phase.
Also note that our methods automatically work for the case

framei framei +1

geometric
primitive

Figure 3: Overlap among children boxes increases because
of unstructured relative motion of primitives residing in the
same boxes. Note that the severely overlapping child boxes
in frame i+ 1 will never be used, since the parent will be
re-split if encountered during a collision traversal.

when a single breakable object is involved in multiple colli-
sions with other objects. In this case, different branches will
be marked as active in this object’s BVH by different pair-
wise tree traversal, and then the update phase still works ex-
actly as described (Section 2.1).

2.3. Expected Performance

The total cost for CD between two breakable objects under-
going unstructured motion, can be expressed asT = Tt +
Tu + Ts, whereTt is the cost of pairwise overlap and inter-
section testing [GLM96],Tu is the cost of refitting BVs and
invalidate nodes, andTs is the cost of changing the structure
of the hierarchies by node splitting and degenerate subtree
deletion. By utilizing temporal coherence and lazy evalua-
tion techniques, our algorithm aims at lowering bothTu and
Ts. The structural changes made to the hierarchy are further
motivated by a strive of making the boxes tighter and avoid-
ing to much overlap among children boxes, which lowersTt .

For an object withn primitives,Tu is alwaysO(n), since
the total number of primitives processed to refit the deepest
active nodes isn and the number of BVs merged to refit all
their parents’ BVs up to the root is bounded by the max-
imum number of nodes in an hierarchy, which is inO(n).
Furthermore, we expectTs to beO(n), because of the way
temporal coherence is utilized to incrementally change the
structure of the hierarchy from frame to frame. In the worst
case, however, although highly unlikely, if we arrive at a situ-
ation requiring a fully constructed hierarchy, without having
any partly constructed hierarchy to start from, thenTs would
beO(nlogn). Finally, Tt is output sensitive as for hierarchi-
cal rigid body CD.

2.4. Memory/Speed Trade-Off

The algorithm, as we have discussed it so far, has an adap-
tive memory cost to the actual collision scenarios. For faster
performance, however, it is possible to pre-allocate a full,
but empty, hierarchy to maximize performance. We have
implemented this approach, storing all the initially empty
nodes in each hierarchy in a pre-allocated array. Then, the
task of allocating and deleting nodes turns into simple as-
signments to mark nodes as non-empty, when splits occur,
and invalid, when nodes gets old or degenerate. By using
this pre-allocation strategy, the memory requirements of our
method becomes similar to the fully pre-processed BVHs
normally used for rigid bodies.

Also, note that, even though the nodes are pre-allocated,
deformable models with a dynamically varyingn can still
be supported, as long as the variation is reasonable. This is
so because it is only the number of nodes that are prede-
termined and allocated, not the number of primitives. The
primitive partitioning to the nodes can still be handled com-
pletely dynamically.
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2.5. Front tracking for deformable models

In trying to improve performance further, we also examined
the possibility to avoid re-traversing upper parts of the hi-
erarchies which currently do not contribute to the geometry
pruning, a technique that has been termed generalized front
tracking [LC98, EL01]. However, the involved extra effort
did not pay off in our case. One probable reason is that our
way of constructing the BVHs gives flatter trees with fewer
internal nodes than in the binary case (cf. [MKE03]).

2.6. Extensions to Other BVs

Our choice of using AABBs in the BVHs is well-motivated
by the simplicity of the required procedure to dynamically
re-compute the extents of the boxes, either by directly pro-
cessing subsets of an object’s geometry or by merging child
boxes, which in both cases produces AABBs with optimal
fits with respect to the used partitioning of the underlying
primitives. Furthermore, overlap tests among AABBs is ex-
tremely fast.

However, our algorithm can with very small adjustments
be extended to handle generalized boxes,k-DOPs, or spheres
instead, since the only required BV operations that our
framework require are efficient node splitting during pair-
wise traversals, and BV refitting, which in turn requires
iterating over the underlying primitives and BV merging
(cf. [MKE03, BSBL01]). Usingk-DOPs, instead of AABBs,
would e.g. be a way to trade the more expensive cost in-
volved in updating their extents and the overlap tests for
tighter fitting volumes, possibly leading to earlier pruning
during collision traversals. However, using spheres, and thus
sphere merging in the update phase, produces alayered hi-
erarchy, which may result in poor fitting BVs, as pointed out
by James and Pai [JP04].

3. Detecting Self-Intersections

Although our presented method is primaily designed for
efficient inter-object CD, it must be said that realistic de-
formable body simulation and animation inevitably involves
handling of self-intersection or intra-object CD. For com-
pleteness, we will therefore discuss and evaluate our method
for this case as well. This will show that although our method
is not as efficient for this case, it is still quite usable. Further-
more, it should be noted that nothing hinders another com-
plementary algorithm to be chosen for the intra-object case,
if it is found advantegous.

