UC Davis
IDAV Publications

Title
Kinetic Sweep and Prune for Multi-Body Continuous Motion

Permalink
https://escholarship.org/uc/item/18g0f3kk

Journal
Computers & Graphics, 30

Authors

Coming, Dan
Staadt, Oliver G.

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/18q0f3kk
https://escholarship.org
http://www.cdlib.org/

Kinetic Sweep and Prune
for Multi-body Continuous Motion

Daniel S. Coming, Oliver G. Staadt

Institute for Data Analysis and Visualization
Department of Computer Science
University of California, Davis

Abstract

We propose an acceleration scheme for real-time many-body dynamic collision de-
tection. We kinetize the sweep and prune method for many-body collision pruning,
extending its application to dynamic collision detection via kinetic data structures.
In doing so, we modify the method from sample-rate driven to event-driven, with
no more events than the original method processed, also removing the per-frame
overhead, allowing our method to scale well in terms of frame-rates. Unlike many
schemes for many-body collision pruning, ours performs well in both sparse and
dense environments, with few or many collisions.

Key words: Methodology and Techniques—Graphics data structures and data
types; Three-Dimensional Graphics and Realism-Virtual reality; Dynamic collision
detection; Kinetic data structures

1 Introduction

Collision detection is a common and often critical requirement for virtual and
augmented reality, haptic feedback devices, animation, and physical simula-
tions. The work of collision detection is to determine if/when objects inter-
sect, or interact, which is useful in providing realistic environments, accurate
simulations, and both appropriate and robust user interactions. The level of
accuracy in collision detection directly affects each of the aforementioned prop-
erties. While some situations involve relatively few objects, it is common to
find scenarios with hundreds or more objects. Scenarios requiring many-body
collision detection include: large or complex environments, collaborative envi-
ronments, and complex or large-scale physical simulations (see Figure 1). Most
of the scenarios we have mentioned involve objects whose motion is not fully
known in advance and require interactive frame rates of 30-60 Hz, so they

Preprint submitted to Elsevier Science 22 December 2005

require an on-line collision detection method. Haptics require even greater
response rates at 1000 Hz or more.

Interactions commonly take the form of collisions, which are usually detected
through the use of complicated intersection tests. Because of the expense of
object intersection tests as well as the combinatorial number of possible tests
among objects, many-body collision detection usually employs an accelera-
tion method for pruning the majority of tests for object intersections. This
is then paired with a method for reducing the number of feature intersection
tests, along with more exact (and expensive) methods for finding interact-
ing object features. The three primary classifications that apply to any of
the above components of collision detection are static, pseudo-dynamic, and
dynamic (also called continuous) [1]. Static refers to one-time methods that
determine if objects interact in their current configuration. Pseudo-dynamic
collision detection is the common extension of static methods to systems with
moving objects by incrementally moving objects and performing static colli-
sion detection at a regular rate. Commonly, due to the irregular distribution
of collisions in time, this rate is too frequent or too infrequent at any given
point in simulation. It is well known that these methods suffer from temporal
aliasing, missing collisions due to objects moving too much between collision
detection samples. Increasing the sample rate yields greater levels of accu-
racy with diminishing returns and degraded performance. Dynamic collision
detection considers time and motion information in order to give conservative
results without missing collisions, also providing time and location information
about collisions. Resolving collisions is straightforward given this information,
since objects never interpenetrate. Dynamic collision detection does not suffer
from temporal aliasing. The threshold where the accuracy of dynamic colli-
sion detection significantly diverges from pseudo-dynamic collision detection
depends on how far objects move per sample interval. We have previously
demonstrated that this threshold is when objects move by 1/3 of the smallest
diameter of any feature, per sample interval, or frame [2].

Methods for pruning object intersections as well as feature intersections of-
ten use bounding volumes (BV) for simple preliminary tests, to reduce the
number of expensive primitive tests that must be performed. World-centric
BVs, described in world-coordinates and often used in many-body collision
pruning, include axis-aligned bounding-boxes (AABB) [1; 3-5], discrete ori-
ented polytopes (k-DOP) [5-7], and spheres [5; 8-13]. Spheres are also used
as model-centric BVs. In contrast to most world-centric BVs, model-centric
BVs like oriented bounding-boxes (OBB) [5; 14-18], are described in model-
coordinates, and are often trivial to update for rotations. Model-centric BVs
are useful for object feature collision pruning. Both pseudo-dynamic and dy-
namic BV intersection tests exist for BVs [8; 14].

Collision pruning methods utilize spatial and temporal coherence of objects in

consecutive frames. Spatial subdivision methods [8; 19] prune pairs of objects
that cannot possibly collide because they are not in the same cell at the same
time. Spatial subdivision suffers from the difficulty of choosing cell sizes as
well as the performance ratio of work spent on the scheme to the number of
collisions detected. Adaptive spatial subdivision [19] suffers from high constant
factors in the cost of maintaining the spatial subdivision as well as pathological
configuration cases.

Coherence also aids the sweep and prune method used by Cohen et al. [3], as
well as bounding volume hierarchies (BVH), in efficiently reducing the number
of bounding volumes that need to be compared. [4; 14-16; 20-23]

In this paper, we present a many-body dynamic collision detection method
that operates at interactive rates. To this effect, our contributions are as fol-
lows:

e Kinetize the sweep and prune method for use with dynamic collision detec-
tion, removing temporal aliasing and enabling a significant increase in the
possible number of objects for real-time performance.

e Provide an event-driven method with no per-frame overhead, minimal up-
date costs, and excellent scalability in terms of frame-rates.

e Demonstrate a scheme for efficient dynamic collision detection, with only
locally known motion, that is quickly responsive to changes in motion.

e Give an alternative to swept bounding volumes for reducing the number of
dynamic object intersection tests.

e Define a metric for performance comparison between both event-driven and
frame-based collision detection methods.

2 Related work

Most collision detection schemes work with a collision detection pipeline simi-
lar to the one proposed by Zachmann [24]. This involves updates to bounding
volumes, pairwise bounding volume tests, and pairwise feature tests between
possibly-intersecting objects. This is followed by collision response, performed
for each interval of time, usually at a rate of at least 30 Hz, some beyond
1000 Hz. Such methods incur overhead for each time interval tested, spent
updating bounding volumes and collision pruning data structures, regardless
of the occurrence or frequency of collisions during the time interval.