Since, within a mesh, neighboring primitives are in con-
tact with each other by sharing an edge or a vertex, this
misleads the BVH-based search to also find all adjacent ele-
ments. Some previously proposed object-space methods for
cloth animation have managed to gain efficiency by avoid-
ing searching for most of these false self-intersections by

using a local curvature criterion to interrupt the CD traver-
sal [VT94, Pro97]. Unfortunately, this approach is not pos-
sible for arbitrary breakable objects, since the curvature cri-
terion can no longer be assumed to be fulfilled when an ob-
ject break, i.e., the primitives become disconnected. This can
also be seen in the two rightmost images of Figure 4, where
the self-intersections of the just broken bunnies are spread
all over their surfaces. It should be noted, however, that for
realistically animated fracturing objects, it may still be ad-
vantegous to use the curvature criterion in the non-fracturing
parts of an object.

Since the curvature criterion is not applicable in the
general case we consider, the performance of BVHs will
degrade because of the false detection of adjacent (non-
intersecting) elements [MTCV∗04]. However, when an ob-
ject has broken so that the faces have become disconnected,
a BVH-based approach can potentially work well.

To use our DBVHs for detecting self-intersections, the
DBVH is updated as before, and then the collisions are sim-
ply detected by testing the DBVH against itself.† Note that
most of the BVHs from the previous frame is still expected
to be reused in the next, since our update phase refits ac-
tive parent BVs that are still valid by merging child BVs,
and node invalidation makes sure degenerate branches get
rebuilt on a per need basis.

3.1. Sorting-based Self-CD

To put our DBVH algorithm for self-CD to test, we have
improved a sorting-based algorithm (not based on hierar-
chies) so that it works for large amounts of primitives. Since
a breakable object modeled byn separable geometric prim-
itives can be considered as ann-body in itself,n-body algo-
rithms might be applicable. In particular, we have examined,
the one-dimensional sweep and prune (SAP) method, which
keeps a sorted list of intervals of each body per major axis
x, y, andz [CLMP95]. Insertion sort is often used since it is
O(n) for nearly sorted lists, which often can be assumed.

We start by noting that some SAP algorithms have needed
at least one boolean of storage for every possible pair of in-
terval overlap. The table will consumen(n−1)/2 bits. For,
e.g., 64k triangles, this amounts to 256 MB, which is highly
impractical. Another possible implementation is to maintain
all triangle pairs that overlap on all three axes in a balanced
search tree [Bar92]. This is the SAP method we compare
our new algorithms against for finding self-intersections in
Section 4.

We immediately found that for self-CD of larger scenes,
existing SAP algorithms do not work well for two reasons:
I) the insertion-sort performance may degrade to the worst

† We also tried testing each triangle of the object against the
DBVH, but this variant reported consistently worse results.
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Figure 4: Selected images from thebunniesscene. Inter-object collisions (left images) and self-collisions (right images) are
shown in red.

Figure 5: Selected images from thespheresscene.

Figure 6: Selected images from theteapotscene.

case ofO(n2), and II) the number of overlaps along an axis
may beO(n2), which forces far too many insertions and re-
movals in the search tree. Next, we describe our variant of
SAP, calledSWIPER, for overcoming these problems.

A simple way of avoiding the memory cost of previous
SAPs is to traverse the sorted list for, say, thex-axis and
at the same time detecting all the overlaps along this axis,
a procedure done inO(n+ k) time, wherek is the num-
ber of overlaps. We call thisoverlap traversal. Each inter-
val has an identifier of which primitive it belongs to, and so,
when an overlap is found, the other two axes can be immedi-
ately tested for overlap inO(1)-time in the other dimensions.
This hasO(n) memory requirements, which is a significant
improvement over the previousO(n2) behavior, and it effi-
ciently exploits temporal coherency as previous SAP algo-
rithms. To reduce the effect of problem II, we make sure that
the number of overlaps for each axis is maintained, and ef-
ficiently updated during the insertion-sort as the order of in-
tervals change. For efficiency purposes, the sorted list with
fewest number of overlaps can be used for the overlap traver-
sal described in the previous paragraph. In addition to being

faster, it also avoids the problem withO(n2) overlaps along
one axis for many cases.

By default each list is sorted with insertion sort. However,
if the sorting not succeeds in at leastO(nlogn) time, then
it is interrupted, and quicksort takes over and finishes the
sorting‡. Quicksort is used form frames (we usem = 20),
and then we attempt to switch back to using insertion-sort.
However, during thesem frames, it is only necessary to ac-
tually call quicksort in the last frame before switch back is
attempted, unless insertion sort fails to finish in time for all
lists during the same frame. If this happens, a randomly se-
lected list is quick sorted and used for overlap traversal. For
reasonable scenes, at least one of the axes is sorted using
insertion-sort. For those 1–3 axes using insertion sort, we
execute overlap traversal on the axis with the fewest number
of overlaps. In this way, we avoid theO(n2) sorting prob-
lem, and by dynamically choosing a suitable axis, we expect

‡ In practice, we terminate whenknlogn operations have been ex-
ecuted, withk ≈ 8 yielded best results for our experiments.
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Spheres Bunnies Teapot

Number of objects 12 2 1
Triangles/object LOD1 1280 4096 4032
Triangles/object LOD2 5120 16384 16256
Triangles/object LOD3 20480 65536 65280

Inter-collisions/frame LOD1 445 218 0
Self-collisions/frame LOD1 0 1737 958
Inter-collisions/frame LOD2 889 442 0
Self-collisions/frame LOD2 0 4440 2524
Inter-collisions/frame LOD3 1823 955 0
Self-collisions/frame LOD3 0 12757 4003

Table 1: Geometry statistics for our three demo scenes, in-
cluding the average number of colliding triangle pairs per
frame.

the overlap traversal to become output sensitive to the actual
number of overlaps along that axis (See Section 4).

We attempted to use the radixsort algorithm with guar-
anteedO(n)-behavior as well. However, for SAP, the inter-
vals need to be sorted so that if interval coordinates are ex-
actly the same, then all start coordinates need to precede the
end coordinates. Radixsort cannot handle such comparisons
(since it is not comparison-based). Therefore, the radixsort
had to be followed by another call to insertion sort. Quick-
sort also could be exchanged for heapsort with guaranteed
O(nlogn) worst-case behavior. However, in practice, quick-
sort performed better than both these variations in our test
scenes.

4. Results

Our approach have been implemented and evaluated in sev-
eral benchmark scenarios ranging from simpler cases to
highly complex geometry constellations with intermixed ge-
ometry. Here we report results from three different bench-
mark scenarios referred to as thebunnies(Figure 4),spheres
(Figure 5), andteapot(Figure 6) scenes. Note that the an-
imations in these scenarios have been designed to include
highly unstructured motion, with initially neighboring prim-
itives travelling in opposite directions, to become challeng-
ing for lazy hierarchy reconstruction approaches. To exam-
ine scalability, we run each scene using three different levels-
of-detail (LODs). Both the spheres and bunnies scenes are
used to study inter-object collisions, and the teapot and bun-
nies scenes are used to study self-intersections. Geometry
statistics for these scenes, which includes the average num-
ber of intersecting primitives pair per frame, are shown in
Table 1. The simulations were run using a standard PC with
a Pentium 4, 2.8 GHz CPU, and 512 MB.

In Table 2, the experimental results for detecting inter-
object collisions are shown. We compare the performance
of our DBVHs against the octree method by Smith et

al. [SKTK95], and we report the average per frame time as
well as the best and worst case frame times for all scenarios.
As can be seen, in the bunnies scene, our DBVH method
outperforms the octree method by approximately 4, 5, and
6 times on average for the different LODs. In the spheres
scene, the corresponding result is an achieved speed-up of
approximately 10, 11, and 13 times on average. In partic-
ular, performance breaks down for the octree in hard CD
cases, when the overlap regions among the objects’ AABBs
grow and a lot of geometric primitives get involved in the
octree pruning phase. Note that we even used an improved
version of the octree method, i.e., the size of the octree root
box was dynamically set each frame to the minimum box
covering the currently existing overlap regions. In particular,
this helps the octree method in the bunnies scene. Further-
more, the fixed maximum depth of the octree was manually
tuned to yield the fastest results for each scene and LOD. In-
deed, these results show that our approach of only changing
the structure of the BVHs incrementally between frames, by
node invalidation and node splitting, pays off.

As previously mentioned, our algorithm was primarily de-
signed for the inter-object CD case. However, if wanted, it
can also be used for intra-object CD. The results for de-
tecting self-collisions are shown in Table 3. We compare
the sweep and prune (SAP) algorithm against both using
our DBVHs for detecting self-collisions and against our
SWIPER algorithm (see Section 3). For the teapot scene, the
average speedup as well as the speedup in terms of the worst
frame are substantial§, and the speedup increases with more
triangles. For the lower LODs, the SWIPER algorithm per-
forms best. However, for the highest LOD, DBVH wins, and
we get about 29 times speedup on average, and about 104
times for the worst frame for DBVH. The algorithmic com-
plexity of SWIPER vs DBVH starts to show off for the larger
number of primitives, and thus for really large problems,
the sorting-based algorithms should probably be avoided. It
is interesting to see that SAP consistently reports the best
frame time, but this is to be expected since the first 125
frames (of 272) for teapot consist of a simple translation,
and thus nothing need to be sorted, and nothing inserted or
removed from the search tree for SAP. However, for more
complex frames, its algorithmic complexity starts to shine
through, and our algorithms outperforms SAP.