2.1 Collision detection methods

Dynamic collision detection methods generate results that are valid so long
as the motions of the involved objects are valid. Thus, dynamic methods are
driven by the events that cause changes in objects’ motions. Swept bound-
ing volumes (SBV) [15; 16; 25-27], are pseudo-dynamic BVs that bound an
object through its entire motion over a time interval, effectively reducing the
number of dynamic intersection tests by casting the dynamic collision prun-
ing problem into pseudo-dynamic acceleration schemes such as [3]. This still
has the problem of being constrained by per-frame overhead, which is now
more expensive due to the requirement to find tight bounds on not only the
object, but its motion. Sampling too infrequently results in large SBVs, and
thus more dynamic intersection tests. Yet sampling too frequently results in
much overhead in computing the SBVs. Instead of an SBV that bounds mo-
tion, while itself not moving, we would like to use a BV that moves with the
object it bounds [8; 14], to avoid the per-frame overhead of SBVs. We will call
this moving BV a kinetic BV.

In I-COLLIDE, Cohen et al. [3] used sweep and prune, a pseudo-dynamic
object collision pruning method which reduced 3D collision detection among
AABBEs into three separate 1D problems, taking advantage of spatial coherence
for expected O(n) performance. We note that sweep and prune is a pseudo-
dynamic method with per-frame overhead. As a pseudo-dynamic method, it
exhibits temporal aliasing, without proper precautions. We discuss sweep and
prune in further detail in Section 3 and our extension of it for dynamic collision
detection by kinetizing in Section 4.1.

Other methods using sweep and prune include: SOLID [21; 28; 29|, Swift++
[30], and V-COLLIDE [31]. Each of these methods used sweep and prune for
object collision pruning along with different pseudo-dynamic intersection tests:
Enhanced GJK [32], Lin-Canny [33], and Separating Axis Theorem (SAT) with
OBB-tree [17] respectively. Further, each method could benefit from using our
extensions along with the dynamic version of their corresponding intersection
tests. Larsson and Akenine-Méller [23] use sweep and prune with deformable
objects by enlarging AABBs to enclose all possible deformations when pos-
sible, yet this reduces the quality of pruning. Alternatively, they regularly
recompute AABBs to account for deformations, which increases per-frame
overhead. Van den Bergen [22] has also presented a method for linearly trans-
lating objects that enhances sweep and prune by calculating swap times and
performing them in time-sequential order by using a priority queue. This is
shown to have better pruning than with SBVs, however AABBs are still up-
dated each frame, incurring a per-frame overhead.

Eberly [14] discussed efficient dynamic collision tests based on SAT, applied

to polygons, spheres, and OBBs. He also provided a framework for hierarchi-
cal dynamic collision detection with OBB-trees, which we use. Cameron [34]
extruded 3D objects into a hierarchical 4D structure and performed half-space
intersection tests based on that. He noted, however that for many-body colli-
sion detection part of the method explicitly considered all O(n?) pairs of ob-
jects. Eckstein and Schémer [5] used hierarchical dynamic collision detection
between complex objects, but did not resolve many-body dynamic collision
detection, citing it as a “major bottleneck of multi-body simulation.”

Hotz et al. [26; 27] used swept AABBs with space partitioning or coordinate
sorting (similar to sweep and prune) for object collision pruning. Remaining
object-pairs were tested for collisions using dynamic intersection tests. Our
previous arguments against spatial subdivision and swept bounding volumes
apply here.

Redon et al. [15] used swept OBBs and heuristically subdivided them when
they grew too large relative to the object itself. The necessity of such a heuristic
along with the involved work in subdividing SBVs seems evidence in favor of
kinetic BVs over SBVs. They made no claims of scalability in the number
of objects, however our tests with low frame-rates that have resulted in 30%
more SBV overlaps, and thus worse collision pruning, than kinetic BVs.

2.2 Kinetic data structures

Kinetic data structures (KDS) [35] are methods for mobile data that “animate
proofs through time,” by maintaining a set of certificates and a schedule of
events that predict certificate failures. For collision detection, a common use
of KDS is to maintain proof of non-penetration of a pair of objects [19; 35; 36].

Basch et al. provided an efficient KDS [35] for maintaining the closest pair
of points in a set, a method that naturally extended to maintaining closest
features, which is useful for collision detection, however the closest pair of
points or features can easily change O(n?) times without a collision even oc-
curring. Maintaining the closest pair generates events too frequently for the
case of collision detection, and with complex non-convex objects, evaluating
the closest pair is expensive. Basch et al. [36] further provided methods for
kinetic collision detection between two non-convex polygons by maintaining a
KDS that kept track of the space between the polygons.

Kim et al. [8] utilized a KDS for space-partitioning, where the events were
(bounding) spheres entering or leaving cells, as well as collisions. Their method
required O(lgn) work each time an object entered or left a cell, often much
more frequent events than collisions.

Often, collisions are irregularly distributed in time, so we propose an event-
driven collision detection method that uses a KDS to avoid this per-frame
overhead. This paper is an expanded version of our work on kinetic data
structures for collision detection [37].

3 Overview

Our method allows the simulation to drive its action, processing events in
time-sequential order and/or accepting motion updates as deemed necessary
by the simulation. Due to the order of events, collision pruning, object in-
tersection tests, and collision responses are handled in an interleaved manner.
Figure 2 shows how we handle these actions. Note that the simulation can del-
egate work to the collision detection whenever it has extra time; the collision
detection engine is robust and without penalty for invoking collision detection
too frequently or infrequently.

In order to accomplish this, our methods draw on established techniques in
both collision detection and computational geometry. Sweep and prune [3]
provides object collision pruning while we use dynamic collision detection
using OBB-trees [14] for exact feature-level collision detection. Kinetic data
structures [35] are commonly used in computational geometry for efficiently
handling data points with motion information.

Sweep and prune is a dimension reduction collision pruning technique that
projects objects’ geometries into 1D in z, y, and z, storing the extrema on
lists. The method updates and sorts these extrema and prunes collisions by
tracking when they swap positions. We go into more detail on sweep and prune
in Section 4.1 and object intersection tests in Section 4.4. For now, we note
that it is a good candidate for kinetizing, extending a static or pseudo-dynamic
method with a kinetic data structure, because it depends on swaps that are
straightforward to extend into swap events. For further discussion of swap
events, see Section 4.2.

By kinetizing sweep and prune, we transform it from a frame-based method,
dependent on updates at a regular interval, to an event-driven method. Many
collision detection methods are frame-based due to convenient synchronization
with rendering. However, collisions are often irregularly distributed in time, so
detecting collisions is best done in an event-driven manner, where the events
are: collision responses, motion changes, and BV intersections. All of these
events signal the possibility of new collisions, so they can result in object
intersection testing. In our case, as with sweep and prune, the status of BV
intersections are signalled by swap events. We go into more detail on kinetizing
sweep and prune in Section 4.1 and the events in Section 4.2.

4 Components of our method

In this section we present the components that make up our dynamic collision
detection scheme kinetic sweep and prune (kinetic SP). Given descriptions of
the motions of objects, we schedule events that signal when kinetic BVs start
or stop intersecting. When kinetic BVs start intersecting, a pair objects could
collide in the near future, so we perform dynamic complex object intersection
tests to determine when and where the first point of intersection will occur. If
a future intersection is found, we then schedule a collision response to occur
at the first intersection time.

4.1 Kinetizing sweep and prune

We use a kinetic sorted list (KSL) [35], a KDS for maintaining a sorted list of
1D moving points (see Figure 3). This keeps the list continuously sorted, in
spite of the values in the list changing, i.e. due to their motion. The following
equation for motion accounts for velocity and acceleration (e.g., scenes with
gravity):

Mpad(t) = Paa + Vagt +aaqt’, d € {z,y, 2}, (1)
where mpaq(t) represents the d component of the motion for point p4 associ-
ated with the AABB of object A, as a function of time ¢. The initial position,
velocity, and acceleration are pag, Vaqg, and ayg respectively. The representa-
tion of motion mqaq(t) for point q4 is similar. For each pair of adjacent list
elements (7, j), we schedule an event for the first time s; ; when the elements
cross (or could possibly cross, if motion descriptions are incomplete). The in-
tersection of the motion functions is calculated by finding the roots of the
difference of motions:

Mpad(si;) = Mppa(si;) =0 (2)
For brevity of notation, we define the following:

APy = Pad — PBd;
AVg = Vaq — VBa, (3)
Aad = agd — ABd-

Substituting only the linear portion of motions (i.e., no acceleration) from
Equation 1 into Equation 2, the following shows the prediction for intersection
of linear motions:

PAad + VaaSij — (PBa + VBasij) = 0,

Apd
=l 4
S%] AVd ()

Including acceleration yields the following prediction for the intersection of
quadratic motions:

Apd —+ AVdSiJ + Aad (Siﬂ‘)? = 0,

—AVd + \/(AVC[)2 — 4AadApd
g = 2Aad ’ (5>
See [38] for discussion on avoiding numerical errors in this computation as well
as a closed form solution for the roots of cubic polynomials.

Scheduled events are processed in time-sequential order and list elements swap
positions, resulting in the destruction of two old adjacencies and the creation
of two new adjacencies. The kinetic sorted list must respond in turn by de-
scheduling up to two events and scheduling up to two new events. Processing
each swap in this way is not optimal for certain circumstances [35]. How-
ever, we apply the kinetic sorted list to the sweep and prune method, where
the swaps provide useful information relevant to collision detection. For this
reason, theoretical bounds on kinetic sorting established by Abam and de
Berg [39] do not apply to our method. In fact, by ensuring that each swap is
processed in order, kinetic sorted lists eliminate temporal aliasing from sweep
and prune.

For collision pruning, we kinetize sweep and prune [3]. We maintain three
ascending-order sorted lists: one for each of x, y, and z axes. The elements on
the lists are endpoints Min 44 or Max 44 of moving 1D intervals 144(t), obtained
by taking the d components of the AABB of objects and their motions. We
describe the AABB of object A by its minimal p4, and maximal q4 corner
points (see Figure 3).

Laa(t) = [mpaa(t), mgaa(t)] (6)

We keep these intervals updated with current projections and motion as neces-
sary, and let the kinetic sorted lists keep track of their sorted order. When two
maxima, or two minima, swap positions, there is no effect. However, whenever
a maxima and a minima swap positions on the list, a pair of intervals either
begins or ceases to intersect, depending on whether the left element was a
maxima or minima, respectively, prior to the swap. A pair of objects A and
B can intersect only if their projected intervals I44(t) and Ip4(t) intersect on
all three axes d, i.e. their AABBs overlap:

ANB = /\ (IAd<t> N]Bd<t>> s (7)

de€x,y,z

where N indicates intersection of objects or intervals and A is a logical AND
operator.

Thus, sweep and prune maintains a basic set of separating axes, axes upon
which objects’ projections do not intersect, which act as “witness” to the non-
penetration of objects. Further, this witness to non-intersection is maintained
through swap events. Worst-case performance of this method is due to the
possible number of swaps, O(n?). In practice, Cohen et al. [3] argue, the per-
formance of the insertion sort is expected O(n). Such optimal scenes for the
method are sparse, have few collisions, or exhibit a high degree of temporal
coherence due to either small object velocities or high sample rates. In these
cases, we have measured that the number of swaps is often one or more orders
of magnitude smaller than n. This indicates that the bottleneck no longer
rests on the frequency of swaps, but instead on updating the list elements and
verifying the sorted order of the lists. We can remove these costs by using a
KDS to maintain a proof that the lists are sorted.

Kinetizing the sweep and prune method involves using kinetic sorted lists
rather than static lists with insertion sort. Each list element has its own motion
information. In addition, a priority queue stores predictions for when each
adjacent pair of list elements will swap, e.g. by Equations 4 and 5. Figure 3
shows how kinetic SP obtains and represents these kinetic sorted lists from the
objects’ BVs and motions. The need for updates is reduced to only notifying
kinetic SP when the motion of an object changes, rather than every time the
position changes. Otherwise, the sweep and prune method is unchanged: we
handle swaps the same, use AABBs, use one list for each of the z, y, and z
axes, and maintain the overlap status of each pair of BVs.