For self-CD for bunnies, similar behavior can be seen.
However, DBVH now performs better than SWIPER for
both LOD2 and LOD3. We tried increasing the temporal co-
herence in that scene, which would ameliorate the perfor-
mance of the sorting-based algorithms (SAP and SWIPER).
However, the performance did not change much. In further
performance studies, we discovered that the reason is not the
sorting, but rather the number of overlaps per axis, which is
very high for the bunnies test scene. This is also the reason

§ Except for LOD1/DBVH.
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Octree DBVHs

LOD1 LOD2 LOD3 LOD1 LOD2 LOD3

spheres average time 171 766 2872 18 (5 + 12 + 1) 70 (20 + 48 + 2) 227 (65 + 140+ 22)
worst time 382 1769 6799 36 (6 + 29 + 1) 146 (28 + 116 + 2) 458 (89 + 326 + 43)
best time 1 4 14 1 (1 + 0 + 0) 4 (4 + 0 + 0) 14 (14 + 0 + 0)

speedup: average [max] 1 [1] 1 [1] 1 [1] 9.5 [10.6] 10.9 [12.1] 12.7 [14.8]

bunnies average time 27 103 428 6 (1 + 2 + 3) 19 (7 + 7 + 5) 74 (31 + 35 + 8)
worst time 73 281 1236 27 (2 + 7 + 18) 74 (14 + 49 + 11) 317 (78 + 219 + 20)
best time 1 2 8 1 (1 + 0 + 0) 2 (2 + 0 + 0) 8 (8 + 0 + 0)

speedup: average [max] 1 [1] 1 [1] 1 [1] 4.5 [2.7] 5.4 [3.8] 5.8 [3.9]

Table 2: Results for detecting inter-object collisions for spheres and bunnies. All results are in milliseconds. For DBVHs we
also gives the timings for the update phase, CD query phase and geometric primitive tests separately in parenthesis.

Sweep and Prune SWIPER DBVHs (Self-CD)

LOD1 LOD2 LOD3 LOD1 LOD2 LOD3 LOD1 LOD2 LOD3

teapot average time 22 555 29211 16 118 2146 63 257 1022
worst time 254 9194 322532 34 199 5067 116 587 3108
best time 6 24 91 10 85 1131 30 140 402

speedup: average [max] 1 [1] 1 [1] 1 [1] 1.4 [7.5] 4.7 [46] 13.6 [63.6] 0.3[2.2] 2.2 [15.7] 28.6 [103.8]

bunnies average time 87 1612 42975 55 365 3593 69 224 785
worst time 315 9217 196264 74 1134 42687 105 416 1996
best time 12 65 263 35 247 2119 41 124 434

speedup: average [max] 1 [1] 1 [1] 1 [1] 1.6 [4.3] 4.4 [8.1] 12.0 [4.6] 1.3[3.0] 7.2 [22.2] 54.4 [98.3]

Table 3: Results for detecting self collisions for teapot and bunnies. All results are in milliseconds.

why the worst case speedup slows down for SWIPER. In
general, DBVH is a more reliable algorithm than SWIPER,
and both DBVH and SWIPER outperforms SAP for large
CD scenarios.

5. Discussion and Future Work

We have proposed a new efficient CD algorithm for highly
deforming breakable objects. In particular, for inter-object
CD, the introduced DBVH manage to balance the essen-
tial operations for hierarchy maintenance efficiently by us-
ing temporal coherence to guide the incremental changes
between successive frames. Hence, we conclude that the
bottleneck would most likely be in self-collision handling,
which our experiments confirm. Therefore, much more re-
search needs to be spent on this notoriously difficult prob-
lem. For instance, to be more competitive, it would be inter-
esting to examine ways to integrate the approach by Volino
et al. [VT94] for non-fracturing parts of fracturing objects
on top of our DBVHs.

Although our test cases have been based on polygonal ob-
jects, we note that our approach easily can support break-
able objects with other types of primitives such as tetrahe-
dral meshes, which have proven to be an important repre-
sentation when simulating different types of fracture (See
e.g. [OH99]). Also, our DBVHs can be integrated easily with
other BVH-based CD approaches in scenarios involving a
mix of rigid and deformable bodies. Simply by providing
a dual hierarchy traversal that operates on one rigid body,
with an associated preprocessed BVH, and one deformable
model, with an associated DBVH, efficient mixed type CD
queries can be made.

Furthermore, based on our experiences in CD, we also
believe similar DBVHs may be suitable to accelerate other
types of queries on breakable objects, e.g., frustum culling,
occlusion culling, ray tracing, and picking. Finally, we
would find it appropriate to study ways to extend our ap-
proach to support continuous CD and more carefully con-
sidering the effects of using other BVs than boxes in the dy-
namic hierarchies.
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