4.2 FEvents

Our system works with two types of events: collision responses and swaps.
The KDS for swaps involves a priority queue of swap predictions and a list
of extrema with motion information. Figure 4 demonstrates how swaps are
handled. When motions change, effectively, the same method is applied. Swap
predictions for the neighbors of Min;, Max; are descheduled, recalculated, and
rescheduled; the difference is that nodes are not swapped, unless the motion
change was a discontinuous change in position. Swaps and collision responses
are stored in separate priority queues. To avoid unnecessary computation on
events that can be cancelled, only the event time and associated object refer-
ences are calculated in advance. The collision detection system processes each
swap or collision response in time-sequential order, when prompted by the sim-
ulation. Additionally, the collision detection interface allows the simulation to
notify the collision detection engine of motion changes for objects.

Basch et al. [35] mention that for a “real time system, it is possible that
there is not sufficient time to completely process an event before the next

event appears.” Processing the swap event, in our case, is efficient in terms of
KDS’s, because the number of internal events is the same as the number of
external events, swaps, with O(lgn) work for scheduling. The number of swaps
w is O(n?) in the worst case for linear motion, in a given time interval. Events,
especially collision responses, can occur in bursts with arbitrarily close times
such that any system would fall behind. We attempt to minimize the latency
in such a scenario by using OBB-trees for efficient intersection tests of large
complex models. Additionally, we cache the results of dynamic intersection
tests, which are by their nature, predictive, and valid until the motions of the
objects change. Our system is scalable to very high frame rates, and often
would leave the CPU idle in a forced real-time situation. In such a case, it
would be possible to utilize the extra time for caching future predictions and
use a Timewarp Collision Detection [40] system for concurrency control.

4.3 Object motion

At certain times it is necessary to update the motion of an object (see Figure
5). Causes include collision response, user interaction, or other arbitrary up-
dates from the simulation. We draw a contrast here, between a discontinuous
change in position, and continuous motion. Many collision detection meth-
ods pay a cost related to objects merely moving through space, whether they
could possibly collide with other objects or not. Among these methods are any
pseudo-dynamic or spatial subdivision methods, but most notably the original
sweep and prune, which Cohen et al. [3] measured to have spent significant
amounts of time updating bounding volumes, due to discontinuous changes in
objects’ positions. Indeed, it was as much or more than the time spent sorting
their O(n) size lists with insertion sort, which did exhibit the expected O(n)
behavior.

For the kinetic sorted list, we can assume any piece-wise pseudo-polynomial
function for motion, which is what KDS’s are designed to handle. We assume
motions are known at least locally, and that motions can change at any time, so
long as the collision detection system is notified of the change. Though kinetic
SP can efficiently and robustly prune collisions with higher order motions,
we use piece-wise linear motions in our testing, for simplicity. This is due to
the complications of higher-order primitive intersection tests necessary when
objects’ BVs overlap.

It is possible to provide kinetic SP with simplified bounds on motion, rather
than exact descriptions. The bounds approximation must be conservative to
avoid reintroducing temporal aliasing. This is especially useful when actual
motions change very frequently or are expensive to parameterize and/or solve
for roots. Also, this can be used to deal with noise in the source of motions

10

(e.g., tracked input devices). Further, for handling motions which include ro-
tations, kinetic SP could work just like the original sweep and prune; place
spheres around rotating objects, so they have rotation-invariant BVs as in
[25], and then enclose this with an AABB, which is not much larger than the
sphere [3]. Alternatively, the minima and maxima of the AABBs could each
use separate piecewise linear or quadratic motions that expand and contract
the AABB with the same period as rotation. For the sake of avoiding patho-
logical cases where swaps happen at a high rate due to such oscillation as
shown in [3], we use an AABB around a sphere for rotating objects. Dynamic
intersection tests that handle rotations [41; 42] are not necessarily fast enough
for interactive rates with many objects. This is because there is no closed form
solution to those tests and numerical solvers are required for root finding.

Motions change at varying frequencies within scenarios with collision detec-
tion, especially with user interaction. Therefore, to maintain fast and smooth
interaction, the KDS should be responsive, requiring updates for few events
when motion changes. For kinetic SP, a motion change for an object can result
in modification of up to six events, two per axis, each of which could require
O(lgn) work for scheduling. In practice, this work, while comparable to that
of a swap, is invoked much less frequently.

4.4 Practical concerns

Promptly following swap events that generate active pairs of objects (i.e.,
those whose BVs overlap), we perform hierarchical dynamic intersection tests
between the corresponding complex objects. The minimum of the search inter-
val for these tests is bounded by the current simulation time, typically when
the last swap, collision response, or motion change occurred. The maximum
starts unbounded. As with any dynamic collision detection, the results of these
intersection tests become invalid for objects which undergo collision response
or other motion changes. At such a time, active pairs which include one or
more of the affected objects require re-testing.

For complex object collision tests, we use dynamic intersection tests with
OBB-trees [14], based on interval arithmetic and SAT, which gives time, lo-
cation, and feature information for collisions. We tested dynamic intersection
tests with sphere-trees like [13], however OBB-trees yielded significantly faster
performance. Figure 6 contains examples of complex objects, with over 6000
triangle faces, that rely on OBB-trees for efficient intersection testing.

We refer the reader to the literature on OBBs [5; 14-18] for information on
hierarchical OBB intersection tests. Here it is sufficient to know that an OBB-
tree is a hierarchy of OBBs, built by bounding and subdividing pieces of a

11

model, with a constant number of primitives in each leaf node. OBB-trees
have been shown to be tight by Gottschalk et al. [17]. Testing for intersections
between objects bounded by OBB-trees involves recursing through the trees,
performing OBB intersection tests among tree nodes and primitive intersection
tests among primitives bounded in leaf nodes. This continues until intersecting
primitives are found. For dynamic intersection testing, the first intersection
time is usually desired, so the search continues after bounding the maximum
of the search interval with the first known intersection time.

Since the majority of the work spent maintaining a KDS is scheduling and
descheduling events, it is crucial to choose an appropriate data structure for
the priority queue. We chose the auxiliary two-pass pairing heap [43], due to its
efficiency for priority queue operations. It features amortized O(1) complexity
operations for insert, meld (join with another pairing heap), amortized O(lgn)
operations for removeMin as well as arbitrary removals and decreaseKey, all
with low run-time coefficients.

5 Results and analysis

We tested many-body collision detection methods with ring-models composed
of 64 triangles each (see Figure 1). Except where noted in specific experi-
ments, collision detection was sampled at 1000Hz with a scene consisting of
1000 objects at 1% scene density, with velocities in random directions at a
magnitude in the range of 0.5-1.5 times the radius of the average bounding
sphere. Although we have demonstrated interactive rates with more complex
objects, as in Figure 6, rings are sufficient to demonstrate the performance of
collision pruning methods intended for complex objects.

As a simple approach to the problem, consider a dynamic collision detection
system which tests all n(n — 1)/2 possible object-object intersections and
caches the results and handles the collisions in order. Whenever a collision
response occurs or an object’s motion changes, the system would need to re-
test each affected object against each of the other n — 1 objects. Let us refer
to this method as cached dynamic collision detection. As we will show, it is
quite inefficient due to the lack of collision pruning. However it is event-driven,
performing work only as necessary per collision.

We gathered results on a 2GHz AMD Opteron 246 with 8 GB RAM. At any
time, however, our method used only a small fraction of system memory. Colli-
sion response is performed as simple rigid-body collisions between equal-mass
objects. While unnecessary for our method, our testing scenario requires that
collision detection methods synchronize with the simulation’s rendering at a
regular frequency f (i.e., frame-rate). This ensures fair testing against frame-

12

based methods. For statistical relevance, since collision detection occurs at
very small time-scales, we generate results by averaging CPU time spent on
each of no less than five samples per data point, in addition to allowing simu-
lations to complete between 100 and 2000 frames: one full simulation second
per test. This gives us the ratio of CPU time to simulation time, a measure of
real-time plausibility and a metric to compare event-driven methods against
frame-based methods.

Further, we use uniformly random initialization methods for each object’s po-
sition, velocity, orientation, and size. Independent of configuration, the results
from each method, collisions including times and locations, agreed and were
consistent throughout the tests. This is because dynamic collision detection
does not suffer from temporal aliasing. Hence, the comparisons in Figures 7
and 8 are focused on improving the performance of dynamic collision detection,
as well as extending it to high frequency domains without frequency-related
overhead.

As is shown in Figure 7, we verify the scalability of sweep and prune, whether
with SBVs or KDS’s. We certainly see, on this logarithmic scale, the order of
magnitude reduction in total cost by collision pruning with sweep and prune,
with even further improvement by kinetic SP. The number of collisions that
occur given each configuration depends heavily on the configuration, not just
the number of objects. It is shown to illustrate the output-sensitive costs of
each method; ideally, fewer collisions would correspond to less cost for detec-
tion. Both kinetic SP and cached dynamic collision detection are event-driven
by the output, evidenced by how closely their costs increase and decrease pro-
portionally with the number of collisions. However, while sweep and prune
(with or without SBVs) also has an associated per-event cost, shown by the
jumps in cost for 200 and 400 objects, the additional per-frame overhead leads
sweep and prune’s costs to monotonically increase. This is in spite of the large
drop in collisions at the 700 objects data-point, at which even cached dy-
namic collision had a decrease in total cost. Kinetic SP actually decreases
its total costs in each configuration with a drop in the number of collisions,
easily showing its output-sensitivity and lack of overhead. Kinetic SP allows
real-time collision detection among nearly twice as many objects as sweep and
prune with SBVs.

Next we analyze why kinetic SP delivered consistent improvement on the al-
ready good sweep and prune, by breaking the methods into their primary com-
ponents. Figure 8 demonstrates the per-frame overhead of sweep and prune;
the cost of updating and sorting increases linearly with simulation frame rates.
By contrast, kinetic SP only exhibits slight increases due to the simulation fre-
quently polling to check if a collision response was ready. Otherwise, kinetic SP
demonstrates minimal update costs (including motion change) and freedom
from per-frame overhead as an event-driven method. Ideally, the simulation

13

would have a thread waiting for collision response events, instead of polling,
but that would make direct comparison difficult.

5.1 Performance

Cached dynamic collision detection uses no collision pruning and so provides
a base-line for comparison: O(n(c + u)), for an arbitrary length of simulation
time. The number of objects n and the number of motion updates u are input
factors, whereas the number of collisions ¢ is output. The test simulation polls
collision detection at a regular frequency f, and the base method must at least
reply to each request, an O(1) operation. Thus, the CPU time cost per second
of simulation time is O(n(c + u) + f).

Sweep and prune improves this with expected per-frame performance of O(n-+
0), where o are the number of intersection tests performed, due to overlapping
BVs. Updating BVs is O(n), a cost once per frame. Sorting performance (i.e.,
the number of swaps w) depends instead on object motions, but can be O(n?)
for long time intervals. With sample frequency, sweep and prune’s cost per
second of simulation is: O((n+ o) f +w). Assume O(1) update cost for a SBV.
Just the pruning cost for dynamic collision detection using sweep and prune
with SBVs is O(nf + w + clgc). We have shown that the per-frame update
cost of O(n) becomes a limitation in consideration of high frame-rates, but it
is better than O(nc) in most cases.

Kinetic sweep and prune removes the O(n f) update cost, by taking on schedul-
ing work for the kinetic sorted list, with each swap, motion change, or collision
response. By using two-pass auxiliary pairing heaps, we keep this down to
an amortized cost of O(lgn) for removal operations and O(1) for insertions.
With kinetic SP, coherence is used maximally, in fact, preserved each time a
predicted swap occurs, thus it is not necessary to talk about its expected per-
formance, but instead in terms of events. The total asymptotic bound on CPU
time per second of simulation is O((w+wu+c)lgn+clgc+ f). Sample-rate f is
artificially added due to responding to the test simulation, otherwise unneces-
sary. Thus our method scales especially well with regard to frame sample rate
and also the number of objects, since the inherent O(n) factors were reduced
to O(lgn). This result confirms that our method performs very little work
on inputs (n, u) and more work on output ¢, as experimental results showed.
Further, our method is asymptotically faster than sweep and prune with SBVs
so long as w, u, and ¢ are not Q(nf/lgn). In practice, we’ve measured the
following: {w, u,c} < nf, but they can vary for certain configurations.

Kinetic SP performs no more intersection tests than sweep and prune with
SBVs. The kinetic BV is tighter; it does not expand to account for motions,

14

so it generates the same number or fewer active pairs for intersection testing
than SBVs, at least when referring to the same base BV-type in both cases.
Our experiments have shown that for frame-rates as low as 1Hz, SBVs resulted
in more than a 30% increase over kinetic BVs in the number of dynamic
intersection tests performed between objects. The extra 30% increase was
extraneous, as it yielded no more collisions. This increase in intersection tests
was on the order of the number of collisions detected for the tested interval.
This differential grows with higher object velocities or lower frame-rates. As
with sweep and prune, k-DOPs can substitute for AABBs, yielding even better
pruning, but at increased cost proportional to k.

In the terms outlined by Basch et al. [35], the kinetic sorted list is local because
the maximum number of events in the KDS that depend on one moving object
is O(1). In total, it is twelve with AABBs: up to two events per extrema per
axis. Further, it is compact, because it only requires O(n) space, up to 2n
extrema and 2n — 1 predictions per axis. Also, it is efficient in our case, as
opposed to its original proposal, because it performs the same number of
internal as external events, swaps.

To keep track of whether objects’ BVs overlap, both kinetic and regular sweep
and prune have an optional memory requirement of O(n?), a trade-off to avoid
repeated computations. In addition to this, we add two priority queues, one
of which stores swaps in O(n) space, and the other stores collision responses
in O(n?) space, with active removal of invalid nodes.

5.2 Robustness

Kinetic SP only requires an axis-projected BV such as AABB or k-DOP, along
with the motion of the BV and a guarantee that the kinetic BV bounds the
object for some specified time interval. An event could be generated for end-
ing the validity of a kinetic BV, whereupon it can be recalculated. Kinetic
SP works independent of the underlying description of objects, which could
be made up of triangles, point sets, or parameterized functions, for example.
Further, kinetic SP is independent of the motion of underlying objects, depen-
dent only on the possibly simplified motion (e.g., Equation 1) of the kinetic
BV provided. Rotations and even deformations can be accounted for in the
motion of the kinetic BV, by assigning different motions to the minimum p4
and maximum ¢4 points of an object A. It is also necessary that some methods
for testing object interactions are defined, such as intersection tests.

Our method can use pseudo-dynamic intersection tests by scheduling polling

events that perform intersection tests on all active pairs of objects at the
polling time. This introduces a per-frame overhead, but not due to kinetic SP.

15

Such costs may be acceptable for objects whose dynamic intersection tests are
undefined or too costly. When used with pseudo-dynamic intersection tests,
our method will not introduce missed collisions; it reports exactly when kinetic
BVs overlap. Missed collisions are due to pseudo-dynamic testing.

6 Conclusions and future work

We have presented our many-body dynamic collision detection system. We
have kinetized the sweep and prune method, extending its use to dynamic col-
lision detection, resolving its temporal aliasing, removing its per-frame over-
head, and making it more output sensitive. This allows kinetic sweep and
prune to perform not only at interactive rates, but to scale well for even
higher sample-rates. This is accomplished even with only locally-known ob-
ject motions and is quick to respond to changes in motion, without requiring
swept bounding volumes. Our method scales well with frame-rates, objects,
and collisions, and is event-driven, allowing greater flexibility than frame-based
methods.

As future work, we would like to apply the methods we have presented to high
sample frequency settings, such as haptics. Additionally, we intend to apply
kinetic SP with pseudo-dynamic intersection tests, for comparison. Finally,
there are cases where traditional sweep and prune is more efficient than kinetic
SP, such as when swaps and updates become unusually frequent. However,
such a condition usually occurs for short durations of time and so warrants
further investigation into a hybrid method.

Acknowledgements

This work was supported in part by an HP-CITRIS fellowship and a Microsoft-
CITRIS grant. Thanks to Charles Martel, Yong Kil, Benjamin Ahlborn, and
the members of IDAV for helpful discussion. Thanks to David Eberly for
making the Wild Magic source code available.

References
[1] M. Held, J. Klosowski, J. Mitchell, Evaluation of collision detection meth-

ods for virtual reality fly-throughs, in: Proc. Seventh Canadian Confer-
ence on Computational Geometry, 1995, pp. 205-210.

16

[10]
[11]

[12]

[14]

[15]

[16]

D. Coming, O. Staadt, Velocity-aligned discrete oriented polytopes for dy-
namic collision detection, Tech. Rep. CSE-2004-25, Department of Com-
puter Science, UC Davis (September 2004).

J. D. Cohen, M. C. Lin, D. Manocha, M. K. Ponamgi, [-[COLLIDE: An
interactive and exact collision detection system for large-scale environ-
ments, in: Symposium on Interactive 3D Graphics, 1995, pp. 189-196,
218.

G. Zachmann, Minimal hierarchical collision detection, in: Proc. of the
ACM Symposium on Virtual Reality Software and Technology, ACM
Press, 2002, pp. 121-128.

J. Eckstein, E. Schomer, Dynamic collision detection in virtual reality ap-
plications, in: Proc. The 7-th International Conference in Central Europe
on Computer Graphics, Visualization, and Interactive Digital Media '99
(WSCG’99), Plzen, Czech Republic, 1999, pp. 71-78.

C. Fiinfzig, D. W. Fellner, Easy realignment of k-DOP bounding volumes,
in: Proc. of Graphics Interface 03, A. K. Peters, Ltd., 2003, pp. 257-264.
G. Zachmann, Rapid collision detection by dynamically aligned DOP-
trees, in: Proc. of the Virtual Reality Annual International Symposium,
[EEE Computer Society, 1998, p. 90.

D.-J. Kim, L. J. Guibas, S. Y. Shin, Fast collision detection among mul-
tiple moving spheres, IEEE Transactions on Visualization and Computer
Graphics 4 (3) (1998) 230-242.

P. M. Hubbard, Collision detection for interactive graphics applications,
IEEE Transactions on Visualization and Computer Graphics 1 (3) (1995)
218-230.

P. M. Hubbard, Approximating polyhedra with spheres for time-critical
collision detection, ACM Transactions on Graphics 15 (3) (1996) 179-210.
I. Palmer, R. Grimsdale, Collision detection for animation using sphere-
trees, Computer Graphics Forum 14 (2) (1995) 105-116.

C. O’Sullivan, J. Dingliana, Real-time collision detection and response
using sphere trees, in: Proc. of the 15th Spring Conference on Computer
Graphics 99, 1999, pp. 83-92.

S. Redon, A. Kheddar, S. Coquillart, CONTACT: Arbitrary in-between
motions for collision detection, in: Proc. of IEEE Workshop on Robot-
Human Interaction, ROMAN, 2001, pp. 106-111.

D. Eberly, Dynamic collision detection using oriented bounding boxes,
Geometric Tools, Inc. (2002).

URL citeseer.ist.psu.edu/486021.html

S. Redon, A. Kheddar, S. Coquillart, Fast continuous collision detection
between rigid bodies, Computer Graphics Forum 21 (3) (2002) 279.

S. Redon, Y. Kim, M. Lin, D. Manocha, Fast continuous collision detec-
tion for articulated models, Tech. Rep. TR03-038, University of North
Carolina at Chapel Hill (2003).

S. Gottschalk, M. C. Lin, D. Manocha, OBBTree: A hierarchical structure
for rapid interference detection, in: Proc. of the 23rd Annual Conference

17

[18]

[19]

[20]

[21]
[22]

23]

[25]

[26]

[27]

28]
[29]

[30]

[31]

on Computer Graphics and Interactive Techniques, ACM Press, 1996, pp.
171-180.

S. A. Gottschalk, D. Manocha, M. C. Lin, Collision queries using oriented
bounding boxes, Ph.D. thesis, UNC Chapel Hill (2000).

M. de Berg, J. Comba, L. J. Guibas, A segment-tree based kinetic bsp, in:
SCG ’01: Proc. of the seventeenth annual symposium on Computational
geometry, ACM Press, 2001, pp. 134-140.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, K. Zikan, Efficient
collision detection using bounding volume hierarchies of k-DOPs, IEEE
Transactions on Visualization and Computer Graphics 4 (1) (1998) 21-36.
G. van den Bergen, Efficient collision detection of complex deformable
models using AABB trees, J. Graph. Tools 2 (4) (1997) 1-13.

G. van den Bergen, Continuous collision detection of general objects un-
der translation, in: Lecture Notes, Game Developers Conference, 2005.
T. Larsson, T. Akenine-Moller, Collision detection for continuously de-
forming bodies, in: Eurographics 2001, 2001, pp. 325-333, short presen-
tation.

G. Zachmann, Optimizing the collision detection pipeline, in: Proc. First
International Game Technology Conference (GTEC’01), Hong Kong,
China, 2001.

B. Mirtich, J. Canny, Impulse-based simulation of rigid bodies, in: Proc.
of the 1995 Symposium on Interactive 3D Graphics, ACM Press, 1995,
pp. 181t

C. Lennerz, E. Schomer, T. Warken, A framework for collision detection
and response, in: 11th European Simulation Symposium, ESS’99, 1999,
pp- 309-314.

G. Hotz, A. Kerzmann, C. Lennerz, R. Schmid, E. Schomer, T. Warken,
SiLVIA — A simulation library for virtual reality applications, in: VR,
1999, p. 82.

G. van den Bergen, A fast and robust GJK implementation for collision
detection of convex objects, J. Graph. Tools 4 (2) (1999) 7-25.

G. van den Bergen, Proximity queries and penetration depth computation
on 3d game objects, in: Game Developers Conference, 2001.

S. A. Ehmann, M. C. Lin, Accurate and fast proximity queries between
polyhedra using surface decomposition, Computer Graphics Forum 20 (3)
(2001) 500-510.

T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, D. Manocha, V-
COLLIDE: Accelerated collision detection for VRML, in: R. Carey,
P. Strauss (Eds.), VRML 97: Second Symposium on the Virtual Real-
ity Modeling Language, Vol. C24-26, ACM Press, 1997, pp. 119-125.

S. Cameron, Enhancing GJK: Computing minimum and penetration dis-
tances between convex polyhedra, in: Int. Conf. Robotics & Automation,
1997, pp. 3112-3117.

M. Lin, J. Canny, Efficient algorithms for incremental distance compu-
tation, in: Proc. IEEE Conf. on Robotics and Automation, 1991, pp.

18

[34]
[35]

[36]

[37]

[38]

[41]

[42]

[43]

1008-1014.

S. Cameron, Collision detection by four-dimensional intersection testing,
IEEE Trans. Robotics and Automation 6 (3) (1990) 291-302.

J. Basch, L. J. Guibas, J. Hershberger, Data structures for mobile data,
Journal of Algorithms 31 (1) (1999) 1-28.

J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, L. Zhang, Kinetic
collision detection between two simple polygons, Comput. Geom. Theory
Appl. 27 (3) (2004) 211-235.

D. S. Coming, O. G. Staadt, Kinetic sweep and prune for collision detec-
tion, in: Second Workshop in Virtual Reality Interactions and Physical
Simulations, 2005, pp. 81-90.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, Cambridge University
Press, New York, NY, USA, 1992.

M. A. Abam, M. de Berg, Kinetic sorting and kinetic convex hulls, in:
SCG ’05: Proc. of the twenty-first annual symposium on Computational
geometry, ACM Press, Pisa, Italy, 2005, pp. 190-197.

B. Mirtich, Timewarp rigid body simulation, in: SIGGRAPH ’00: Proc.
of the 27th annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 2000, pp. 193-200.
B. Kim, J. Rossignac, Collision prediction for polyhedra under screw mo-
tions, in: SM ’03: Proc. of the eighth ACM symposium on Solid modeling
and applications, ACM Press, 2003, pp. 4-10.

D. Eberly, Intersection of objects with linear and angular velocities using
oriented bounding boxes, Geometric Tools, Inc. (1999).

URL http://geometrictools.com/Documentation

J. T. Stasko, J. S. Vitter, Pairing heaps: experiments and analysis, Com-
mun. ACM 30 (3) (1987) 234-249.

19

T
. ‘gg

Fig. 1. Many-body (1000 rings) interactive collision fly-through scenario on a display
wall, for visual exploration. Red models are colliding. Each has 64 triangles and its
own motion.

20

Simulation

Collision Detection Engine Interface
\ Process Next Event \ Update Object Motion

Collision
Response
Event

Next Event
[collision
response]

Motion
[modified]

Motion
Change

Next Event [swap]

Motion
[unmodified]

[New BV intersection] | Complex Object

"l Intersection Tests
[No new BV intersection] . N
> »®

Fig. 2. The collision detection engine (CDE) offers an interface with two primary
functions: event processing and updating object motions. Whenever motions are
updated through the interface, the CDE maintains motion-dependent event predic-
tions (swaps and collision responses) and may perform complex object intersection
tests. Further, the CDE processes events, in time-sequential order as requested by
the simulation. Collision response events callback to the simulation for collision re-
sponse, with resultant motion changes being processed as before, as well as testing
the next possible collision with the same objects. Swap events signal that a pair of
AABBs may have started or ceased to intersect. In the former case, the CDE uses
dynamic intersection tests to predict when and where a collision may occur.

21

Ming,|$12|Min,, | @ [Maxg,|$34|Ming,|S45Max 4| @ |Maxc,

My 4x qu'i ’71;;('.\» Mgy m.q(,‘.*

Predicted Swap Times

Motion Information
Queue front S34 | Sas|S12]|

Scheduled Predictions

Fig. 3. Kinetic SP represents objects by their kinetic BVs. This is obtained for
object A by projecting its geometry into an AABB (p4,qa). Then for each axis d,
the combination m p|q) a4 of the d component of the AABB and A’s motion (velocity
v 44 in the linear case shown) are stored in kinetic sorted lists d-KSL. The process is
similar for other objects, B and C'. Each KSL has a priority queue of predictions s; ;
for when adjacent list elements will swap. Predictions depend on object motions,
e.g. by Equations 4 and 5. A () prediction indicates that the corresponding pair
of elements will not swap in the future, given their current motions. Details of the
2-KSL have been shown; y-KSL is similar. Extension to 3D is straightforward.

Swap (Maxy,, Ming,) Recalculated Predictions

Ming, |$12|Min,, | © |[Ming | @ [Maxg,|S4s5Max,,| @ |Maxe,

Myp, My My m My Mycy
pBx pAx .p Cx q. R.i qAx .q Cx
v v
Swapped

Sip | e

Queuefrontﬂ S45 ‘ ‘ ‘
A

&
Rescheduled Prediction

Fig. 4. Example of a swap: Given z-KSL from Figure 3, get the next prediction
s34 from the priority queue. Here, s34 indicates the need to Swap(Maxp,, Mincy).
Deschedule non-null predictions among these swapping nodes and their neighbors,
Miny, and Max,. Next swap the nodes for Maxpg, and Ming,. Then, calculate
swap time predictions (see Equations 4 and 5) for each swapped node with its new
neighbor: s9 3 for Ming, with Ming,; s45 for Maxp, with Max,,. Also recalculate
s3,4; nodes could swap again later with non-linear motion. Schedule any of these
predictions that are non-null on the priority queue. Since a maxima swapped with
a minima on its right, the BV’s of the corresponding objects, B and C, overlap on
the z-axis. They also happen to overlap on all other axes, so perform an intersection
test between B and C.

22

Motion_change (Maxg,, m'yz,) Recalculated Predictions

Ming,
My,
o7y

s|Max,,| @ [MaXc,

My e

Updated Motion

Queue front S34|S12 | Sas| ..

Rescheduled Predictions

Fig. 5. Example of updating motion: Continuing the example from Figures 3 and 4,
objects B and C will collide. Due to collision response, some or all of the extrema for
both objects could require updates to their motions. Here we update the motion of
Maxpg, to m’q B> first by copying the updated motion information to the node. Then
recalculate predictions s34 and s4 5 for swaps with Minc, and Max4,, respectively,
and if non-null, reschedule them.

Fig. 6. Example of a complex model scenario requiring kinetic sweep and prune,
along with OBB-trees for efficiency. Each of the 100 models is composed of over
6000 triangles, for a total of over 600,000 triangles; our collision detection engine
sustains over 15 frames per second, including dynamic intersection tests. Red models
are colliding.

23

Scalability with number of objects and collisions

100 1000
g Fewer collisions
= Reduced cost Q
5 10 5
E 100 g
5 =
E 4 S
n k]
g 10 8
£ 0.1 E
2 Reduced cost =
o

0.01 1

A O OO N
OOOOg

o o o o
Number of objects n

1 Number of collisions —®— Sweep & Prune (SBV)
—&— Kinetic Sweep Prune —&— Cached Dynamic CD

006

=
o
S

0C
00€
000}

Fig. 7. Scalability of dynamic collision detection methods with respect to input
(number of objects n) and output (number of collisions ¢). CPU time includes
updates, pruning collisions, and intersection tests. Data reflects the ratio of CPU
time compared to simulation time; real-time is less than 1. Reductions in the number
of collisions per object in certain configurations result in proportionally much less
work for output sensitive methods without per-frame overhead, favoring kinetic SP.
Times are for 1000 frames.

Scalability of components vs. sample rates

3
B Updates - SP with SBV

M Sorting - SP with SBV
M Updates - Kinetic SP
M Sorting - Kinetic SP

N
3}

N

Linear growth

|

-

Minimal updates

CPU Time / Simulation Time
(6]

o
3

1 5 10 15 20
Sample Rate /(100Hz)

Fig. 8. Scalability in terms of collision detection sample frequency f, for components
of sweep and prune with SBVs, contrasted with components of kinetic sweep and
prune. Data reflects the ratio of CPU time spent compared to simulation time;
real-time is less than 1. For sweep and prune, updating and sorting costs increase
linearly with sample frequency. Kinetic SP only has minimal update costs. Sorting
times show a slightly increasing cost, due to polling from the simulation.

24

